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Abstract—In this paper, we address the problem of underdeter-
mined massive MIMO detection (the number of observations is
less than the number of sources) assuming QAM constellations.
In [1], the authors showed the utility of projecting the signal
on a basis of the modulation alphabet, looking for the sparsest
vector representation. As an extension of this work and in order
to reduce the detection complexity, we present first an equivalent
real-valued formulation of the optimization problem, all the more
interesting as the modulation order is high. Then we consider
an outer forward error correcting (FEC) code and we propose
a turbo detection scheme. We focus on the medium SNR value
range where detection errors involve adjacent symbols. Based on
this hypothesis, we propose a sparse vector formulation to be
treated as a soft detection output that can be directly exploited
in a symbol-to-binary conversion to feed the FEC decoder with
reliable soft input. The FEC decoder output will be exploited
to provide a priori information within the detection criterion
based on a regularization approach. Simulation results show the
efficiency of the proposed scheme in comparison with reference
schemes of the state-of-art.

Index Terms—sparse representation, source separation, mas-
sive MIMO, turbo-detection

I. INTRODUCTION

EXPONENTIAL growth in the number of mobile connected
machines and the amount of data they consume motivate

researchers to look for new technologies and approaches to
address the mounting demand. MIMO technology has been
selected in the 5G standard definition as a solution to provide
higher throughput under spectrum limitations [2]. It promises
significant gains that offer the ability to serve more users
at higher data rates with better reliability. Large number of
antennas and/or users is involved, which makes the receiver
design critical from the complexity point of view. Sphere de-
coding technique which is a Maximum Likelihood (ML) based
detector involves an exhaustive search within the hypersphere
whose dimensions remain high in the large-scale MIMO case,
yielding computationally-unsolvable detection. Research for
high-performance receiver design that can lead to practical
realization of large-MIMO systems is both nascent as well
as promising [3]. Usual linear equalizers such as minimum
mean square error (MMSE) and zero-forcing (ZF) have low
computation complexity but perform poorly when used in
underdetermined uncoded MIMO systems. Such configuration
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is expected in future 5G system uplink, as the number of
connected users times their transmit antenna number could
be much higher than the base station receive antenna number.

Previous works proved that source separation is possible
in the underdetermined case thanks to basis pursuit (BP)
techniques. Following this approach, a sparse representation
was proposed in [4] to define a successful separation method
for a conditioned dimension system. Underdetermined noisy
MIMO system with finite alphabet was dealt with as an
application case of [4] in [1] and [5], where the problem
was formulated as a basis pursuit denoising (BPDN) problem
with relaxed constraints. This formulation is based on an ML
criterion applied with relaxed constraints.

In this paper, we consider the method developed in [1] and
we investigate its complexity reduction and its use in asso-
ciation with a FEC decoder. The contributions are threefold.
The first one is a reduced-complexity detection with error rate
performance preservation thanks to a real-valued formulation
of the problem. The second one is the definition of reliable
soft detection output to be delivered to a FEC decoder. Thirdly
we propose an iterative receiver based on a regularization
procedure in the detection optimization criterion.

This paper is organized as follows. Section II describes the
underdetermined MIMO transmission model. Section III deals
with the source separation problem in the MIMO case. We
consider a real-valued formulation of the problem and propose
a new sparse decomposition. Section IV describes how the
proposed sparse decomposition-based detector is adapted to
exchange soft information with a FEC decoder. In Section
V, we compare the proposed sparse decomposition-based
detection method to the one investigated in [1] as well as to
the MMSE linear equalizer in both coded and uncoded cases.
Finally, Section VI concludes the paper.
Notations: boldface upper case letters and boldface lower
case letters denote matrices and vectors, respectively. For the
transpose, transpose conjugate and conjugate matrices we use
(.)T ,(.)H and (.)∗, respectively. ⊗ is the Kronecker product.
Ip is the p × p identity matrix and 1p is the all-one size-p
vector.

II. SYSTEM MODEL

Let us consider a K-user MIMO transmission over a flat
fading channel, where each user has Nt transmit antennas and



let N = K × Nt. At the base station side, we assume n
equivalent receive antennas (base station cooperation through
the base station controller is possible) with n ≤ N . We assume
a perfect knowledge of the channel state information (CSI)
at the base station. In this paper, we focus on the uplink of
the communication system. The received signal is defined as
follows:

y =Hx+ z. (1)

where H is an n × N random channel matrix, x is the
N × 1 data vector, and z is the n × 1 complex circularly
symmetric additive Gaussian noise vector with zero mean and
a covariance matrix equal to σ2I . We assume that the compo-
nents of x belong to an M -QAM modulation alphabet such
that M = p2 (square QAM constellation). The modulation
alphabet is denoted by Q = {q1, q2, ..., qM}. We associate to
Q the symbol vector q = [q1, q2, ..., qM ] where qi = ai + jbi,
i ∈ {1, .., .M} with (ai, bi) ∈ A×A and A = {α1, α2, .., αp}.

The challenge is to design an efficient joint detection
scheme of the transmitted data with moderate computational
complexity order over the whole SNR range in an underdeter-
mined system (n ≤ N ) and to introduce it within an iterative
turbo-like detection receiver.

III. ITERATIVE DETECTION OF SPARSE DECOMPOSED
MIMO SIGNAL VIA EUCLIDEAN DISTANCE MINIMIZATION

A. Proposed detection scheme

We now consider the MIMO system described in Section II
with large values of n and N (massive MIMO configuration).
In this respect, the optimal ML joint detection, based on
exhaustive search is a problem computationally unsolvable.
Using the decomposition proposed in [1], the received signal
reads

y =HBqr+ z, (2)

where Bq = IN ⊗ q and q is the complex-valued alphabet
vector q = [q1, q2, ..., qM ].
The vector r is sparse as it is the concatenation of N sub-
vectors, each with only one non-null component. The non-
zero component equals one and corresponds to the transmitted
symbol (.i.e. if r`N+k = 1, then the (` + 1)-th user symbol
equals qk).

In order to recover the sparse vector r, the authors in [4]
proposed to solve the following optimization problem:

(PC,2) : arg min
r

||y −HBqr||2 (3)

subject to BC
1 r = 1N ,

r ≥ 0.

where BC
1 = IN ⊗ 1M .

This optimization problem statement can be seen as a ML
relaxed detector that minimizes the Euclidean distance with
the received signal. The constraints are invoked to impose the
sparse structure of the vector r.

As we can see the complexity of this proposed procedure
increases with the constellation size M . To get around this

main drawback we transform first the complex-valued system
into an equivalent real-valued system, which reads

ỹ = H̃x̃+ z̃, (4)

where ỹ =
(
<y
=y

)
, H̃ =

(
<H −=H
=H <H

)
, x̃ =

(<x
=x
)

and

z̃ =
(<z
=z
)
.

In this real-valued system, the first N components of x̃
are the real parts of the symbols and the imaginary parts
are mapped to the next N components. Exploiting the same
approach as in [1] and based on the fact that the elements
of x̃ belong to the real-valued alphabet A = {α1, α2, .., αp}
we decompose x̃ as x̃ = Bαs where Bα = IN ⊗ α, with
α = [α1, α2, ..., αp]. The vector s is sparse. Each of its
2N subvectors contains one element different from 0 that
corresponds to the equivalent real symbol. Then, we propose
to recover x from the following optimization procedure:

(PR,2) : arg min
s

||ỹ − H̃Bαs||2 (5)

subject to BR
1 s = 12N ,

s ≥ 0.

where BR
1 = I2N ⊗ 1p.

B. Soft-decision detection output

In the noisy case, there exist many decompositions sat-
isfying the optimization constraints and yielding the same
ŝ. In some cases, the detection algorithm converges to the
true one: ˆ̃x is sparse and its subvectors have only one non-
null component which equals 1. Otherwise, the decomposition
is erroneous and ˆ̃x is not sparse. To ensure a reliable soft
detection output, we try to obtain a decomposition estimate
of x̃ as close as possible to the true one. To this end, we
focus on SNR values such that, when an error occurs, the
detected symbol is an adjacent symbol. Then we can transform
each non-sparse subvector into a sparse one with only two
non-null components corresponding to the alphabet elements
which are closed to the original estimate. Let ̂̃xj = αT ŝj be
an estimation of j-th element of the searched vector where
ŝj is non-sparse. We first find the index i such that the real
symbols αi and αi+1 are the closest to ̂̃xj . We then force
all the components of ŝj to 0 except ŝj(i) =

̂̃xj−αi+1

αi−αi+1
and

ŝj(i+ 1) = 1− ŝj(i).

IV. TURBO SPARSE DECOMPOSITION-BASED DETECTION

A. Iterative receiver and soft-output detection

Detector SBC

BSC

y Decoder
Λdec

outΛdec
inΛdet

out

Λdet
in

ŝdetout

ŝdetin

π−1

π

Fig. 1: Turbo detection scheme.



Our goal is to associate the proposed soft-output detector
with a FEC decoder and make them work in an iterative
manner (see Fig. 1). We now consider that the binary stream
is FEC encoded, then randomly interleaved before being
converted into QAM symbols and passed through a serial-
to-parallel converter.

Back to our model, each real or imaginary parts of the
symbol are seen as a projection of a sparse sub-vector onto the
finite real-valued alphabet vector α. To satisfy the constraints
in the noiseless case, each subvector must have only one non-
zero component equal to one at the position of the associated
value in α. In the noisy case, the detection output satisfies the
optimization constraints: the subvector components are posi-
tive and their sum equals 1. Each j-th subvector component
can be interpreted as the probability that the real part (or
imaginary part) be equal to αj . This interpretation is used
to build the soft detection output to be delivered to the FEC
decoder. We consider in the following each recovered element
in the interval [0, 1] as the probability of a symbol to occur
conditionally to y.
Let m = log2(

√
M) and c be the length-mN coded and

interleaved binary information sequence at one channel use.
Let also ψ be the binary-to-symbol conversion defined as:

ψ : [c(k−1)mc(k−1)m+1...ckm−1] ∈ {0, 1}m 7→ x̃k ∈ A (6)

and cj = ψ−1(αj).
At first iteration, the sparse detector provides ŝdetout inter-

preted as a posteriori probabilities of x̃:

ŝdetout((k − 1)m+ j)∆
=Pr(x̃k = αj |y) (7)

Using ŝdetout, the symbol to binary converter (SBC) computes
the log likelihood ratio on the i-th bit associated to the k-th
symbol, denoted by Λdetout and defined as:

Λdetout((k − 1)m+ i) = log

(
Pr(c(k−1)m+i = 1|y)

Pr(c(k−1)m+i = 0|y)

)
(8)

= log

(∑
αj∈Ai,1 Pr(x̃k = αj |y)∑
αj∈Ai,0 Pr(x̃k = αj |y)

)

= log

(∑
αj∈Ai,1 ŝ

det
out((k − 1)m+ j)∑

αj∈Ai,0 ŝ
det
out((k − 1)m+ j)

)

with Ai,ε = {a ∈ A|ψ−1(a)(i) = ε}.
Let Λdecin be the sequence obtained after deinterleaving

of Λdetout. We consider that the FEC code is a convolutional
code and assume that the soft-in soft-out optimal Bahl Cocke
Jelinek Raviv (BCJR) decoder [6] is used at the receiver. The
FEC decoder produces Λdecout. It can be decomposed as the sum
of Λdecin and Λdetext. Λdetext is extrinsic information, used as input
of the binary-to-symbol converter (BSC) to provide a priori
information to the detector in the following iteration. Let Λdetin

be the result of interleaving of Λdecext. The detector a priori
information is denoted by ŝdetin and reads

ŝdetin ((k − 1)m+ j) = Pr
(
x̃k = αj |Λdetin

)
(9)

=
∏

0≤i≤m−1

cj=ψ
−1(αj)

Pr
(
c(k−1)m+i = cj(i)|Λdetin

)

with Pr
(
c(k−1)m+i = cj(i)|Λdetin

)
= exp (uv)

exp (v)+exp (−v) with

u = 2cj(i)− 1 and v =
Λdetin ((k−1)m+i)

2 .

B. Detection criterion
In order to take into account the a priori information

delivered by the decoder in the proposed detector, we propose
to resolve the optimization system with a regularization term
as follows:

(PR,2) : arg min
s

||ŷ − ĤBαs||2 + γ||s− ŝdetin ||2 (10)

where γ is a positive weight less than 1. It enables to take into
account the unaccuracy of the estimated vector. The second
term of regularization can be seen as a penalty, imposed to
ensure that the detector output remains in the neighborhood
of the decoder output.

C. Choice of the regularization parameter

The performance of our proposed detector depends highly
on the choice of the regularization parameter. We propose
two approaches. The first considers γ constant for all the
iterations. The parameter is then found empirically for each
SNR value. The second makes the parameter value change
over the iterations. In other words, for each SNR value, γ
will depend on the probability that ŝdetin is the searched vector
which can be simply determined with the LLR provided by
the decoder.

V. SIMULATION RESULTS

In this section, we evaluate the new real-valued sparse
decomposition-based detection both in uncoded and coded
cases in terms of complexity and error rate compared to state-
of-art techniques. The channel coefficients are assumed to be
i.i.d circularly symmetric complex Gaussian distributed with
zero mean and unit variance. We use the CVX toolbox, which
is a Matlab library for convex optimization [7]. The quadratic
minimization problem is solved by the Gurobi optimizer [8].
The simulation results are obtained by using a PC with OS
Linux Ubuntu 14.04 with processor Intel Core i3-2350M 2.3
GHz and 8 GB of RAM memory.

A. Complexity analysis

The interest of the proposed real-valued transformation
comes from its complexity order. The CVX toolbox relies on
the interior point method whose complexity is a function of
the number of constraints and the dimension of the searched
vector. A convex optimization problem defined over Rm under
d constraints requires, in the worst case, O(

√
d) iterations for

a computation cost of order O(m2d) per iteration and yields
a total computation cost of order O(m2d3/2) [9]. Applied
to (PC,1) and (PR,1), the complexity ratio equals

√
M . The



Iteration number Computational cost per iteration Total

(PC,1) O(M
√
N) O(N2.5) O(MN3)

(PR,1) O(
√
MN) O(N2.5) O(

√
MN3)

MMSE 1 O(n3) O(n3)

SD 1 O(
√
MN ) O(

√
MN )

TABLE I: Computational cost with the interior point method.

computational costs are reported in Table I. The proposed real-
valued problem (PR,2) is all the more interesting to solve
as the modulation order is high. The sphere-detection is NP-
hard [10]: thus it is the least cost efficient. The MMSE-based
detector involves a complexity with the order of O(n3). In
the case of low-order modulation and determined system, the
proposed detector complexity is of the same order as the
MMSE one.

B. Non-Coded case
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Fig. 2: BER performance comparison with N = 16 and n =
14 and 4-QAM (uncoded).

Fig. 2 gives the BER performance of the proposed (PR,2)
detector, the sphere decoder (SD), and the (PC,2) detector in
the uncoded case with N = 16, n = 14 and M = 4. As
(PC,2) and (PR,2) resort to the same detection principle, they
perform the same whatever the system configuration. Beyond
6.7dB, the SD outperforms the (PR,2) detector, e.g. at BER
10−3, a gain of about 5 dB is achieved.

In Fig. 4, the system dimension is increased to 64 × 64
(determined). The SD complexity becomes too high. We thus
compare the (PR,2) detector to the MMSE detector (which
requires N ≤ n). One can observe that the (PR,2) detector
better exploits the receive diversity than the MMSE detector.
At BER 10−2, the (PR,2) outperforms the MMSE by about
5.5dB. This gain increases and exceeds 7dB for a BER of
10−3.
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Fig. 3: BER performance comparison with N = 64 and n =
64 and 4-QAM (uncoded).

C. Coded case

In this section, we compare the proposed turbo detection
scheme to a MMSE-based turbo equalizer [11]. The convolu-
tional code (CC) polynomials in octal are (13, 15) with a code
rate equal to 0.5. We take into account a variable regularization
parameter γ in the detection criterion.

In Fig. 4, we consider N = 128, n = 96, L = 512 (frame
length) and M = 4. We observe that the proposed scheme
outperforms the turbo-MMSE scheme for all the number of
iterations. It can be seen that the gain increases with the SNR
value. For instance, it achieves 1 dB at BER=10−4 at the fourth
iteration.

In Fig. 5 , we consider N = 16, n = 15, L = 512, M =
16 and 4 iterations. The efficiency of the exploitation of the
extrinsic information between the detector and the decoder can
be shown by looking at the improvement from an iteration to
the next one. For example, from the second iteration to the
third one, the gain is of about 3dB at BER=10−3.

As mentioned above in Section IV-C, the regularization
parameter in the detector can be fixed by two approaches. Fig.
6 compares the two methods for N = n = 64, L = 512 and
M = 4. The first one takes γ = 1/3. The second one makes γ
variable and crescent as the number of iterations increases, that
is to say as the FEC output gets more reliable. We mention
that the values are optimized empirically. Simulations show
that both approaches converge to the same performance as



observed in Fig. 6 but for the intermediate iterations, the
probabilistic choice outperforms the deterministic (fixed) one.
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Fig. 4: BER performance comparison with N = 128, n = 96,
L = 512, CC(13,15) and 4-QAM (iterative receiver).
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Fig. 5: BER performance comparison with N = 16, n = 15,
L = 512, CC(13,15) and 16-QAM BER (iterative receiver).

VI. CONCLUSION

In this paper we have addressed the problem of detection in
large MIMO systems with finite M -QAM constellation. We
have proposed a real-valued formulation of the system model
and then we have decomposed each symbol sparsely in the
real-valued alphabet basis. Exploiting the vector sparsity and
following the approach of [1], we have defined the detection
based on the problem (PR,2) which achieves the same error
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Fig. 6: Influence of γ on the BER performance with N = 64,
n = 64, L = 512, CC(13,15) and 4-QAM (iterative receiver).

rate performance with a lower complexity compared to (PC,2).
In addition to its asset for the complexity, the detection
algorithm output enables to compute a reliable soft input for
a FEC decoder. We have also designed an iterative receiver
based on a regularization method in the detection.
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