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TEXTURE IMAGE CLASSIFICATION WITH RIEMANNIAN FISHER VECTORS
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This paper introduces a generalization of the Fisher vectors to the Riemannian manifold. The proposed descriptors, called Riemannian Fisher vectors, are defined first, based on the mixture model of Riemannian Gaussian distributions. Next, their expressions are derived and they are applied in the context of texture image classification. The results are compared to those given by the recently proposed algorithms, bag of Riemannian words and R-VLAD. In addition, the most discriminant Riemannian Fisher vectors are identified.

INTRODUCTION

Bag of words, Fisher vectors, or vectors of locally aggregated descriptors represent some of the most frequently used local models in order to capture the information lying in signals [START_REF] Jaakkola | Exploiting generative models in discriminative classifiers[END_REF], images [START_REF] Sánchez | Image classification with the Fisher vector: Theory and practice[END_REF] or videos [START_REF] Faraki | Log-euclidean bag of words for human action recognition[END_REF]. These descriptors have multiple advantages. First, the obtained information can be used in a wide variety of applications like classification [START_REF] Sánchez | Image classification with the Fisher vector: Theory and practice[END_REF] and categorization [START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF], text [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF] and image [START_REF] Douze | Combining attributes and Fisher vectors for efficient image retrieval[END_REF] retrieval, action and face recognition [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF], etc. Second, combined with powerful local feature descriptors such as SIFT, they are robust to transformations like scaling, translation, or occlusion [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF].

The bag of words (BoW) model has been used for text retrieval and categorization [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF][START_REF] Joachims | Proceedings, chapter Text categorization with Support Vector Machines: Learning with many relevant features[END_REF] and then extended to visual categorization [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]. This method is based on the construction of a codebook, or a dictionary, that contains the most significant features in the dataset. Generally, the elements in the codebook, or the words, are the clusters' centroids obtained by using the conventional k-means clustering algorithm. Next, for each element in the dataset, its signature is determined by computing the histogram of the number of occurrences of each word in its structure. To improve the performance of BoW, which counts only the number of local descriptors assigned to each Voronoi region, Fisher vectors (FV) have been introduced by including other statistics, such as the mean and variance of local descriptors.

FV are descriptors based on Fisher kernels [START_REF] Jaakkola | Exploiting generative models in discriminative classifiers[END_REF], representing methods for measuring if samples are correctly fitted by some given models. By using FV, a sample is characterized by the gradient vector of the probability density function that models it, classically a Gaussian mixture model (GMM) [START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF]. In practice, the probability density function is replaced by the log-likelihood and, as mentioned in [START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF], its gradient describes the direction in which parameters should be modified to best fit the data. The derivatives with respect to the model's parameters are computed and concatenated to obtain the FV.

The vectors of locally aggregated descriptors (VLAD) represent a simplification of the Fisher kernel [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF], based on the definition of a codebook. In the computation process, first of all, the dictionary has to be built. For this reason, the dataset is partitioned by using a clustering algorithm and the cluster centroids represent the codebook elements. Next, each element in the dataset is associated to the closest cluster. Further on, for each cluster a vector is computed, containing the differences between the cluster's centroid and each element in that cluster. In the end, the sum of differences concerning each cluster is computed and the final VLAD feature vector is given by the concatenation of all the previously obtained sums. In other way, the VLAD descriptors can be obtained starting from FV, by taking into consideration only the derivatives with respect to the means of the GMM. Note also that the homoscedasticity assumption and the hard assignment scheme are required to obtain VLAD features [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF][START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF].

Those three approaches have been widely used for many applications involving non-parametric features. Recently BoW and VLAD have been extended to the case where each feature is a point on a Riemannian manifold. This is for instance the case where local descriptors are covariance matrices. This includes many different applications in image processing, like classification [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Said | Texture classification using Rao's distance on the space of covariance matrices[END_REF][START_REF] Ilea | Statistical hypothesis test for robust classification on the space of covariance matrices[END_REF], image segmentation [START_REF] Garcia | What does intrinsic mean in statistical estimation?[END_REF], object detection [START_REF] Mader | Using covariance matrices as feature descriptors for vehicle detection from a fixed camera[END_REF][START_REF] Robinson | Covariance matrix estimation for appearancebased face image processing[END_REF], etc. In [START_REF] Faraki | Log-euclidean bag of words for human action recognition[END_REF] and [START_REF] Faraki | Fisher tensors for classifying human epithelial cells[END_REF], the BoW approach has been extended to the so-called log-Euclidean bag of words (LE-BoW) and bag of Riemannian words (BoRW) models by considering respectively the log-Euclidean and geodesic distance between two points on the manifold. In addition, the Riemannian version of the VLAD method (R-VLAD) has been developed in [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF] and has shown superior classification performances, compared to the classic VLAD algorithm.

Until now, FV have not yet been generalized in the same manner to Riemannian manifold, due to the lack of probabilistic generative models suited for parametric descriptors. This represents the main contribution of this paper. The proposed Riemannian Fisher vectors (RFV) are a generalization of the FV for parametric descriptors based on the recent works on the definition of the Riemannian Gaussian distributions (RGDs) [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF]. The paper is structured as follows. Section 2 recalls some elements on the RGD like its definition, the expression of mixtures of RGDs and the parameter's estimation procedure. Section 3 introduces the definition of the proposed RFV, their computation and their relation with R-VLAD. Section 4 presents an application of the proposed RFV to texture image classification. Conclusions and future works are finally reported in Section 5.

RIEMANNIAN GAUSSIAN DISTRIBUTIONS

Let Υ = {Y t } t=1:T be a set of T independent and identically distributed (i.i.d.) samples according to a Riemannian Gaussian distribution of central value Ȳ and dispersion σ. The probability density function of the RGD with respect to the Riemannian volume element, in the space P m of m × m real, symmetric and positive definite matrices, has been introduced in [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF] as:

p(Y t | Ȳ, σ) = 1 Z(σ) exp - d 2 (Y t , Ȳ) 2σ 2 , (1) 
where Z(σ) is a normalization factor independent of the centroid Ȳ and d(•) is the Riemannian distance given by 1), the probability density function for a mixture of K RGDs can be defined as [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF]:

d(Y 1 , Y 2 ) = i (ln λ i ) 2 1 2 , with λ i , i = 1, . . . , m being the eigenvalues of Y -1 2 Y 1 . Starting from (
p(Y t |λ) = K j =1 j p(Y t | Ȳj , σ j ), (2) 
where λ = {( j , Ȳj , σ j ) 1≤j≤K } is the parameter vector. j are positive weights, with

K j=1 j = 1 and p(Y t | Ȳj , σ j ) is given by (1).
Several approaches can be employed to estimate the parameters { Ȳj , σj , ˆ j } 1≤j≤K of the mixture of K RGDs [START_REF] Said | Texture classification using Rao's distance on the space of covariance matrices[END_REF].

The simplest one implies the estimation of the centroids Ȳj , of clusters c j , j = 1, . . . , K by using the intrinsic k-means algorithm on a Riemannian manifold [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF]. Thus, for each cluster c j , the cost function

ε( Ȳj ) = 1 N j Nj n=1 d 2 ( Ȳj , Y jn ) (3) 
has to be minimized, where Y jn is the set of elements Y j in cluster c j , n = 1, . . . , N j and N j is the cardinal of Y jn .

The minimizer of the cost function defined in ( 3) is known to be the Riemannian centre of mass of this set. The interested reader is referred to [START_REF] Moakher | On the averaging of symmetric positive-definite tensors[END_REF] and [START_REF] Afsari | Riemannian lp center of mass: existence, uniqueness and convexity[END_REF] for an algorithm to compute the empirical Riemannian centre of mass. Next, for each cluster c j , the estimated dispersion parameter σj is obtained as the solution of:

σ 3 j × d dσ j Z(σ j ) = ε( Ȳj ). ( 4 
)
This latter is solved by a conventional Newton-Raphson algorithm [START_REF] Said | Texture classification using Rao's distance on the space of covariance matrices[END_REF]. Finally, the estimated weights ˆ j are given by:

ˆ j = N j K j=1 N j . ( 5 
)
All the elements recalled in this part are applied in the next section to the definition of the proposed Riemannian Fisher vectors.

RIEMANNIAN FISHER VECTORS

Definition

Let Υ = {Y t } t=1:T be a sample of T i.i.d observations following a mixture of K RGDs. Under the independence assumption, the probability density function of Υ is given by:

p(Υ|λ) = T t=1 p(Y t |λ), (6) 
where λ = {( j , Ȳj , σ j ) 1≤j≤K } is the parameter vector and p(Y t |λ) is the probability density function given in [START_REF] Sánchez | Image classification with the Fisher vector: Theory and practice[END_REF]. By using the Fisher kernels, the sample is characterized by its deviation from the model [START_REF] Sánchez | Image classification with the Fisher vector: Theory and practice[END_REF]. This deviation is measured by computing the Fisher score U Υ [START_REF] Jaakkola | Exploiting generative models in discriminative classifiers[END_REF], that is the gradient ∇ of the log-likelihood with respect to the model parameters λ:

U Υ = ∇ λ log p(Υ|λ) = ∇ λ T t=1 log p(Y t |λ). (7) 
As mentioned in [START_REF] Jaakkola | Exploiting generative models in discriminative classifiers[END_REF], the gradient of the log-likelihood with respect to a parameter describes the contribution of that parameter to the generation of a particular observation. In practice, a large value for this derivative is equivalent to a large deviation from the model. Further on, that can be translated into the fact that the model does not correctly fit the data.

In the following, the derivatives for the mixture of RGDs, are given, knowing that γ i (Y t ) is the probability that the observation Y t is generated by the i th RGD and it is computed as:

γ i (Y t ) = i p(Y t | Ȳi , σ i ) K j=1 j p(Y t | Ȳj , σ j ) . ( 8 
)
To determine the gradient with respect to the weight, we consider the procedure described in [START_REF] Sánchez | Image classification with the Fisher vector: Theory and practice[END_REF]. For that, the following parametrization is used in order to ensure the positivity and sum to one constraints of the weights:

i = exp(α i ) K j=1 exp(α j ) . (9) 
By taking into consideration all these observations, the derivatives with respect to the parameters in λ can be obtained as:

∂ log p(Υ|λ) ∂ Ȳi = T t =1 γ i (Y t ) σ -2 i Log Ȳi (Y t ), (10) 
∂ log p(Υ|λ) ∂σ i = T t =1 γ i (Y t ) - Z (σ i ) Z(σ i ) + d 2 (Y t , Ȳi ) σ 3 i , (11) 
∂ log p(Υ|λ) ∂α i = T t =1 γ i (Y t ) (1 -i ), (12) 
where Log Ȳi (•) is the Riemannian logarithm mapping. The vectorized representation of the derivatives in ( 10), ( 11) and ( 12) of the log-likelihood, with respect to the parameters in λ, gives the Riemannian Fisher vectors (RFV). In the end, by using the RFV, a sample is characterized by a feature vector containing some, or all the derivatives, having the maximum length given by the number of parameters in λ.

Relation with R-VLAD

As mentioned earlier in the introduction, VLAD features are a special case of FV. Therefore, R-VLAD can be viewed as a particular case of the proposed RFV. More precisely, R-VLAD is obtained by taking into consideration only the derivatives with respect to the central value Ȳi (see [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF]). In addition, a hard assignment scheme is applied. Starting from the definition of the elements v i in the R-VLAD descriptor [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF]:

v i = Yt∈ci Log Ȳi (Y t ), (13) 
with Y t ∈ c i being the elements Y t assigned to the cluster c i , i = 1, . . . , K, the hard assignment implies that:

γ i (Y t ) = 1, if Y t ∈ c i 0, otherwise. (14) 
Moreover, the assumption of homoscedasticity is considered, that is σ i = σ , ∀i = 1, . . . , K. By considering these two assumptions, it is clear that (10) reduces to (13) hence confirming that RFV are a generalization of R-VLAD descriptors.

APPLICATION TO TEXTURE IMAGE CLASSIFICATION

This section introduces an application to texture image classification. The aim of this experiment is first to analyze the potential of the proposed RFV compared to the recently proposed bag of Riemannian words (BoRW) model [START_REF] Faraki | Fisher tensors for classifying human epithelial cells[END_REF] and R-VLAD [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF]. The BoRW, RFV and R-VLAD are built based on region covariance descriptors [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classification[END_REF] containing basic information, like image intensity and gradients. The experiment's purpose is not to find the best classification rates, but to compare the two methods starting from very simple descriptors.

Second, the objective is to determine the RFV that are the most discriminant to retrieve the classes: the one associated to Ȳi (10), σ i [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF] or α i (12).

Databases

For this work, two texture databases are used: the VisTex [START_REF]Vision Texture Database[END_REF] database and the Outex TC000 13 [START_REF]Outex Texture Database[END_REF] database. The Vis-Tex database consists in 40 texture classes. Each class is composed of 64 images of size 64 × 64 pixels. The Outex TC000 13 database contains 68 texture classes, where each class is represented by a set of 20 images of size 128 × 128 pixels. For both databases, the feature extraction and classification steps are similar and are detailed in the next subsection.

Feature extraction and classification

For the classification procedure, the considered database is equally and randomly divided in order to obtain the training and the testing sets. For each image in the two sets, local descriptors have to be extracted first. In this experiment, the region covariance descriptors (RCovDs) are considered. In order to build the RCovD for an image I of size W × H, several characteristics are extracted for each pixel (x, y) ∈ I.

Here, the image intensities I(x, y) and the norms of the first and second order derivatives of I(x, y) in both directions x and y are considered [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classification[END_REF]. Thus, a vector v of 5 elements is obtained for each pixel having the spatial position (x, y) ∈ I:

v(x, y) = I(x, y), ∂I(x,y) ∂x , ∂I(x,y) ∂y , ∂ 2 I(x,y) ∂x 2 , ∂ 2 I(x,y) ∂y 2 T . (15) 
For the two considered databases, the extracted RCovD are the estimated covariance matrices of vectors v(x, y) computed on a sliding patch of size 15 × 15 pixels. As an overlap of 8 pixels is considered for the patches, the VisTex and Outex databases are represented respectively by a set of 36 and 196 covariance matrices per texture class (of size 5 × 5). To speed-up the computation time, the fast covariance computation algorithm based on integral images presented in [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classification[END_REF] has been implemented. In the end, each texture class is characterized by a set Y 1 , . . . , Y N of N covariance matrices, that are elements in P 5 . Based on the patches in the training set, a codebook is created. For each class, the codewords are represented by the estimated parameters { Ȳj , σj , ˆ j } 1≤j≤K of the mixture of K RGDs defined in [START_REF] Sánchez | Image classification with the Fisher vector: Theory and practice[END_REF]. The estimation procedure is carried out here by using the intrinsic k-means algorithm (see Section 2). For this experiment, the number of modes K is set to 3. In the end, the codebook is obtained by concatenating the previously extracted codewords.

Starting from the RCovDs and the learned codebook, the BoRW, RFV and R-VLAD local models are derived, as presented in the previous section. After their computation, a normalization stage is performed. In the RFV framework, the classical power and 2 normalizations are applied [START_REF] Faraki | Fisher tensors for classifying human epithelial cells[END_REF]. The 2 normalization has been proposed in [START_REF] Perronnin | Improving the Fisher kernel for large-scale image classification[END_REF] to minimize the influence of the background information on the image signature, while the power normalization corrects the independence assumption made on the patches [START_REF] Perronnin | Largescale image retrieval with compressed Fisher vectors[END_REF]. The same normalization scheme is also applied for R-VLAD models. For the BoRW algorithm, only 2 normalization is performed, as recommended in [START_REF] Faraki | Log-euclidean bag of words for human action recognition[END_REF].

For the classification step, the SVM algorithm with Gaussian kernel is considered, knowing that the dispersion parameter of the Gaussian kernel is optimized by using a cross validation procedure on the training set.

Results

The classification performances in term of overall accuracy on the VisTex and Outex TC000 13 databases are reported in Tables 1 and2 respectively. Those results are displayed for 10 random partitions in training and testing sets. Columns homoscedasticity and prior correspond respectively to the homoscedasticity assumption and to the use of the weights i in the decision rule. If the homoscedasticity assumption is true, the dispersion parameter σ i is the same for all the clusters c i . If the prior parameter is set to false, all the clusters have the same weight. Note that for the BoRW approach published in [START_REF] Faraki | Fisher tensors for classifying human epithelial cells[END_REF] and the R-VLAD presented in [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF], the dispersion and weight parameters were not considered. Note also that for the proposed RFV, those two parameters are respectively set to "false" and "true", since both the dispersion and weight parameters are considered in the derivation of the RFV.

In this experiment, we also analyze the contribution of each parameter (weight, dispersion and centroid) to the classification accuracy. For example, the row "RFV : " indicates the classification results when only the derivatives with respect to the weights are considered to calculate the RFV (see ( 12)), . . . As observed in Tables 1 and2, the proposed RFV outperforms the BoRW and R-VLAD approaches. A gain of 1 to 3% is observed for the VisTex database. Moreover, among the RFVs types, the most discriminant feature is obtained by combining the derivatives with respect to all three parameters: centroid, dispersion and weight (see [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF], [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF], ( 12)).

CONCLUSION

In this paper, a new local model for image classification in the Riemannian space has been proposed. The introduced method, called Riemannian Fisher vectors, is a generalization of the so-called Fisher vectors, when the features are represented by parametric descriptors, like covariance matrices. The definition and the expression of RFV have been given, starting from the definition of the mixture of Riemannian Gaussian distributions. In addition, its relation with R-VLAD has been illustrated. In the end, the RFVs have been applied for texture image classification on the VisTex and Outex TC000 13 databases. The results have been compared with those given by BoRW and R-VLAD, showing better classification rates for the same codebook. In addition, it has been observed that the most discriminant feature is obtained by combining the derivatives with respect to all parameters.

Further works on this subject will concern the extension of RFV to the recently proposed mixture of Riemannian Laplace distributions [START_REF] Hajri | Riemannian Laplace distribution on the space of symmetric positive definite matrices[END_REF][START_REF] Ilea | Texture image classification with Riemannian Fisher vectors issued from a Laplacian model[END_REF].

Table 1 .

 1 Classification results on the VisTex database.

	Method	Homoscedasticity	Prior	Overall accuracy
	BoRW	false	true	87.22 ± 1.19
	BoRW	false	false	87.51 ± 0.92
	BoRW [17]	true	false	87.20 ± 1.55
	BoRW	true	true	76.67 ± 2.35
	RFV :	false	true	90.31± 0.94
	RFV : σ	false	true	81.42 ± 1.12
	RFV : Ȳ	false	true	87.22 ± 1.15
	RFV : σ,	false	true	83.05 ± 1.15
	RFV : Ȳ,	false	true	87.85 ± 0.97
	RFV : Ȳ, σ	false	true	90.41 ± 0.86
	RFV : Ȳ, σ,	false	true	90.43 ± 0.84
	R-VLAD [7]	true	false	87.94 ± 0.58
	Method	Homoscedasticity	Prior	Overall accuracy
	BoRW	false	true	84.32 ± 0.99
	BoRW	false	false	84.37± 1.28
	BoRW [17]	true	false	84.43 ± 1.23
	BoRW	true	true	79.31 ± 1.86
	RFV :	false	true	84.94 ± 1.12
	RFV : σ	false	true	78.46 ± 1.54
	RFV : Ȳ	false	true	83.94 ± 0.90
	RFV : σ,	false	true	80.38 ± 1.80
	RFV : Ȳ,	false	true	84.26 ± 0.75
	RFV : Ȳ, σ	false	true	84.32 ± 1.19
	RFV : Ȳ, σ,	false	true	84.12 ± 1.15
	R-VLAD [7]	true	false	82.99 ± 1.19

Table 2 .

 2 Classification results on the Outex database.
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