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Abstract

This paper makes the case for using Shapley value to quantify the
importance of random input variables to a function. Alternatives based
on the ANOVA decomposition can run into conceptual and computational
problems when the input variables are dependent. Our main goal here is
to show that Shapley value removes the conceptual problems. We do
this with some simple examples where Shapley value leads to intuitively
reasonable nearly closed form values.

1 Introduction

The importance of inputs to a function is commonly measured via Sobol’ in-
dices. Those are defined in terms of the functional analysis of variance (ANOVA)
decomposition, which is conventionally defined with respect to statistically in-
dependent inputs. In applications to computer experiments, it is common that
the input space is constrained to a non-rectangular region, or that the input
variables have some other known form of dependence, such as a general Gaus-
sian distribution. When the inputs are described by an empirical distribution
on observational data it is extremely rare that the variables are statistically in-
dependent. Even designed experiments avoid having independent inputs (i.e., a
Cartesian product of input levels) when the dimension is moderately large (Wu
and Hamada, 2011).

A common way to address dependence is to build on work by Stone (1994)
and Hooker (2012) who define an ANOVA for dependent inputs and then define
variable importance through that generalization of ANOVA. This is the method
taken by Chastaing et al. (2012) for computer experiments.

The Shapley value, from economics, provides an alternative way to define
variable importance. Owen (2014) derived Shapley value importance for inde-
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pendent inputs and showed that it is bracketed between two different Sobol’
indices. Song et al. (2015) recently advocated the use of Shapley value for the
case of dependent inputs.

The dependent-variable ANOVA leads to importance measures with two
conceptual problems:

1) the needed ANOVA is only defined when the random x has a distribution
with a density (or mass function) uniformly bounded below by a posi-
tive constant times another density/mass function that has independent
margins, and

2) the resulting importance of a variable can be negative (Chastaing et al.,
2012).

The first condition is very problematic. It fails even for Gaussian x with
nonzero correlation. It fails for inputs constrained to a simplex. It fails when
the empirical distribution of say (xi1, xi2) is such that some input combinations
are never observed or, by definition, cannot possibly be observed.

The second condition is also conceptually problematic. A variable on which
the function does not depend at all will get importance zero and thus be more
important than one that the function truly does depend on in a way that gave
it negative importance.

The Shapley value provides an importance measure that avoids these two
problems. It is available for any function in L2 of the appropriate domain and
it never gives negative importance.

Although Shapley value solves the conceptual problems, computational prob-
lems remain a serious challenge (Castro et al., 2009). The Shapley value is
defined in terms of 2d − 1 models where d is the dimension of x. Song et al.
(2015) presented a Monte Carlo algorithm to estimate Shapley importance and
they apply it to detailed real-world problems. We address only the conceptual
appropriateness of Shapley value to variable importance, not computational is-
sues.

The outline of this paper is as follows. Section 2 introduces our notation, de-
fines the functional ANOVA and the Sobol’ indices and presents the dependent-
variable ANOVA. Section 3 presents the Shapley value and its use for variable
importance. From the definition there it is clear that Shapley value for variance
explained will never be negative. Section 4 gives several examples of simple cases
and exceptional corner cases where we can derive the Shapley value of variable
importance and verify that it is reasonable. Section 5 has brief conclusions.

2 Notation

We consider real valued functions f defined on a space X . The point x ∈ X has
d components, and we write x = (x1, . . . , xd) where xj ∈ Xj . The individual
Xj are ordinarily interval subsets of R but each of them may be much more
general (regions in Euclidean space, functions on [0, 1], or even images, sounds,
and video). What we must assume is that x follows a distribution P chosen by
the user, and that f(x) is then a random variable with E(f(x)2) <∞.
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Let f be a function of d random variables given by x = (x1, . . . , xd) ∈ Rd.
When the components of x are independent, then Sobol’ indices (Sobol’, 1990,
1993) provide ways to measure the importance of individual components of x
as well as sets of them. They are based on a functional ANOVA decomposition.
For details and references on the functional ANOVA see Owen (2013).

2.1 ANOVA for independent variables

Here is a brief summary of the ANOVA to introduce our notation. For simplicity
we will take f ∈ L2[0, 1]d with the argument x = (x1, . . . , xd) of f uniformly dis-

tributed on [0, 1]d, but the approach extends straightforwardly to L2(
∏d
j=1 Xj)

with independent not necessarily uniform xj ∈ Xj .
The set {1, 2, . . . , d} is written 1:d. For u ⊆ 1:d, |u| denotes cardinality

and −u is the complement {1 ≤ j ≤ d | j 6∈ u}. If u = (j1, j2, . . . , j|u|) then

xu = (xj1 , xj2 , . . . , xj|u|) ∈ [0, 1]|u| and dxu =
∏
j∈u dxj .

The ANOVA is defined via functions fu ∈ L2[0, 1]d with f∅ =
∫
f(x) dx and

fu(x) =

∫ (
f(x)−

∑
v(u

fv(x)
)

dx−u (1)

for |u| > 0. The integral in (1) is over [0, 1]d−|u| and it yields a function fu that
depends on x only through xu. The effects fu are orthogonal:

∫
fu(x)fv(x) dx =

0 when u 6= v.
The variance component for the set u is σ2

u =
∫
fu(x)2 dx for |u| > 0 and

σ2
∅ = 0. The variance of f for x ∼ U[0, 1]d is σ2 =

∑
u⊆1:d σ

2
u.

We can define the importance of a set of variables by how much of the
variance of f is explained by those variables. The best prediction of f(x) given
xu is

f[u](x) ≡ E(f(x) | xu) =
∑
v⊆u

fv(x).

This prediction explains

τ2
u ≡

∑
v⊆u

σ2
v , (2)

of the variance in f . This is one of Sobol’s global sensitivity indices. His other
index is

τ2
u ≡

∑
v∩u 6=∅

σ2
v = σ2 − τ2

−u.

It is more conventional to use normalized versions τ2
u/σ

2 and τ2
u/σ

2 but un-
normalized ones are simpler for our purposes. The importance of an individual
variable xj is sometimes defined through τ2

{j} or τ2
{j}.
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2.2 ANOVA for dependent variables

Now suppose that f is defined on Rd but the argument x does not have inde-
pendent components. Instead x has distribution P . We could generalize (1)
to

fu(x) =

∫ (
f(x)−

∑
v(u

fv(x)
)

dP (x−u) (3)

but the result would not generally have orthogonal effects. To take a basic
example, suppose that P is the N

(
( 0

0 ) ,
( 1 ρ
ρ 1

))
distribution for 0 < ρ < 1 and

let f(x) = β1x1 + β2x2. Then (3) yields

f∅(x) = 0, f{1}(x) = (β1 + β2ρ)x1, f{2}(x) = (β2 + β1ρ)x2

and f{1,2}(x) = −β2ρx1− β1ρx2. These effects are not orthogonal under P and
their mean squares do not sum to the variance of f(x) for x ∼ P .

It is however possible to get a decomposition f(x) =
∑
u⊆1:d fu(x) with a

hierarchical orthogonality property∫
fu(x)fv(x) dP (x) = 0, ∀v ( u. (4)

Chastaing et al. (2012) give conditions under which a decomposition of f satis-
fying (4) exists and they use it to define variable importance.

Their conditions are

P (dx)� η(x) =

d∏
j=1

ηj(dxj),

for a product probability measure ν, and, letting p be the density of P with
respect to ν

∃ 0 < M ≤ 1, ∀u ⊆ 1:d, p(dx) ≥Mp(dxu)p(dx−u), ν − a.e. (5)

2.3 Challenges with dependent variable ANOVA

The no holes condition (5) is problematic in many applications. For example,
when x is uniformly distributed on the triangle

{(x1, x2) ∈ [0, 1]2 | x1 ≤ x2}

then (5) is violated. More generally, Gilquin et al. (2015); Kucherenko et al.
(2016) consider functions on non-rectangular regions defined by linear inequality
constraints. These and similar regions arise in many engineering problems where
safety or costs impose constraints on design parameters.

The simplest distribution with a hole is one with positive probability on the
points

{(0, 0), (0, 1), (1, 0)}
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and no others. It is not just probability zero holes that cause this problem. If x
is normally distributed with some nonzero correlations then (5) does not hold.

A second problem may arise when the dependent variable ANOVA is used
to define effects. It is possible that one or more of the resulting variance com-
ponents may come out negative.

3 Shapley value

Shapley value is a way to attribute the economic output of a team to the indi-
vitual members of that team. In our case, the team will be the set of variables
x1, x2, . . . , xd. Given any subset u ⊆ 1:d of variables, the value that subset
creates on its own is its explanatory power. A convenient way to measure ex-
planatory power is via

val(u) = τ2
u ≡ var(E(f(x) | xu)). (6)

The empty set creates no value and the entire team contributes σ2 which we
must now partition among the xj .

There are four very compelling properties that an attribution method should
have. The following list is based on the account in Winter (2002). Let val(u) ∈ R
be the value attained by the subset u ⊆ {1, . . . , d} ≡ 1:d. It is always assumed
that val(∅) = 0. The values φj = φj(val) should satisfy these properties:

1) (Efficiency)
∑d
j=1 φj = val(1:d).

2) (Symmetry) If val(u ∪ {i}) = val(u ∪ {j}) for all u ⊆ 1:d − {i, j}, then
φi = φj .

3) (Dummy) If val(u ∪ {i}) = val(u) for all u ⊆ 1:d, then φi = 0.
4) (Additivity) If val and val′ have Shapley values φ and φ′ respectively then

the game with value val + val′ has Shapley value φj + φ′j for j ∈ 1:d.

Shapley (1953) showed that the unique valuation φ that satisfies these axioms
attributes value

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1(
val(u+ j)− val(u)

)
to variable j. Defining the value via (6) we get

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1

(τ2
u+j − τ2

u). (7)

From (7) we see that the Shapley value is defined for any function for which
var(E(f(x) | xu)) is always defined. The components xj do not have to be real
valued, though f(x) must be. Holes in the domain X do not make it impossible
to define a Shapley value. Next, because xu+j always has at least as much
explanatory power as xu has, we see that φj ≥ 0. That is, no variable has
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a negative Shapley value. As a result, the Shapley value addresses the two
conceptual problems mentioned in the introduction.

Song et al. (2015) show that the same Shapley value arises if we use val(u) =
E(var(f(x) | x−u)). That provides an alternative way to compute Shapley value.
The Shapley value simplifies for independent inputs.

Theorem 1. Let the value of a subset of variables be val(u) = τ2
u, where τ2

u

is derived from an ANOVA decomposition with variance components σ2
u. Then

the Shapley value of variable j is

φj =
∑

u⊆1:d, j∈u

σ2
u/|u|.

Proof. Owen (2014).

It follows from Theorem 1 that τ2
{j} ≤ φj ≤ τ2

{j}. This is how the Sobol’
indices bracket the Shapley value.

4 Special cases

Here we consider some special case distributions and toy functions where we
can work out the Shapley value in a closed or nearly closed form. The point of
these examples is to show that Shapley gives sensible answers in both regular
cases and corner cases.

Because σ2 = var(E(f(x) | xu)) + E(var(f(x) | xu)) we may use

τ2
u = σ2 − E(var(f(x) | xu)). (8)

4.1 Independent variables, linear f

Let f(x) = β0 +
∑d
j=1 βjxj where xj are independent with variances σ2

j . It is

then easy to find that φj = β2
jσ

2
j . If we reparameterize xj to cxj for c 6= 0 then

βj becomes βj/c and the importance of this variable remains unchanged as it
should.

More generally, if the independent variables enter additively, f(x) =
∑d
j=1 gj(xj)

then φj = var(gj(xj)). Replacing xj by a bijection τj(xj) and adjusting gj to
gj ◦ τ−1

j leaves φj unchanged.

4.2 Bijection between variables

Suppose that f(x1, x2) = 106x1 + x2 with x1 = 106x2 where x2 (and hence x1)
has a finite positive variance. Because ∂f/∂x1 � ∂f/∂x2 > 0 and var(x1) �
var(x2) one might expect x1 to be the more important variable. However, the
Shapley formula easily yields φ1 = φ2; these variables are equally important.
This is quite reasonable because f is a function of x1 alone and equally a function
of x2 alone.
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More generally, for d ≥ 2, if x1 = g1(x2) and x2 = g2(x1), both with
probability one then for any u ⊂ 1:d with u ∩ {1, 2} = ∅ we have

E(f(x) | xu+{1}) = E(f(x) | xu+{2}).

It follows that τ2
u+{1}−τ

2
u = τ2

u+{2}−τ
2
u and therefore φ1 = φ2 by the symmetry

property of Shapley value.

4.3 Transformation of variable(s)

Suppose that y = f(x) and we transform the variables xj into zj by bijec-
tions: zj = τj(xj), xj = τ−1

j (zj), for j = 1, . . . , d. Now define f ′(z) =

f(τ−1
1 (z1), . . . , τ−1

d (zd)) and let φ′j be the Shapley importance of zj as a pre-
dictor of y′ = f ′(z). Because var(E(f ′(z) | zu)) = var(E(f(x) | xu)), we find
that φ′j = φj for j = 1, . . . , d, where φj is the Shapley importance of xj as a
predictor of y. As a result we can apply invertible transformations to any or all
of the xj without changing the Shapley values.

4.4 Any variables and d = 2

When d = 2 we can get some simpler formulas for the importance of the two
variables.

Proposition 1. Let f(x) have finite variance σ2 > 0 for random x = (x1, x2).
Then

φ1

σ2
=

1

2

(
1 +

var(E(Y | x1))− var(E(Y | x2)

σ2

)
(9)

=
1

2

(
1 +

E(var(Y | x2))− E(var(Y | x1))

σ2

)
, and (10)

φ1

φ2
=

var(E(Y | x1)) + E(var(Y | x2))

var(E(Y | x2)) + E(var(Y | x1))
. (11)

Proof. Using τ2
{1,2} = σ2 and τ2

∅ = 0, we find that

φ1 =
1

2

(
τ2
{1} + σ2 − τ2

{2}
)

=
1

2

(
σ2 + var(E(Y | x1))− var(E(Y | x2)).

which gives us (9). The others are algebraic rearrangements.

We can use Proposition 1 to get analogous expressions for φ2/σ
2 and φ2/φ1

by simply exchanging indices.

4.5 Farlie-Gumbel-Morgenstern copula for d = 2

In this section, we focus on the case where the dependence between both com-
ponents x1 and x2 is explicitly described by some copula. There exist simple
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conditional expectation formulas when considering some classical classes of cop-
ulas (see e.g., Crane and Hoek (2008) and references therein). Starting from
such formulas, it is possible to derive explicit computations for Shapley values in
a linear model. In this section, we state explicit results for the Farlie-Gumbel-
Morgenstern family of copulas.

The Farlie-Gumbel-Morgenstern copula describes a random vector x ∈ [0, 1]2

with each component xj ∼ U[0, 1] and joint probability density function

cθ(x1, x2) = 1 + θ(1− 2x1)(1− 2x2), −1 ≤ θ ≤ 1. (12)

One can show that cor(x1, x2) = θ/3. Lai (1978) proved that, for 0 ≤ θ ≤ 1, x1

and x2 are positively quadrant dependent and positively regression dependent.
Moreover,

E(x2 | x1) =
θ

3
x1 +

(1

2
− θ

6

)
. (13)

The linearity above is very useful for our purpose, as it will allow an explicit
computation for Shapley values in that model.

Proposition 2. Let f(x) = xTβ for x, β ∈ R2 and x ∼ cθ(x1, x2), with −1 ≤
θ ≤ 1. Then

φ1

σ2
=

1

2

(
1 +

(
1− θ2

9

)β2
1 − β2

2

12σ2

)
,

with σ2 = (β2
1 + β2

2)/12 + β1β2θ/18.

Proof. From the linearity of the regression function (13),

E(f(x) | x1) = x1

(
β1 +

θ

3
β2

)
+ β2

(1

2
− θ

6

)
,

thus

var(E(f(x) | x1)) =
1

12

(
β1 +

θ

3
β2

)2

.

Symmetry gets us the corresponding expression for var(E(f(x) | x2)). Then
Proposition 1 establishes the expression for φ1/σ

2. Finally, because var(xj) =
1/12 and cor(x1, x2) = θ/3, we get σ2 = (β2

1 + β2
2)/12 + β1β2θ/18.

Now we consider the Farlie-Gumbel-Morgenstern copula, but we assume xj
has as cumulative distribution function Fj , and probability density function F ′j ,
not necessarily from the uniform distribution.

Lemma 1. Let x ∈ R2 have probability density F ′1(x1)F ′2(x2)cθ(F1(x1), F2(x2)),
with −1 ≤ θ ≤ 1. Then

E(x2 | x1) = E(x2) + θ(1− 2F1(x1))

∫
R
y(1− 2F2(y))F ′2(y) dy.

For exponential xj with Fj(xj) = 1− exp(−λjxj) for λj > 0, we get

E(x2 | x1) =
1

λ2
+

θ

2λ2
(1− 2e−λ1x1). (14)
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Proof. Crane and Hoek (2008).

Next we assume that x has exponential margins and we transform these
margins to be unit exponential by making a corresponding scale adjustment to
β. From Section 4.3, we know that such transformations do not change the
Shapley value.

Proposition 3. Let f(x) = xTβ for x, β ∈ R2 where x has probability density
function e−x1−x2cθ(1− e−x1 , 1− e−x2), where −1 ≤ θ ≤ 1. Then

φ1

σ2
=

1

2

(
1 +

(
1− θ2

12

)β2
1 − β2

2

σ2

)
(15)

with σ2 = β2
1 + β2

2 + θβ1β2/2.

Proof. From Lemma 1, E(x2 | x1) = 1 + θ/2− θe−x1 so

E(f(x) | x1) = β1x1 + β2(1 + θ/2− θe−x1).

Therefore

var(E(f(x) | x1)) = β2
1 + β2

2θ
2var(e−x1)− 2β1β2θcov(x1, e

−x1).

Now var(e−x1) = E(e−2x1)− E(e−x1)2 = 1/12 and

cov(x1, e
−x1) =

∫ ∞
0

xe−2x dx− 1

2
= −1

4
,

so var(E(f(x) | x1)) = β2
1 +β2

2θ
2/12 +β1β2θ/2. This establishes (15) by Propo-

sition 1.

Suppose that β1 > β2 > 0. Then of course φ1/σ
2 > 1/2. Equation (15)

shows that φ1/σ
2 decreases as θ increases from 0 to 1. It does not approach 1/2

because even at θ = 1, x2 is not a deterministic function of x1.

4.6 Gaussian variables, linear f

Here we suppose that x ∼ N (0,Σ) where Σ ∈ Rd×d is a positive semi-definite
symmetric matrix. If Σ is not diagonal then the Stone-Hooker ANOVA is not
available because (5) does not hold. Shapley value gives an interpretable ex-
pression for general d.

Theorem 2. Let f(x) = xTβ for x, β ∈ Rd and x ∼ N (µ,Σ), where Σ need
not be positive definite. Then

φj = β2
jΣjj +

∑
k 6=j

Σjkβjβk = cov(xjβj ,x
Tβ). (16)
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Proof. For u ⊆ 1:d, the total variance formula (8) yields

τ2
u = σ2 − E(var(f(x) | xu)) = σ2 − βT

−uΣ−u,−uβ−u.

Therefore for j 6∈ u ⊂ 1:d,

τ2
u+{j} − τ

2
u = βT

−uΣ−u,−uβ−u − βT
−u−{j}Σ−u−{j},−u−{j}β−u−{j}

= β2
jΣjj + 2

∑
k∈u

Σjkβjβk,

and so

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1(
β2
jΣjj + 2

∑
k∈u

Σjkβjβk

)

= β2
jΣjj +

2

d

∑
k∈−{j}

Σjkβjβk
∑

u⊆−{j}

1k∈u

(
d− 1

|u|

)−1

Letting ` = |u|, the sum over u above is

d−1∑
`=1

(
d− 2

`− 1

)(
d− 1

`

)−1

=
d

2
.

Therefore

φj = β2
jΣjj +

∑
k 6=j

Σjkβjβk = βj

( d∑
k=1

Σjkβk

)
.

The result is then cov(xjβj ,x
Tβ) establishing (16).

To interpret (16), we consider that xj has a baseline importance value of
β2
jΣjj acting on its own. Then it gains (loses) importance if it is positively

correlated with other variables that move f in the same (respectively opposite)
direction. Negative correlations have the opposite effect. If we have standard-
ized the variables so that each Σjj = 1 and each Σjk is ρij = cor(xj , xk), then
φj = β2

j +
∑
k 6=j ρjkβjβk.

4.7 Gaussian variables, exponential f , d = 2

Let x ∼ N (µ,Σ) and take Y = eβ0+
∑d

j=1 xjβj . The effect of β0 and µj is
simply to scale Y and so we can take β0 = 0 and µ = 0 without affecting
φj/σ

2. Next we suppose that the diagonal elements of Σ are nonzero. By the
transformation result in Section 4.3 we can replace each xj by xj/Σjj if need be
without changing φj and so we suppose that each xj ∼ N (0, 1). Here we find
variable importances for d = 2.
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Proposition 4. Let f(x) = exp
(
xTβ

)
for x, β ∈ R2 and x ∼ N (0,Σ), for

Σ =

(
1 ρ
ρ 1

)
. Then

φ1

σ2
=

1

2

(
1 +

e(β1+β2ρ)
2 − e(β2+β1ρ)

2

eβ
2
1+β2

2+2ρβ1β2 − 1

)
, (17)

where the variance of f(x) is

σ2 = eβ
2
1+β2

2+2ρβ1β2(eβ
2
1+β2

2+2ρβ1β2 − 1). (18)

Proof. Recall the lognormal moments: if Z ∼ N (µ, σ2) then E(eZ) = eµ+σ2/2

and var(eZ) = (eσ
2 − 1)e2µ+σ2

. Taking Z = xTβ we find that Y = eZ has
variance σ2 given by (18).

The distribution of x2β2 given x1 is N (ρx1β2, (1− ρ2)β2
2). Therefore

E(Y | x1) = e(β1+ρβ2)x1+β2
2(1−ρ2)/2, and so

var(E(Y | x1)) = eβ
2
2(1−ρ2)e(β1+ρβ2)2(e(β1+ρβ2)2 − 1)

= eβ
TΣβ(e(β1+ρβ2)2 − 1).

Similarly, var(E(Y | x2)) = eβ
TΣβ(e(β2+ρβ1)2 − 1). Then applying Proposition 1

and noticing that the lead factor eβ
TΣβ appears also in σ2, yields the result.

If ρ = ±1 then φ1/σ
2 = 1/2 as it must because there is then a bijection

between the variables. The value of φ1/σ
2 in (17) is unchanged if we replace

ρ by −ρ. The formula is not obviously symmetric, but the fraction within
parentheses there can be divided by the corresponding one for −ρ and the
ratio reduces to 1. More directly, we know from Section 4.3 that making the
transformation x2 → −x2 and β2 → −β2 would leave the variable importances
unchanged while switching ρ→ −ρ.

It is clear that for β1 > β2 we must have φ1/σ
2 ≥ 1/2. Even with the closed

form (17), it is not obvious how φ1/σ
2 should depend on ρ or on β. Figure 1

shows that increasing |ρ| from zero generally raises the importance of x1 until at
some high correlation level the relative importance quickly drops down to 1/2.
Also, for ρ = 0 the effect of β1 over the range 2 ≤ β1 ≤ 8 is quite small when
β2 = 1.

The lognormal case is different from the bivariate normal case. There, the
value of φ1 converges monotonically towards 1/2 as |ρ| increases from 0 to 1.

4.8 Holes

Here we consider the simplest setting where there is an unreachable part of the x
space. We consider two binary variables x1 and x2 but x1 = x2 = 1 never occurs.
For instance f could be the weight of a sea turtle, x1 could be 1 iff the turtle is
bearing eggs and x2 could be 1 iff the turtle is male. It may seem unreasonable
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Figure 1: Relative importance φ1/σ
2 versus correlation |ρ| from Proposition 2.

From top to bottom, βT is (8, 1), (4, 1), and (2, 1).

to even attempt to compare the importance of these variables (male/female
versus eggs/none) but Shapley value does provide such a comparison based on
compelling axioms in the event that we do seek a comparison.

This simplest setting is depicted in Table 1 where p0 + p1 + p2 = 1. We
assume that p1 > 0 and p2 > 0 for otherwise the function does not have two
input variables.

Theorem 3. Let y be a function of the random vector x as given in Table 1.
Assume that σ2 = var(y) > 0, and min(p1, p2) > 0. Then the Shapley relative
importance of variable x1 is

1

2

(
1 +

p0

σ2
× p1(1− p1)ȳ2

1 − p2(1− p2)ȳ2
2

(1− p1)(1− p2)

)
(19)

where ȳj = yj − y0 for j = 1, 2.

Proof. See section 6.

We see that when p0 = 0 then the Shapley relative importance of x1 is 1/2.
That is what it must be because there is then a bijection between x1 and x2 via
x1 + x2 = 1.

Now suppose that ȳ1 = ȳ2. For instance y1 = y2 = 1 while y0 = 0. Then the
more important variable is the one with the larger variance. That is x1 is more
important if p1(1 − p1) > p2(1 − p2). This can only happen if p1 > p2. So the
more probable input is the more important one in this case.

12



p x1 x2 y

p0 0 0 y0

p1 1 0 y1

p2 0 1 y2

Table 1: The random variable y = f(x) is the given function of x = (x1, x2).
That vector takes three values with the probabilities in this table. For example,
Pr(x = (1, 0)) = p1 and then y = y1.

5 Conclusions

The Shapley value from economics remedies the conceptual difficulties in mea-
suring importance of dependent variables via ANOVA. Like ANOVA it uses
variances, but unlike the dependent data ANOVA, Shapley value never goes
negative and it can be defined without onerous assumptions on the input dis-
tribution.

We find that Shapley value has useful properties. When two variables are
functionally equivalent, then they get equal Shapley value. When an invertible
transformation is made to a variable, it retains its Shapley value. We thus
conclude that Song et al. (2015) had the right idea proposing Shapley value for
dependent inputs.

A potential application that we find interesting is measuring the importance
of parameters in a Bayesian context. When the parameter vector β has an
approximate Gaussian posterior distribution, as the central limit theorem of-
ten provides, then the results in Section 4.6 yield a measure φj(x0) for the
importance of parameter βj for the posterior uncertainty of the prediction xT

0β.
Computation of Shapley values is a challenge outside of special cases like the

ones we discuss here.
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6 Proof of Theorem 3

Without loss of generality take y0 = 0. Then µ = p1y1 + p2y2 and σ2 =
p1y

2
1 + p2y

2
2 − µ2.

Now with y0 = 0,

var(E(y | x1)) = (p0 + p2)
( y2p2

p0 + p2
− µ

)2

+ p1(y1 − µ)2

= (1− p1)
( y2p2

1− p1
− µ

)2

+ p1(y1 − µ)2

=
p2

2y
2
2

1− p1
− 2µy2p2 + µ2(1− p1) + p1(y1 − µ)2

=
p2

2y
2
2

1− p1
− 2(p1y1 + p2y2)y2p2 + (p1y1 + p2y2)2(1− p1) + p1(y1(1− p1)− p2y2)2

= y2
2

( p2
2

1− p1
− 2p2

2 + p2
2(1− p1) + p1p

2
2

)
+ y2

1

(
p2

1(1− p1) + p1(1− p1)2
)

+ y1y2

(
−2p1p2 + 2p1p2(1− p1)− 2p1p2(1− p1)

)
= y2

2

( p2
2

1− p1
− p2

2

)
+ y2

1p1(1− p1)− 2y1y2p1p2

= y2
2

p1p
2
2

1− p1
+ y2

1p1(1− p1)− 2y1y2p1p2.

Then var(E(y | x1))− var(E(y | x2)) equals

y2
2

p1p
2
2

1− p1
+ y2

1p1(1− p1)− y2
1

p2p
2
1

1− p2
− y2

2p2(1− p2)

= y2
2

( p1p
2
2

1− p1
− p2(1− p2)

)
+ y2

1

(
p1(1− p1)− p2p

2
1

1− p2

)
= y2

1

( p0p1

1− p2

)
− y2

2

( p0p2

1− p1

)
.

Finally, the relative importance of variable x1 is

1

2

(
1 +

y2
1

(
p0p1
1−p2

)
− y2

2

(
p0p2
1−p1

)
σ2

)
=

1

2

(
1 +

p0

σ2

y2
1p1(1− p1)− y2

2p2(1− p2)

(1− p1)(1− p2)

)
=

1

2

(
1 +

p0

σ2

( p1y
2
1

1− p2
− p2y

2
2

1− p1

))
.
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