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Abstract: 

Air Pollution monitoring and measurement are generally done using sampling techniques 

and analysis equipment often heavy, complex and expensive. Although these methods offer a 

high measurement precision which is essential to answer standards requirements, they are not 

adapted for quality oriented applications where simple information with low precision can be 

sufficient. The use of semiconductor gas sensors networks can provide the answer for a “low 

cost” system intended for such applications in air pollution detection fields. Three identical 

portable autonomous sensors arrays were built, each containing nine commercial 

semiconductor sensors especially chosen to detect a large range of pollutants usually 

encountered in ambient air and for a large part of them regulated. In order to overcome the 

temporal instability and the lack of reproducibility of these sensors, a calibration and 

normalisation procedure was developed. The obtained systems were used for on-site pollution 

monitoring in association with the French National Network of Accredited Associations for 

Air Quality Monitoring (AASQA). Gathered data from sensors systems and network data 

(NO, NO2, CO, PM2,5, ...) were treated using nonlinear regression algorithms like Neural 

Networks with an original “fuzzy logic” type pre-treatment in order to compute a model able 

to predict the membership degree for three predefined pollution categories: traffic, urban and 

photochemical pollution, along with a pollution index describing the severity of the 

predominant pollution. The prediction rate was estimated system per system, and site per site 

for six sites. It has been shown that it was possible to obtain a quasi-universal model with a 

success rate over 80%. 

 

Key words: Air pollution detection, semi-conductor gas sensors, sensors array, 
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1. Introduction 

 

Atmospheric pollution monitoring is usually done by a network of measuring stations. 

These stations are based on high performance industrial gas analyzers placed in fixed 

monitoring sites. Measurements from these stations are used to define air quality indexes 

which depend on some regulated gases (NO2, SO2, O3 and/or particles concentrations (PM10). 
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For example, in France, nearly eight hundred permanent stations throughout the territory 

contribute to foresee short -and mid- term air quality forecast. The measurements done by 

these stations are based on high performance industrial gas analyzers, which offer an excellent 

selectivity and precision towards targeted gases. However their high price and heavy weight 

make their use complicated [1], especially for some application where selectivity and 

precision are not required [2] like pollution meshing [3] or source detection [4]. 

A complementary method for air pollution monitoring lies in the use of gas sensors arrays 

based on semiconductor gas sensors [3, 5-7]. Semiconductor gas sensors have been optimized 

for more than thirty years [8], giving them a high sensitivity for certain gas detection, a fast 

response time of up to several seconds, a small size, low cost (few euros) compared to other 

types of sensors, and ease of use in electronic systems which make them attractive cheap 

consumers devices [7] [9].  

 Even if semiconductor gas sensors show a low selectivity [10-14], reproducibility and 

repeatability [13, 15] to specific gases in a complex mixture, each type of sensor reacts 

differently to each family of gas species [14]. So, with adequate pattern recognition 

algorithms (multivariate analyses such as neural networks), this drawback is used as an 

advantage to identify an overall signature of pollution [16-20]. 

This point constitutes the sensors array approach. Such systems can be used to perform 

semi-quantitative measurements [21]. However, complex situations with large numbers of gas 

can limit their performance [22].  

Most of time, pollution detection with commercial gas sensors is usually focused on 

identifying one single pollutant in the atmosphere [1] [7] [23] [24]. The presence of different 

interfering gases in the atmosphere renders these detections difficult and vulnerable for 

mistakes.  

Therefore, in this work, we present three identical autonomous portable systems each 

containing 9 different commercial semi-conductor gas sensors, one humidity sensor and a 

temperature sensor especially developed to address ambient air pollution problematic. First, 

through many field experiments, we have evaluated the capability of these multi-sensors 

arrays to distinguish different types of air pollution like traffic, urban or photochemical 

pollution, and then we have associated them to an index level, according to French air quality 

standards. To reach this goal, the developed systems were placed in six different air network 

stations. Previously, one year of data history from each station was used to establish 

correlations and repeated patterns between pollutants and atmospheric pollution types. Neural 

networks models are built from sensors responses in order to predict membership of pollution 

to the categories previously defined (traffic, urban or photochemical pollution). Two field 

campaigns, during winter and summer in order to take into account the influence of 

atmospheric conditions, were conducted to establish the modelling and to validate it. 

The portability and robustness of the models for different sensors arrays on different 

stations was also evaluated. 

 

2. Sensors arrays and responses corrections  



2.1.Measuring System development: 

Three identical sensor arrays (Fig 1) were developed, each containing nine commercial 

semiconductor gas sensors (from Figaro Sensors and SGX Sensortech, Table 1) and also 

humidity (Measurement Specialities HS1101) and temperature (Texas Instruments LM35) 

sensors. The gas sensors were selected to detect the widest gas species usually present in 

urban atmosphere. We focused firstly on regulated pollutants (O3, NO, NO2, CO) in order to 

correlate them to databases provided by the network of air quality monitoring stations. 

Secondly, we targeted components sensitive to VOCs because those gases can also be specific 

to kind of contamination like traffic or urban pollution. Finally, we completed our choice, 

with sensors able to detect unregulated gas like NH3, H2S, or alkanes because of their 

specificity to large types of pollution. Table 1 presents the sensors chosen with their 

commercial references, their target gases and the detection range as specified by the 

constructors. 

 

 

Fig 1: Sensors array including 9 semiconductor sensors 

Table 1: Chosen semiconductor based gas sensors with their target gases and their specified detection range, 

according to constructor specifications (* TGS: Figaro Sensors, MICS: SGX Sensortech) 

Sensor* Target  gases  Constructor detection range  

MICS5525 CO 1-1000 ppm 

MICS2710 NO2 0,5-5 ppm 

MICS2611 O3 0,1-1 ppm 

TGS2600 Large range of air contaminants  500-10000 ppm 

TGS2602 VOC-Odors-H2S 30-10000 ppm 

TGS2611 Combustible gases - Methane 500–10000 ppm 

TGS2620 Alcohol and solvent vapours  50– 10000 ppm 

MICS5521 CO-VOC-Hydrocarbons 0,1 – 100 ppm 



MICS5914 NH3 300-40000 ppm 

 

All these gas sensors undergo a variation in conductance when the gas concentration in 

their environment is changed. A dimensionless quantity called "relative conductance 

variation" was used to characterize the sensor response (Eq.1). 

XR= (G-G0)/G0 (1) 

With: 

- XR: relative conductance variation of a sensor 

- G: sensor’s conductance 

- G0: reference conductance (base-line) measured under “reference air” (synthetic air, 

nitrogen /oxygen 80/20 vol.% with H2O, 12g/m
3
 (1.5% volume)

 
). 

It is clearly noticeable that these specified detection ranges are much higher than the usual 

pollutants concentrations in the atmosphere. Therefore testing these sensors under relatively 

low concentrations of pollutant gases was a necessity. To perform such experiments, a test 

bench allowing to characterize each array under defined gases was used. These gases were 

methane, toluene, nitrogen dioxide, carbon monoxide, ozone, ammonia and ethanol. For each 

gas, the concentrations were fixed by dilution in reference air described previously, thanks to 

massflow regulators. These concentrations were chosen according to levels that can be 

encountered in ambient air.  Fig 2 presents sensors responses from one of the sensors arrays 

measured in such conditions. 

 

Fig 2 : Sensors relative conductance variation (XR) for low concentration of pollutants 

Each signature is specific for a given gas at a given concentration. These sensors show a 

significant response toward different gases at concentrations much lower than the detection 



ranges specified by their constructors, tested concentrations levels can be representative of 

what can be found in polluted sites.  

2.2.Baseline drifts correction: 

The drift of the sensors signal can cause significant problems of temporal validity for the 

produced models. So a periodic measurement of this change is necessary to ensure proper 

monitoring of the baseline. Sensors baseline drift was studied by measuring and giving each 

month a reference conductance (G0) to each sensor calculated under reference air for specific 

conditions of temperature and relative humidity (50% at 25°C). Fig 3 shows the evolution of 

sensors relative conductance variation XR (defined by eq 1) for zero air flow during 7 months 

of tests for the first prototype array.  

 

Fig 3 : Relative conductance variation (XR) under zero air variation during 7 months of measurements 

Baseline drift value is specific to each sensor. It is imperative that this test is always 

repeated under the same conditions. Drifts can take different shapes depending on the sensor’s 

type, but sensors of same type can also have different drifts. Fig 4 shows the evolution of the 

baseline of Mics 5525 sensors from the 3 different arrays for another period of 8 months. 

 

Fig 4: Baseline drift registered for different Mics5525 sensors from three arrays during 8 months of observation. 



This figure shows a decreasing trend similar between the three different Mics 5525 

sensors. However, the amplitude of the variation varies from one sensor to another. We note 

that responses have sharply decreased in the first months (July-November), and after this 

period, they were relatively stable. 

This confirms that a periodic measurement of these changes is necessary to ensure proper 

monitoring of the baseline. Therefore a calibration correction was done on a weekly basis to 

detect this drift in order to have new measurements of the reference G0, although it can 

probably be reduced to a monthly basis with no significant changes if sensors are aged at least 

3 months before use. 

2.3.Sensitivity change compensation: 

Besides the drift of the baseline, semi-conductor gas sensors also tend to undergo changes 

in their sensitivity through time. Moreover, same sensors type can have different sensitivity to 

the same gases, inducing a low reproducibility between them. To homogenise a relative 

repeatable and reproducible responses between the 3 arrays, a normalisation procedure was 

elaborated. The principle is based on normalization of the relative conductance of each same 

type sensors under one reference gas as shown in Table 2. Four gases were chosen as 

representatives of pollutants in the atmosphere (CO, CH4, NO2, NH3), and each sensor was 

normalized toward the gas for which the sensor shows highest sensitivity. 

Sensor Reference gases N 

 

CN  

MICS5525 CO 20 ppm 

MICS2710 NO2 0.4 ppm 

MICS2611 NO2 0.4 ppm 

TGS2600 NH3 4 ppm 

TGS2602 NH3 4 ppm 

TGS2620 NH3 4 ppm 

TGS2611 CH4 20 ppm 

MICS5521 CO 20 ppm 

MICS5914 NH3 4 ppm 
Table 2: Reference gas and concentration chosen for each sensor for normalization   

 

Normalization procedure for a given sensor “i” was made by dividing its relative 

conductance variation XR,i by its relative conductance variation XN-i under the chosen 

normalization gas “N”  with a concentration CN: 

Si= XR,i / XN,i  (2) 

This test can also be periodically used as a diagnostic tool to detect any sensor failure that 

implies its replacement. Figure 5 shows the sensors response to reference gases and the effect 

of this sensitivity normalization on the 3 multi-sensors arrays:  

 



 

Fig 5: Sensors responses to normalization gases: (a) XR before normalization, (b) S after normalization . 

Fig 5a represents relative conductance of sensors under target gases before normalization, 

and Fig 5b shows these variations after normalization. Although differences of normalized 

response to a given target gas is still observable between the three sensors of same type for 

each array, normalization has decreased in a remarkable way the amplitude of these 

variations.  

 

3. On site measurements and monitoring method  

 

3.1.Field measurement sites and classes of pollution: 

Two measurement campaigns (one in summer and one in the end of autumn) conducted 

on site during this work were done in six stations of the National Network of Accredited 

Associations for Air Quality Monitoring of France. AASQA networks are based on different 

types of monitoring stations placed in specifically determined position according to the EU 

directive (2008/50/EU).  

These six monitoring stations, distributed in the north of France, are representative of 

three different categories of majority pollutions, named urban, suburban and traffic as shown 

in Table 3. For each pollutant, mean and maximum value as well as standard deviation over 

one year history's data are reported. During these measuring campaigns, measurements were 

done during 5 to 14 consecutive days to ensure the registration of special events, like traffic 

spikes for example, and also to get data for the calculation of the neural network modelling. 



Table 3 : Statistical analysis of pollutant concentrations in six AASQA stations 

Station NO (µg/m
3
) NO2 (µg/m

3
) O3 (µg/m

3
) 

Station Category Mean Max Std dev Mean Max Std dev Mean Max Std dev 

Creil Urban 9 243 16 24 122 17 42 235 29 

Douai Urban 9 296 18 25 100 15 39 182 27 

Bethune Urban 6 191 13 22 150 16 44 182 27 

Nogent Suburban 12 

 

254 21 26 139 17 43 236 30 

Roubaix Traffic 32 

 

801 46 46 301 25 --- --- --- 

Valenciennes Traffic 20 405 29 37 152 18 --- --- --- 

 

Previously, one year data history issued from analyzers and collected from these stations 

were studied in order to define a credible pollution categorization according to its source. The 

analysis was oriented to find a repeatable patterns or specific characteristics that can define 

existing pollution in a station. Thus repeated patterns in stations from similar category (urban, 

suburban or traffic) were studied. Then three pollution categories were defined using a fuzzy 

logic approach from the measurements of O3, NO, and NO2 concentration in the atmosphere:  

- Traffic pollution: sites near emission of pollutants, high correlation between NO and 

NO2, ozone absent (reaction with other primary pollutants), 

- Urban pollution: more far from emission, NO is partially destructed. 

- Photochemical pollution: high concentration of ozone, low concentrations of NO and 

NO2, typical of suburban sites, 

However, if the traffic, urban and photochemical pollution types are most probable on 

respectively traffic, urban and suburban site types, each type of pollution can still be met on 

each type of site. 

As boundaries between categories are not so easy to define, which may be detrimental to 

the modelling, we have chosen a “fuzzy logic” approach. Fuzzy logic was introduced in 1965 

by Lotfi Zadeh [25] based on his mathematical theory of fuzzy sets. By introducing the notion 

of a membership function (MF) allowing a condition  to be  in a state other than true or false 

unlike boolean logic, it provides flexibility and makes possible to take into account 

inaccuracies and uncertainties. Indeed, a boolean logic uses a step function defined with one 

threshold while fuzzy logic uses a membership function, which is a sigmoid function that can 

be defined with two thresholds l1 and l2 , to calculate a “membership degree” (MD) (Fig 6 and 

Table 4). For a given assertion, this membership degree indicates its probability, from 0 (not 

probable) to 1 (very probable). The two thresholds are calculated from the median and the 

average values of the concentrations for one year of measurements and for the six stations. 



 

Fig 6 : Membership function of the assertion “pollution with NO”, Boolean logic and Fuzzy logic 

 

Table 4 : Gas concentration thresholds for each pollution category 

Thresholds NO NO2 O3 

l1 15 µg/m
3 

20 µg/m
3
 30 µg/m

3
 

l2 30 µg/m
3
 40 µg/m

3
 50 µg/m

3
 

 

Then the membership degree of the different classes can be calculated from the 

membership degree of the pollutants and their equations (Table 5), following the fuzzy logic 

theory laws [25]. 

 

Table 5 : Determination of membership degrees for the 3 categories of pollution from the concentrations of 

pollutants according to Boolean or Fuzzy logic equations 

pollution class Boolean logic equation Fuzzy logic equation 

Traffic [𝑁𝑂] ∗ [𝑂3]̅̅ ̅̅ ̅̅
 MD(NO)*(1-MD(O3)) 

Urban [𝑁𝑂2] ∗ [𝑁𝑂]̅̅ ̅̅ ̅̅ ̅ ∗ [𝑂3]̅̅ ̅̅ ̅̅  MD(NO2)*(1-MD(NO))*(1-

MD(O3)) Photochemical [𝑂3] MD(O3) 

 

3.2.Pollution index: 

To complete this categorization with a quantitative information, a pollution index (PI) 

was created in order to describe the pollution intensity. This index is inspired from the index 

defined by AASQA [26], named ATMO, which is defined as the maximum of 4 minor 

indexes calculated out of the concentration of 4 pollutants (SO2, O3, NO2, PM10), and is used 

to inform the public about the ambient air quality in France. In our case, the chosen pollution 

categories are based on only 3 minor index calculated from pollutants concentrations (NO, 

NO2 and O3). Each index is integer and varies from 1 to 10, 1 being the case of a no or low 

concentration of a pollutant and 10 being the maximum defined threshold in the European 

directives. The highest value among them conveys the value of the overall index. O3 and NO2 



indexes can be calculated in the same way defined by ATMO, but a new index for NO had to 

be calculated (Table 6) as this gas is not included in the AASQA measurements. It was 

estimated in order to keep the same frequency distribution for pollution indexes of NO and 

NO2 encountered in the year 2010.  

 

Table 6 : Minor pollution indexes (PI) as a function of pollutants concentrations for the three pollutants 

considered in this study (NO, NO2 and O3) 

Pollu

tion 

index PI 

NO 

(µg/m
3
) 

NO2 

(µg/m
3
) 

O3 

(µg/m
3
) 

1 0-9 0-29 0-29 

2 10-34 30-54 30-54 

3 35-74 55-84 55-79 

4 75-154 85-109 80-104 

5 160-239 110-134 105-129 

6 239-314 135-164 130-149 

7 315-379 165-199 150-179 

8 380-439 200-274 180-209 

9 440-499 275-399 210-239 

10 >= 500 >=400 >=240 

 

The three categories of pollution and the pollution index are illustrated as a function of 

the concentrations of pollutants on.Fig 7. 

 

Fig 7 : Illustration of categories of pollution and pollution index 

Then our goal is to predict, from the gas sensors signals, this pollution index and the class 

of pollution which is the one with the highest membership degree. 

3.3.Artificial Neural Network Modelling: 

In order to perform model of the array sensor response, we have opted for an artificial 

neural network (ANN, Fig 8) for its ability to model non-linear phenomena. The input data of 



the ANN are the normalized responses Si from the 9 sensors forming each multi-sensor 

system, to which are added relative humidity, temperature, time of day and if it is a weekday 

or not. Output data “Y” correspond to the membership degree of the 3 categories of pollution 

to which we add the pollution index. The output layer is connected to the input layer via one 

hidden layer each consisting of 4 to 12 neural nodes. The relations between the different 

layers are either linear combinations of the preceding layer for input and output layers, either 

non-linear combination for the hidden layer. A hyperbolic tangent function was used as the 

non-linear function in our case. 

 

Fig 8 : Structure of the artificial neural network used for the pollution categorization 

The building of the target data “Ŷ”, to which the output data Y resulting from the ANN is 

compared during the learning step, is summarized on Fig 9.  Starting from gas concentrations 

measured by gas analysers, membership degree and pollution index for each three gas are 

calculated. Then, the overall index and the membership degree of the three pollution category 

constitute the target data “Ŷ”.   

 

Fig 9 : Building of the target data Ŷ to be compared with output data “Y” from the artificial neural network 

 

For a typical ANN-modelling, three sets of data are used: the two to five first 

measurement days were used for the learning, followed by one day for the validation and one 

day for the test. The modelling is iteratively optimised during the learning step by adjusting 

the coefficients of the neural networks so that the Root Mean Error of Prediction (RMSEP) 



comparing the Y variables calculated from the conductance of the sensors, and Ŷ calculated 

from measurements of gases analysers, is as low as possible for the learning set. This iterative 

optimisation is stopped when the RMSEP for the validation set no longer decreases. Once the 

coefficients of the model are optimized, they are applied to the test set, and a classification 

rate is calculated: it represents the percentage of right classifications compared to the 

categorization obtained by measurements done with AASQA analysers. Similarly, the PI 

prediction quality is quantified with the RMSEP. 

 

4. Results of classification and prediction: 

Fig 10 shows a short example of learning/classification/prediction. Results are shown 

over a three days period. The two first correspond to the learning period while the last one is 

the test period.  At any time, the predicted classes corresponds to the highest membership 

degree of the 3 classes. Agreement between predicted class from sensor array and from 

analysers is observed for more than 88% of the test duration. There is also a very good 

correlation between predicted and calculated pollution index. The RMSEP of the pollution 

index is less than 0.3 during the test period. 

 

Fig 10 : Short example of classification and prediction from array n° 3, Béthune, period from 10/8 to 13/8; 2 days 

for artificial neural network learning, 1 day for test. (a): classification from analyzers data, (b): classification from gas 

sensors data, (c): pollution index (PI): calculated from analyzers and predicted from sensors array 

 

Table 7 shows the overall classification rates and RMSEP for the pollution index for the 

three multi-sensors arrays deployed on the six stations. Data are issued from more than 200 

hours of test and 1200 hours of learning and validation acquired during the summer and 



autumn campaigns. All performances are close to each other and especially satisfactory since 

all classification rates are higher than 85%. 

 

Table 7 : Multi-sensors arrays classification success rates and pollution index prediction error (RMSEP) 

  
Multi-sensors 

array n°1 

Multi-sensors 

array n°2 

Multi-sensors 

array n°3 

Site Type 
Classification 

rate 
RMSEP 

PI 
Classification 

rate 
RMSEP 

PI 
Classification 

rate 
RMSEP 

PI 

Creil Urban 87% 0.04 90% 0.03 89% 0.05 

Nogent Suburban 90% 0.03 91% 0.01 89% 0.01 

Saint-Amand Suburban 89% 0.03 87% 0.03 88% 0.03 

Valenciennes Traffic 91% 0.02 90% 0.01 89% 0.02 

Béthune Urban 91% 0.03 98% 0.02 98% 0.03 

Douai Urban 91% 0.01 92% 0.01 93% 0.02 

 

These performances show the ability of a multi-sensors system to obtain relevant 

information about atmospheric pollution, using a model based on neural networks. But it is 

also important to study the domain of validity of the calculated models, assessing their 

portability from one multi-sensors array to another and also from one measuring site to 

another. The aim is to build a robust model. To check the first criteria, inter-array portability, 

various combinations of arrays were made for both learning and predictions steps on one site. 

Table 8 reports the results obtained in the case of measurements done on the station of 

Nogent. 

 

Table 8 : Example of inter-arrays model portability for the urban site of Nogent 

Array use for 

model learning… 

Array use for 

Prediction done  

Classification 

Success Rate 

Pollution index 

RMSEP  

array 1 array 1 90% 0.03 

array 2 array 2 91% 0.01 

array 3 array 3 89% 0.01 

array 1 array 2 25% 0.2 

arrays 1+2 arrays 1+2 83% 0.06 

arrays 1+ 2 array 3 72% 0.1 

 

As it can be seen, the model calculated on a multi-sensors array (n°1) and applied on itself 

has very good performances but is useless because when this same model is applied to another 

multi-sensors array (n°2), it has a very low success rate, around 25%. In contrast, a model 

calculated on a set of two multi-sensors arrays (n°1+n°2) and applied to a multi-sensors array 

which data were not used in the calculation of the model parameters (n°3), has correct success 

rate over 70%. These results tend to demonstrate that if the number of multi-sensors arrays is 

large enough for learning phase, the model becomes more general, but slightly less efficient. 



Anyway, with only 3 multi-sensors arrays, the statistical size seems to be good enough to 

make a pertinent modelling. 

In order to study the inter-site portability, same types of experiments were carried out by 

changing the site for learning and prediction with a given array (Table 9). 

 

Table 9 : Example of inter-sites model portability 

Model learning site Prediction site  

Array 1 

Classification 

success rate 

Pollution 

index 

RMSEP 

Bethune – Urban Bethune - Urban 91% 0.03 

Bethune - Urban Nogent - Suburban 47% 0.15 

All stations out of 

Bethune (all types) 
Bethune - Urban 86% 0.09 

 

Like for inter-array portability, a model calculated from data collected on one station 

(Bethune) and applied to another one (Nogent) presents a bad success rate, around 50%. 

However, if the parameters are calculated from a set of different stations (including urban 

types), and applied to a station that was not taking into account in the calculation, then the 

results are satisfying, always upper than 80%. So, the more sites representative of each 

pollution categorization are involved in the learning and validation phases, the more robust is 

the model. 

 

5. Conclusions 

The concept of qualitative and semi-quantitative pollution detection using a gas sensor 

array was presented in this work. The method is based on modelling temporal responses of 

conductances in multi-sensors systems. Three identical sensors arrays with nine different 

commercial semiconductor gas sensors were constructed. Calibration and standardization 

techniques were elaborated to correct drifts of baseline and of sensitivity and assure an inter-

array homogeneity in sensors response. The study was carried out by measuring existing 

pollution in different polluted sites. Six sites were chosen, and the pollution type definition 

was made based on pollutant concentrations measured by air quality network stations. A 

pollution index was also introduced to describe pollution’s severity. This combination of 

predicted pollution category and pollution index can be used to inform the public on the 

pollution in real time, and with a high spatial accuracy. Such multi-sensors arrays can be 

multiplied and used in a way to mesh a sensible zone to be monitored. Up to now, and 

according to our knowledge, no equivalent instrument combining multi-sensors arrays with 



models based on neural networks using the proposed semi-quantitative approach exists. The 

classification success rate for pollution categories prediction had a success rate higher than 

80% with a low error in the prediction of the pollution index.  Presented results show that the 

model can be applied to a large number of uncharacterised arrays of sensors (thanks to 

calibration / normalization procedure) and unknown sites if a sufficient number of reference 

sites and arrays for the learning and validation phases of the neural network are used. Further 

modelling approach could be applied in order to build equivalent categorizations for inside air 

quality problematic. 
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