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The density of states (DoS), %(E), of graphene is investigated numerically and within the self-
consistent T-matrix approximation (SCTMA) in the presence of vacancies within the tight binding
model. The focus is on compensated disorder, where the concentration of vacancies, nA and nB,
in both sub-lattices is the same. Formally, this model belongs to the chiral symmetry class BDI.
The prediction of the non-linear sigma-model for this class is a Gade-type singularity %(E) ∼
|E|−1 exp(−| log(E)|−1/x). Our numerical data is compatible with this result in a preasymptotic
regime that gives way, however, at even lower energies to %(E) ∼ E−1| log(E)|−x, 1 ≤ x < 2. We take
this finding as an evidence that similar to the case of dirty d-wave superconductors, also generic
bipartite random hopping models may exhibit unconventional (strong-coupling) fixed points for
certain kinds of randomly placed scatterers if these are strong enough. Our research suggests that
graphene with (effective) vacancy disorder is a physical representative of such systems.

PACS numbers: 73.22.Pr, 72.80.Vp, 71.23.-k

Graphene is a hot topic in material sciences and con-
densed matter physics [1]. The material is interesting its
electronic structure hosts two Dirac-cones. Since only the
πz-orbitals make significant contributions to the relativis-
tic sectors of the band-structure, a tight-binding descrip-
tion of the material is frequently employed that keeps a
single orbital per carbon atom and only nearest-neighbor
hopping. Within this description it is easy to see that
disorder introduced by a random distribution of vacan-
cies has nontrivial effects. For instance, it is well known
that a single impurity populates a mid-gap state which is
power-law localized [2, 3]. With a finite concentration of
vacancies a rich plethora of new phenomena emerges. One
distinguishes the “compensated” case, – same concentra-
tion of vacancies in each sub-lattice, n̄=nA=nB – from
the uncompensated case, nA>nB. In the latter case, one
expects that the DoS exhibits a (pseudo-) gap, while for
compensated disorder a sharp peak is observed [1]. Most
studies focus on the balanced case at concentrations well
below the percolation threshold, n̄ . 30%. At present
only very few aspects have been investigated in detail, de-
spite the importance of the DoS for transport and optical
properties of the functionalized material [4, 5].

Graphene with vacancies represents a bipartite random
hopping system with time reversal and spin rotational
invariance. Following the Zirnbauer-Altland classification
of disordered metals it belongs to symmetry class BDI,
[6, 7]. In the presence of weak bond disorder, a description
based on the non-linear σ-model predicts for the density
of states

ln |E%(E)| ∼ −| ln(E/D)|1/x, |E| . D (1)

where D(n̄) denotes a microscopic energy scale. [7] The
exponent 1/x reflects a peculiar feature of the RG-flow
found by Gade and Wegner in a perturbative renormaliza-
tion group (RG) study [8, 9]. Their analysis shows that
the energy flow with the RG-scale L is | ln ε| ∝ z(L)| lnL|.
Unlike the case with conventional critical behavior, the
dynamical exponent z is not a constant here but rather
z(L) ∝ lnL, so | ln ε| ∝ | lnL|2 and correspondingly an
exponent x=2 was obtained [31].

Later it was argued that the logarithmically growing
exponent z is an indication of “freezing” [10, 11]. Freezing
sets in when disorder has become so strong that critical
wavefunctions concentrate in rare regions of the sample
with very weak, power law tails leaking out of these “opti-
mal” domains. In such situations, observables that derive
from moments of wavefunction amplitudes higher than
the first one cease to be sensitive to the sample geome-
try, so that their “flow” with the system size is “frozen”.
Freezing implies that at z≥3 rare events dominate the
energy-scaling and a new dependency z ≈ 4

√
lnL−1 sets

in [7]. As a consequence, the Gade-exponent x=2 gives
way to x=3/2 and the zero-energy singularity becomes
slightly weaker in the frozen limit.

A strong increase of the DoS near zero energy has
been observed in several numerical works [3, 5, 12–14],
but a quantitative check of the prediction, Eq. (1), is
still missing. Here, we present such an analysis. We
confirm the existence of a parametrically wide energy
window where %(E) indeed follows Eq. (1). However, at
ultra-low energies, Eq. (1) is not valid. Instead, the DoS
crosses over to new behavior with a significantly stronger
singularity, 1/(E| log(E)|x), with 2 > x ≥ 1.
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Model and Methods (MaM): SCTMA. For the SCTMA
we adopt the formalism developed in an earlier work and
use it here to calculate the DoS [4, 15].

MaM: Stochastic time evolution. The SCTMA results
are then compared against numerical simulation data
for %(E) as obtained from a tight-binding Hamiltonian

of the honeycomb lattice Ĥ = −t
∑
<ij> c

†
i cj where as

usual < ij > indicates nearest neighbor hopping. The
disorder average is performed at vacancy concentration n̄
fixed and the same for both sublattices. We employ
a numerical technique similar to Ref. [12] exploiting
%(E)=

∫∞
−∞ dτ%(τ)eiEτ with the exact stochastic repre-

sentation

%(τ) =
1

2π

{
〈φ| exp(−iĤτ)|φ〉

}
in
. (2)

Here, |φ〉 represents a random initial state and {. . .}in
denotes an ensemble average of such states. For the
evaluation of the matrix element we employ a standard
Krylov-subspace approach, with a conservative choice
of the width of the integration steps, typically dt=0.01
(units: t−1), and an observation window of 106 steps
corresponding to a time Tobs = 104 [32]. In order not
to lose correlations due to methodological artifacts over
the observation time, the time increment dt should be-
come significantly smaller with growing Tobs. As it turns
out, this makes the stochastic time evolution numerically
highly demanding at ultra-low energies.
MaM: Generalized multifractal analysis (GMA). In

order to explore %(E) at ultra-low energies, we first calcu-
late the localization length, ξ(E), with spectral methods
which in turn is closely related to %(E): If one assumes
that a localization volume ξ2 has typically one state with
lowest energy Eξ one has: |Eξ|ξ2%(Eξ) = O(1). Hence
ξ(E) ≈ |E ·%(E)|−1/2. The expression is familiar from the
standard weak coupling analysis [7]. A complication arises
because the same analysis predicts the form Eq. (1) for
the DoS that turns out incompatible with our numerical
data - as we already mentioned. Hence, a more general
form |Eξ|ξ2%(Eξ) = r(`/ξ) should be considered (`: a
microscopic length). Partially inspired by most recent
analytical work [16], we argue in the supplementary mate-
rial that a reasonable assumption would be r(X) ≈ 1/Xy

(with y = 1) at energies not too low, so that

ξ(E) ≈ |E · %(E)|−1/(2+y)
. (3)

Spectral methods allow us to extract the localization
length even at very low energies and therefore can provide
information about the DoS as well. Similar to Ref. [17],
we employ a generalized multifractal analysis (GMA) for
this purpose. It is motivated in the present context from
the fact that multifractality at the Dirac-point is a topic
of interest per se. The central observable is the inverse
participation ratio (IPR), Pq(E) =

∫
L2 dr|ψm(r)|2q, (For

numerical efficiency, we average over a small number of

states with energies εm inside an interval about E. In
addition, we also perform a disorder average - at fixed
n̄ - that we indicate via Pq.) To address the localization
length, ξ(E), one works at finite energies |E| > 0 in the
vicinity of the critical fixed point where a scaling Ansatz

Pq = L−τqFq(L/ξ(E)) (4)

applies. We will extract ξ(E) by scaling our numerical
data according to this relation. The wavefunction data has
been obtained in a well documented way (e.g. Ref. [18, 19])
employing standard sparse matrix routines [20].
Results: SCTMA. The DoS as obtained from the

self-consistency cycle of the SCTMA is shown in Fig. 1
with dashed lines. In the limit of large and low en-
ergies we recover the expected qualitative behavior:
If the energy exceeds a characteristic scale set by
∆(n̄)=vF

√
πn̄/ ln(n∗/n̄), with n∗=W 2/πv2

F, and W a
high-energy cut-off, [15], the DoS essentially remains un-
affected by the impurities thus retaining the characteristic
linear form reminiscent of clean graphene at high energies.
(Our data suggests n∗≈1.) However, in the low-energy
limit, E�∆(n̄), the Dirac-singularity broadens and one
obtains a constant value for the DoS.

As seen in the expression for the characteristic en-
ergy scale ∆(n̄), the SCTMA provides a logarithmic
renormalization of the naive scale

√
πn̄v2

F that follows
from dimensional analysis. In similar vein, in the limit
E → 0, our data suggests that the saturation value
of the DoS picks up similar logarithmic corrections,
%SCTMA(0) ∼ ∆(n̄) ln(n∗/n̄). Furthermore, this logarith-
mic dressing leads to the minimum in the DoS as seen in
Fig. 1 [33].
Results, Tb-simulation: energy. Since the SCTMA

ignores multiple scattering at two- (or more) impurity
configurations, quantum-interference processes are absent.
Hence, within the SCTMA one does not expect any in-
dication of the E−1 singularity predicted in Eq. (1). To
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FIG. 1: (Color online) Density of states of graphene with
n̄=0.1 − 8% vacancies in either sublattice. Comparison of
SCTMA and tight-binding simulation.
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FIG. 2: (Color online) Data collapse of inverse time-
series on a master curve, consistent with the Wegner-
Gade scaling Eq. (1). Solid lines represent accord-

ing fits: exp(a0| ln(τ/τ0)|1/x)/A0 (x=2 : (τ0, a0,A0) =
(0.0169, 1.004, 1.838); x=3/2 : (0.00013, 0.614, 3.2)) (Times τ0
are measured in units (πn̄v2

F)1/2/ ln(n0/n̄). We fix n0 ≈ 2.08
by collapsing onto the master curve.) Collapse restricts to
a pre-asymptotic time window, 1 � Dτ � Dτ∗n̄ (displayed:
n̄ = 0.05%, 0.5%, 3%). After a crossover to ultra-long times,
τ � τ∗n̄, the increase of n̄/%(τ) is sublinear; an example nu-
merically accessible in this time regime is the n̄ = 8%-trace.
We fit

√
ln(τ/τ0 + a0)/A0 ((τn, an,An) = (1.671, 1.74, 0.219))

motivated by Ref. [16]. Dashed lines guide the eye indicating
alternative fittings: ln(τ) and ln ln(τ). The fluctuations in the
raw data reflect the stochastic nature of the methodology.

investigate this, we resort to a numerical simulation of the
DoS in the lattice model. As one might have suspected,
the characteristic minimum in the DoS obtained within
the SCTMA is also seen in the lattice simulation Fig. 1
and turns out to be even more pronounced there. Quan-
tum interference becomes important at energies below a
scale D(n̄) where it gradually enhances the (upturning)
curvature.

Results, Tb-simulation: time. At lowest energies the
Fourier-transformation (FT) exhibits a sensitivity to the
window of integration times. Even though artifacts are
generally weak, for the present purpose we will work in
the time representation and eliminate (residual) high-
frequency contributions to ρ(τ) via running time averages
(averaging windows: 20.48 - 655.36 time units); observa-
tion time Tobs = 104. Fig. 2 displays the first out of the
two key results of this work: at intermediate times the
DoS takes a form consistent with Eq. (1)

%(τ) ≈ n̄ A0 exp
[
−a0| ln(τ/τ0)|1/x

]
, D−1 � τ � τ∗n̄.

(5)
The crossover scale τ∗n̄ is very rapidly decreasing if n̄

grows from 3% to 10%. As a consequence, the onset of
the ultra-long time regime can be investigated with the
time propagation method. As shown in Fig. 3, at times
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FIG. 3: (Color online) Evolution of n̄/%(τ) into the ultra-long
time regime. Concentrations: n̄ = 3%, 4%, 5%, 6%, 8%, 10%.
Fits are indicated according to

√
ln(τ/τn̄ + an̄)/An̄ (solid):

6% : (τn̄, an̄,An̄) = (6.74, 2.27, 0.169); 8% : (1.671, 1.74, 0.219);
10% : (0.218,−11.76, 0.295) and (ln | ln τ/τn̄| + an̄)/An̄
(dashed): 8% : (τn̄, an̄,An̄) = (0.109,−0.77, 0.124); 10% :
(2.034, 1.425, 0.33).

exceeding τ∗n̄ the decay of ρ(τ) is much slower even than
1/ ln(τ). The accessible time window is too small in order
to reliably discriminate possible cases, 1 ≤ x < 2,

%(τ) = n̄An̄| ln(τ/τn̄ + an̄)|−x+1, τ∗n̄ � τ. (6)

(Even x→1, i.e. %(τ)=n̄An/(ln(ln(τ/τn̄))+an̄), would not
be incompatible with the data (see Figures 2 and 3).)
What can safely be concluded at this point is that at very
low energies |E| ·%(E) ∝ 1/ ln(|E|)x, 1 ≤ x < 2 at variance
with Eq. (1).

Results: Generalized multifractal analysis We have
calculated the IPR near four different energies covering
the range 10−3t− 10−7t. The resulting master curve F
defined in Eq. (4) is displayed in Fig. 4. In the regime of
large system sizes L� ξ(E) all curves exhibit a plateau
indicating that the IPR is independent of the growing
system size: we observe the insulating behavior expected
for the AI-class that eventually governs all energies except
E=0. At smaller L/ξ(E)-values a power-law regime be-
gins to develop that governs intermediate system sizes but
is cut off at smallest values L� ξ(E) where the slope be-
gins to decrease again. This peculiar feature foreshadows
the behavior at the critical fixed point. We believe that
it indicates the existence of a second plateau in the limit
ξ →∞ that exists at qc ≤ q < 1 and that is not yet fully
developed in our data. This plateau is manifestation that
certain moments, q > qc, also of the critical wavefunctions
become insensitive of the system size growth and are (in
this sense) “frozen”.

Collapsing the IPRs on the master curve, Fig. 4, delivers
τq and ξ(E) in units of ξ0 ≡ ξ(E0) for a reference energy
E0. The multifractal spectrum τq is displayed in Fig. 4,
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FIG. 4: (Color online) Top panels: master curves for different
q-values as obtained after re-scaling of x, y−axes with energy-
depending scale factors ξ(E) (x−axis, depicted in Fig. 3) and
Qq = ξ(E)τq (y-axis, not shown). Parameters: n̄ = 4%, L =
64, 128, 256, 512, 1024, 2048, ε = 10−3, 5 × 10−5, 10−6, 10−7.
IPR-distribution functions are given in the supplementary
material. Bottom panel: multifractal spectrum as estimated
from fitting to Qq. It displays frozen multifractality.

lower panel. It supports the freezing scenario and gives a
rough estimate qc . 0.5. The localization length is shown
in Fig. 5 and compared with the DoS-data converted into
ξ(E) via Eq. (3). (By matching both ξ-traces at ε=10−3t
we fix the GMA-scale ξ0.) The result is satisfactory in the
sense that the matching procedure delivers a curve that
smoothly interpolates from the high-energy (SCTMA)
into the ultralow energy regime. This trace summarizes
our second key statement. Namely, a consistent fit is
achieved with y=1 and x = 3/2 over data spanning more
than 5 orders of magnitude in energy. This result is in full
agreement with the prediction by Ostrovsky et al. [16].

Conclusions: General implications. A first important
conclusion from our numerical study is that the canonical
σ-model of symmetry class BDI does not apply to to the
case of graphene with vacancies. One expects that the
underlying reason is related to the fact that vacancies
in the tight-binding representation should be understood
as very strong (“unitary”) scatterers that enforce zero
amplitude of the scattering wavefunction at the scattering
center. In this sense the individual scatterer is never
weak, which is at odds with the assumption underlying
the derivation of the σ−model.

In principle, the observation that not only the sym-
metry class (here BDI), but also the type of disorder
plays a crucial in determining the low-energy behavior
has been made before [34]. Of particular interest here are
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FIG. 5: (Color online) Localization length as obtained from
the DoS (data Fig. 1. solid) and from the GMF-analysis
(symbols, converted assuming y=1.). Also shown are three
fits to the high energy regime (see inset) that interpolate
into the low energy section via FT of Eq. (5) (blue, Gade-
Wegner-form, (2.192, 0.215, 1.6)) and Eq. (6) (yellow, x=3/2,
(3.307, 0.0226, 1.0428)). [FT of Eqs. (1) (red trace, x=2,
(c0, c1, c2) = (0.1487, 1.0395, 0.285)) is also shown for compari-
son even though x=2 is already excluded from time series anal-
ysis.] Only Eq. (6) corresponding to |E| · %(E) ∼ 1/ ln(|E|)3/2

fits all regimes (with three fitting parameters). Inset: Conver-
sion of DoS into ξ(E) assuming y=0. Comparison illustrates
that y indeed enters the data interpretation in an important
way, since for y=0 only x=1 would provide an acceptable fit.

disordered d − wave superconductors with very strong
scatterers. They belong to chiral class AIII, which is
the unitary cousin of BDI. Its σ-model also exhibits the
Gade-singularity, Eq. (1) [21]. In this context an inter-
esting proposal deviating from the Gade-Wegner form
has been made [22, 23] (e.g., %(E) ∼ 1/|E ln(E)2|. i.e.
x=2 in our nomenclature), but so far its status has been
controversial [35].

In a recent study [24], a very similar model, the Kitaev
model that has a representation in terms of a bipartite ran-
dom hopping problem of Majorana fermions on a hexago-
nal lattice in the background of Z2 fluxes has been shown
to have a similar singular DoS with x ≈ 1.7. However,
these results were obtained in the gapped phase of the
model, wherein the isolated impurity states are exponen-
tially localized- as opposed to a 1/r-envelop of vacancy
induced zero modes in graphene. Hence, the relation of
this result to graphene with vacancies is uncertain.

Conclusions: Microscopic realizations and graphene.
From the point of view of graphene research, the rele-
vance of our results depends on the applicability of the
approximation of disorder as an ensemble of unitary scat-
ters. Such are realized at least approximately, e.g., when a
carbon atom forms a chemical bond with an absorbate and
therefore is taken from the sp2- into the sp3-hybridization.
Indeed, an isolated sp3-hybrid induces a state typically
of the order of 10meV away from midgap [5]. The zero-
mode of the tight-binding vacancy should be understood
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as an approximation for such a state. Correspondingly, we
might expect that the structure of the DoS, that we study
here, could be representative for the real material on the
scale of several meV, i.e. well above 10−3t. Hence, the
intermediate energy window, which displays the quantum
interference enhanced increase of the DoS, should still be
experimentally accessible, but the ultra-low energy range
might prove difficult to reach.
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Supplementary material for “Density of states of graphene with vacancies: midgap
power law and frozen multifractality”

We present technical details, such as analytical derivations and convergence tests, and additional data together

with further arguments in support of the results reported in the main text. In the first part, we derive the DoS of

graphene in the presence of compensated vacancy disorder using the SCTMA. In second part we provide details

on convergence of the Krylov propagation method. Finally in the last section preliminary evidence of freezing

transition in the IPR distribution of flow has been reported. Finally, we provide a heuristic argument about the

fluctuation effects on the local density of states and its effect on the exponent y.

SELF-CONSISTENT T-MATRIX APPROXIMATION

In this section we briefly recall the selfconsistent T-matrix approximation for vacancy scattering in graphene.

Disorder Potential

A vacancy is a short-range impurity to be modeled by an impurity potential that mixes states only that within in
the same sublattice as the vacancy [1, 2]. Let

Ψ = (ΨA,K ,ΨB,K ,ΨB,K′ ,ΨA,K′)T (S1)

be the four-component wave-function in A,B-space of the sublattices and K,K ′-valley space. In this representation
the impurity potential of an impurity in sublattice A has the following shape [1, 2]

V Ak (r) =


V0 0 0 V0e

−2ik0·r

0 0 0 0
0 0 0 0

V0e
2ik0·r 0 0 V0

 · e−ik·r, (S2)

where k0 = K−K′ and V0 is proportional to the impurity potential V [2]. Accordingly, the scattering potential for an
impurity in sublattice B [2] is given by

V Bk (r) =


0 0 0 0
0 V0 V0e

−2ik0·r 0
0 V0e

2ik0·r V0 0
0 0 0 0

 · e−ik·r. (S3)

Selfconsistent T-Matrix Approximation

The T -matrix approximation for impurity scattering entails the neglect of all diagrams with crossing of impurity
lines [3, 4]. The T matrix can be expressed as the following geometric series of diagrams [2–4]

= + + + . . . . (S4)

The usual diagrammatic notation is applied where crosses denote scattering off the impurity with potential V and the
propagators denote the bare Green’s function [2, 3].

G0(ε, k) =
ε+ vF τ3σ · k
ε2 − v2

F k
2
. (S5)
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Evaluating the geometric series one obtains

T = V

∞∑
n=0

(G0V )n =
V

1−G0V

V→∞∼ 1

G0
, (S6)

and the T -matrix becomes independent of the of the impurity strength in the unitary limit that resembles the
vacancies [2, 5]. When replacing G0 by the full Green’s function [2]

G(ε, k) =
ε+ vF τ3σ · k

(ε− Σ(ε, k))2 − v2
F k

2
, (S7)

the selfconsistent T -matrix approximation is obtained, where Σ denotes the particles’ self-energy in the presence of
impurities [3, 4]. Performing a disorder-average for Σ w.r.t. the position of the vacancies the self-energy is approximated
by nvac-times the disorder-averaged T -matrix. The disorder- average is performed separately for the vacancies in the
A- and in the B-sublattice in k-space representation following to Ref. [6]:

〈Σ(ε)〉 =

(
〈ΣA(ε)〉 0

0 〈ΣB(ε)〉

)
=

(
nA〈TA(ε)〉 0

0 nB〈TB(ε)〉

)
.

(S8)

Note that nA and nB denote the density of impurities w.r.t. the total number of carbon atoms in the sample:

n(A/B) =
N(A/B)

Nsites

(Here, we employ the convention of the SCTMA-literature where nA/B denotes the fraction of A/B-vacancies with
respect to all lattice sites. With this convention the total concentration of vacancies is given by n̄=nA+nB . )

Making use of identity Eq. (S6) we derive a set of interdependent equations,

〈T 〉 =

(
〈TA〉 0

0 〈TB〉

)
=

1

〈G(ε)〉
(S9)

〈Σ(ε)〉 =

(
nA〈TA(ε)〉 0

0 nB〈TB(ε)〉

)
(S10)

〈G(ε)〉 =

∫
d2k

(2π)2
G(ε, k)

= − 1

2πv2
F

log
(

1− W 2

εAεB

)(εB 0
0 εA

)
,

(S11)

which require selfconsistent solution [6]. Here, the abbreviation [6]

εA = ε− 〈ΣA(ε)〉; εB = ε− 〈ΣB(ε)〉 (S12)

has been used; W ≡ 3t denotes the bandwidth of the π-band and vF is the Fermi energy We further note that as
shown in [2], this non-crossing expansion breaks down below an energy scale ∆(n̄)=vF

√
πn̄/ ln(n∗/n̄). As usual, the

density of states can be determined from 〈G〉 via [2, 3]

ρ(ε) = − 1

π
=
(

tr(〈G
(
ε− i0)〉

))
. (S13)

(When comparing to numerical data from the Krylov space simulation, the SCTMA-result has to be multiplied by a
factor of 2 reflecting the existence of two Dirac points in the lattice model.)
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FIG. S1: (Color online) The Fourier-transformed, %(τ), of the density of states (%(E)) as obtained from the stochastic
representation Eq. (2) via Krylov-time-propagation for an impurity concentration n̄ = 0.5%.

CONVERGENCE TEST FOR KRYLOV PROPAGATION

The Krylov propagation method has two important parameters, the size of the Krylov space, NKrylov, and the time
increment dt. For computational efficiency one would like to take dt as large as possible while at the same time keeping
NKrylov small. In all our calculations we have chosen NKrylov = 4. Fig. 2 provides evidence that with this choice a
setting dt = 0.01t is sufficient. The traces indicate that there is a time scale associated with each value of dt such that
beyond that scale the correlation function %(τ) decays too fast. For instance, with dt = 0.04 (Fig. S1, green) this scale
is well below the observation time Tobs = 10000. On the other hand, the traces for dt=0.01 (black) and dt=0.02 (red)
overlap very well within this time window. The situation is completely analogous for all other concentrations as well.
For this reason we consider our choice dt=0.01 for the time increment as sufficiently conservative.

Moreover, we emphasize that computational artifacts related to time propagation tend to enhance the decay of
correlations. Since our numerical calculations indicate an unexpectedly slow decay, however, we believe that this aspect
of time propagation is very reliable.

FLOW OF THE IPR-DISTRIBUTION FUNCTION AND FREEZING

At a critical point the distribution function of the (logarithm of the) inverse participation ratio exhibits a simple
scaling property: it flows homogeneously with increasing system size, L, without changing its shape. As seen in
Fig. S2 there is no such homogeneous flow near the Dirac point. The behavior is expected at larger system sizes,
where conventional localization sets in so that the distribution function becomes independent of the system size and
the flow stops. Unexpected is, that the window of system sizes at which L� ξ(E) remains very narrow even when
decreasing the observation energies by three orders of magnitude from 10−3 down to 10−6t. By consulting Fig. S2
convinces oneself that the evolution of the overall flow changes extremely slowly upon approaching the Dirac point at
zero energy consistent with the almost flat shape of ξ(E) displayed in Fig. 5 at ultra-low energies.

Remarkably, the strongest changes in the flow are visible at values q . 1. Here, flow-modifications exist with
decreasing the energy in the realm of small system sizes, e.g., clearly visible at q = 0.15, 0.25, 0.4. By contrast, there are
significantly less modifications at q > 1 in this regime, comparing e.g. q = 0.4 and q = 1.5. We take this as preliminary
evidence for the presence of freezing of the IPR which would correspond to τq=0 at q > 1 at strictly zero energy.

FLUCTUATION EFFECTS IN THE LOCAL DENSITY OF STATES: EXPONENT y

We propose a simple heuristic argument indicating that a wide region of energies exist for which the typical number
of states in the localization volume behaves like (

√
n̄ξ)−y with y=1. To this end we consider a graphene flake of size
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FIG. S2: (Color online) The flow of the distribution function of the inverse participation ratio (IPR) for linear system sizes
L = 64, 128, 256, 512.1024, 2048 at energies 10−3 (upper panel) and 10−6 (lower panel) for selected q-values. The flow of the
average value with system size is captured by the scaling function F(L/ξ(E)) defined in Eq. (4) and displayed in Fig. 5.

L2. We cover it with boxes of size λ2 where L� λ� ` and ` is a microscopic length. Each box contributes on average
a number of states

Z(λ,E) = λ2

∫ E

0

dE′%(E′) ∼ λ2E %(E). (S14)

with energy in the interval (0, E]. Suppose that ε is the typical value for the smallest energy that a box contributes.
For weak scatterers (Gaussian disorder) we would expect that ε is of the order of the level spacing

∆λ = [λ2%(∆λ)]−1 (S15)

with fluctuations of order unity. However, vacancies do not appear to fall into this class.
Indeed, consider the fluctuations of the mismatch of the number of vacancies per sublattice in each box, δn =√
(NA −NB)2; we have δn2 ≈ 2n̄λ2. Now, a mismatch δn is associated with a spectral gap Egap ∼ ηvF

√
n̄, η = δn/n̄.

On SCTMA-level (ignoring possible logarithmic corrections [30]) we get the estimate Egap(λ) ∼ vF/λ. Therefore, most
boxes exhibit a spectral gap that is much larger than the mean level spacing: Egap(λ)� ∆λ. Only a small fraction of
all boxes, r(λ), can contribute to the total DoS at energies below the gap Egap(λ). We assume, that only those boxes

contribute that have a nearly vanishing mismatch. This implies that r(λ) ≈ 1/
√
n̄λ2. To restore the correct global

average, the effective DoS in this residual subset of all boxes should be enhanced: %eff(E) = %(E)/r(λ).
Consequences for the localization length. For Gaussian disorder all boxes contribute to the DoS in a similar way.

We expect a relation for the localization length to the average spectral gap: Z(ξ,∆ξ) ≈ O(1) with ∆ξ ≈ ε. As we just
have seen, for the case of vacancies the DoS states in those boxes that contribute at very low energies is renormalized.
We extract a localization length from these boxes declaring that

ξ2(ε)ε%eff(ε) ≈ O(1) (S16)

implying r(ξ) ∼ 1/
√
n̄ξ2 and y=1.
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