
HAL Id: hal-01379167
https://hal.science/hal-01379167

Submitted on 11 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for BPMS Performance and Cost
Evaluation on the Cloud

Guillaume Rosinosky, Samir Youcef, François Charoy

To cite this version:
Guillaume Rosinosky, Samir Youcef, François Charoy. A Framework for BPMS Performance and Cost
Evaluation on the Cloud. Workshop ”Business Process Monitoring and Performance Analysis in the
Cloud”, IEEE CloudCom, Dec 2016, Luxembourg, Luxembourg. �hal-01379167�

https://hal.science/hal-01379167
https://hal.archives-ouvertes.fr


A Framework for BPMS Performance and Cost Evaluation on the Cloud

Guillaume Rosinosky
Bonitasoft

Grenoble, France
Email: guillaume.rosinosky@bonitasoft.com

Samir Youcef, Francois Charoy
Universit de Lorraine, Inria, LORIA

Nancy, France
Email: samir.youcef@loria.fr, francois.charoy@loria.fr

Abstract—In this paper, we describe a framework that allows
to automate and repeat business process execution on different
cloud configurations. We present how and why the different
components of the experimentation pipeline -like Ansible,
Docker and Jenkins- have been set up, and the kind of results
we obtained on a large set of configurations from the AWS
public cloud. It allows us to calculate actual prices regarding
the cost of process execution, in order to compare not only
pure performance but also the economic dimension of process
execution.

1. Introduction

A Business Process Management System (BPMS) is
usually deployed on traditional software stacks composed
of an application engine and databases. Sizing the resources
it requires to support a given load or number of transactions
per second is not easy, since it may imply to test it on
different computer size with different configurations for
the engine and its components. Thus, most of the time,
BPMS deployment is done on oversized systems. Thanks
to the public cloud, it is possible today to conduct these
tests in a semi-controlled environment that provides a wide
variety of possible deployment configurations and to repeat
benchmarking activities as much as one wants. Even better,
it is possible to associate a cost to these configurations. Still,
setting up a framework that would allow repeatable and con-
trollable execution is not easy. In this paper, we describe and
demonstrate that the framework we have designed allows us
to evaluate the performances and the cost of the execution of
processes on the BonitaBPM execution engine on a whole
set of configurations in the cloud, such as the used cloud
instance types and the parallel number of executed business
processes, combining different well known open source soft-
ware including Docker and Ansible. Our framework allows
to generate data that relate the operating performances to
a cost per BPM transactions. It could be adapted to other
kinds of BPM systems or frameworks

In the section 2, we describe the context and the hy-
pothesis that we made regarding the deployment and the
execution of BPM engines. Then we describe the different
initiative that are proposing solutions to similar problems.
In section 4 we describe the technical principles of our

framework and how its components are combined. Section
5 describes the experimentation and, in the last part, we
discuss them in regard of our objectives.

2. Motivation and hypothesis

Figure 1. Simple BPMS architecture. This figure shows a clustered version
of a BPMS using a clustered database, behind a load balancer.

Our original goal is to propose elastic resource allocation
and scheduling methods for a BPMaaS provider. In order
to size our infrastructure in a realistic way, we have to
estimate different cloud configurations. Thus, we set up a
framework to test multiple combinations of cloud resources
by deploying in the Amazon Web Services (AWS) public
cloud all the components needed for a BPMS (see figure 1
for an example of BPMS architecture) including the testing
tools. Here, we test only configurations with one node for
the database and one node for the application server and the
BPMS engine. More precisely, we want to be able to :

• allocate three separated IaaS virtual machines, one
for the database, one for the BPMS engine, and one
the BPMN process injector

• deploy the relational database on its cloud instance
• deploy the application server and the BPMS on their

cloud instance
• deploy the testing tool (process injector) on its cloud

instance
• launch the tests
• get the results and the meta informations of the test



• get other useful data (database dump, logs, etc.)
• archive them
• deallocate the cloud instances
At the best of our knowledge, there is no existing tool

today that can manage all these steps. It has to be automated
since we want to repeat the tests, and later reuse this
framework on different cloud providers, databases vendors,
BPMS, with different cloud configurations. Furthermore,
the tool needs to be customizable on several parameters
such as the number of parallel BPMN processes instances
launched against the BPM engine, the type and number
of cloud resources used for the database or the BPMS
engine, the size of the number of working threads of the
BPM engine, etc. Some parameters of the application server
and the database need to be tuned in regard of multiple
cloud configurations with varying number of CPU cores,
memory, etc. For instance, the number of available working
threads for the BPMS to execute work, the number of
connections, or the memory assigned to the application
server are important parameters that can completely change
the behaviour and the processing speed. These criteria must
be passed as parameters or directly as files that have to be
be incorporated.

This high variability and the large amount of tests that
we have to conduct and to repeat oblige us to set up a highly
automated environment. From the execution to the data
collection, we must be able to execute the whole test pipeline
automatically. In this part, we describe these components,
how they are deployed and used for our experimentations.
Figure 2 presents examples of configurations we want to
obtain.

Figure 2. Example of test launches on three different configurations for
the database tier and the BPMS tier. m1.small, t2.micro, m3.medium and
m3.large are AWS instances classes with different memory, computing
power, etc.

3. Related work

Since its inception, the Cloud has been recognized as
an excellent platform to evaluate different kind of software

stacks and to provide a good potential to conduct repro-
ducible experimentation. As a programmable infrastructure,
it allows to automate the experimentation pipeline in a very
seamless and cost effective way, competitive with large in-
ternational infrastructures like grid5k1 or Planetlab2. Public
Cloud have also the advantage of being actually used by
companies for production deployment. The result that we
can obtain can be exploited almost directly.

On the case of BPM engine evaluation, Benchflow [1] is
a very interesting approach. It is a benchmarking framework
based on Faban3 - a generic measurement framework, and
Docker. The authors use a process composed of an empty
automated task and a timer event. Their main metric is
the process throughput. They have tested two anonymized
BPMS for a defined duration with various user loads, and
observed differences between the performances and the
general behaviour of these two systems. However, their
tests are not deployed on the cloud, and the framework
seems to lack an orchestrator for intensive testing. Betsy
[2] is another interesting approach, but it focuses mainly
on the BPMN or BPEL compliance of BPMS, even if a
performance benchmarking is planned.

There exist several cloud-related generic attempts such
as Smart CloudBench [3], where it is possible to test generic
application on cloud resources. However these solutions are
commercial and, even if they could theoretically be used in
our case they are not directly BPMS related.

4. The framework components

Our framework for performance testing is primarily
dedicated to benchmark Cloud configurations performance
in order to compare different combinations and parameters.
It is composed or uses the following components.

4.1. BonitaBPM BPMS

We used Bonita BPM4 7.3.1 in its community version
as the BPMS engine. Bonita BPM is an opensource BPM
solution originally developed in Inria [4] and now supported
by the Bonitasoft company. It is compliant with BPMN
and can be deployed on many SQL databases like H2,
MySQL, PostgreSQL, Oracle, or SQL Server. In our case,
we conducted our tests on Postgresql database. It is the
reference database for BonitaBPM.

4.2. The Process injector

We need a component able to inject BPMN schemas, ex-
ecute processes and measure the performances of the engine.
For this, we used a testing tool developed by Bonitasoft. It
allows to deploy business process model in a BonitaBPM
installation, to execute them by mocking process variables,

1. https://www.grid5000.fr
2. https://www.planet-lab.org/
3. http://faban.org/
4. http://www.bonitasoft.com/



generate metrics about performance, and then undeploy the
processes. The results this tool gives are process centric i.e.
basic statistics on the processes runtime.

4.3. Containerization of software units

There exists several of libraries and parameters in the
three main components : it can be difficult to master them,
and we need a way to create isolated and repeatable tests.
We decided to use Docker. Docker5 is an open source project
combining LXC containers, virtualization, and a configura-
tion management platform. As [5] explains, Docker can be
very useful for scientific experimentation. It is now used
in many production cases, and allows to make repeatable
and isolated executions faster than with a virtual machine.
A Dockerfile contains the list of commands needed to
initialize an environment such as installing libraries, setting
environment variables, and execute the required programs.
It is possible to version the Docker images, and to save
them in a tar file and load afterwards in order to reproduce
seamlessly the whole execution environment each time it is
needed.

We have adapted a BonitaBPM Docker image in order
to be able to select the database vendor, and to use the
performance tool. We have developed a Docker image for
the performance tool and we have specified environment
variables as parameters, such as the type of injected process,
the number of parallel processes run by the injector in the
BPM engine, the total number of processes runned, etc.

4.4. IaaS provider

For our tests, we have used Amazon Web Services 6.
AWS provides a very well defined API to automate our tests
and a wide selection of virtual machine configurations. It can
also be considered as the reference public Cloud provider.
Since our first goal is not to compare Clouds we did not
reproduce the experiments on another IaaS but as we will
see in the next part the framework could be easily adapted
to another environment. We have mainly used here Elastic
Compute Cloud (EC2) instances on which we have deployed
the different needed components.

4.5. Orchestration tool

Thanks to Docker, we are able to manipulate only
containers instead of deploying a lots of files. This is an
important step, but not sufficient for our needs. Indeed we
need to be able to allocate and de-allocate cloud resources,
and keep the different IP addresses for each instance for
various references. For instance the BPMS instance needs
the address of the database, including some credentials. The
performance tool instance needs the BPMS instance address.
We needed a tool able to execute scripts, deploy, instantiate
cloud, keep the inventory of the various instances and is

5. https://www.docker.com/
6. https://aws.amazon.com/

able to inject in an instance configuration other instance
data. Many tools exists for these kind of automation and
could be considered, such as Puppet, Ansible, Chef, Salt
[6]. We selected Ansible for our framework. As written
in Ansible’s documentation, Ansible7 is an IT automation
tool programmed in Python. It is able to configure systems,
deploy software and orchestrate IT tasks with files usually
in YAML. It does not need a component on the client side,
as it uses internally SSH for the communications with the
target instances.

Several concepts exists in Ansible :

• hosts and groups : target instances and their types -
who can be used to obtain a subset of hosts

• inventory : current list of hosts and groups. It can
be statically defined or dynamically defined

• task : a call to an Ansible module or a script
• role : a reusable group of tasks
• playbook : a model of configuration linking hosts

and roles, and execute the latter on the concerned
hosts

It is possible to use variables inside a playbook or a
role. These can be defined at several places (for instance,
in parameter of the playbook, in the host, the group, the
role, the playbook, etc.) and can also be overloaded when
calling the command line. The template engine Jinja is used
by Ansible for variable operations.

We have set up several roles and playbooks for our
needs, such as a database role, a benchmark role, etc. We
have used the EC2 modules for the allocation and deallo-
cation of EC2 resources, and the Docker module for image
instantiation.

For the customization part, we have mainly used default
variable definition, variables files for the mandatory cus-
tomization parameters such as the size of the memory of
the Java Virtual Machine used in the application server for
the BPMS engine. Indeed this value should be adapted to the
memory the instance type is able to provide. For instance,
an EC2 m3.medium instance has 3.75 Go of RAM, and a
c4.xlarge instance has 7.5 Go de RAM. For these we have
assigned respectively 3 Go for the memory allocation pool
of the m3.medium and 6.75 Go for the c4.xlarge. A list of
the main internal parameters is in table 1.

We have set default values for our various parameters,
but needed to be able to overload several with the needed
variation in the tests. For this, we have used the possibility
to pass variables directly in the command line (the highest
priority), in order to make variation in the studied internal
variables such as the number of launches, or the types of
EC2 instances.

For the resource part, as it is possible to launch roles
against a subset of hosts with the group concept, we have
prepared one group for each tier (database, BPMS, bench
tool). For instance, the database role will be launched against
the hosts of the database group only. The dynamic inventory
gets each hosts and its corresponding groups by querying

7. https://www.ansible.com/



Name Role Usage
name global test name
db vendor db & BPMS database vendor
db port db & BPMS database port
db name db & BPMS database name
db user db & BPMS database user
db pass db & BPMS database password
ds1 minpoolsize BPMS database min pool size
ds1 maxpoolsize BPMS database max pool size
scheduler poolsize BPMS BPMS scheduler pool size
java opts BPMS Java options
max threads BPMS max threads
bonita version BPMS BPMS version
worker size BPMS number of assigned threads
bonita version BPMS version
perf tests benchmark test type
perf nb parallel launch benchmark nb of parallel instances
perf nb launch benchmark total number of instances
test userid global unique test identifier

TABLE 1. ANSIBLE INTERNAL PARAMETERS.

AWS inventory servers. Furthermore, in order to identify
and be able to launch several tests simultaneously, we have
assigned a unique identifier to each current test. For this
we have added a variable named test userid that we use in
the instantiation part as a supplementary group. For this,
we have also modified the generic AWS dynamic inventory
so it filters the hosts with this identifier. EC2 instances
are declared with this additional EC2 tag in the creation
playbook. Furthermore, we have added this value as a filter
in the AWS dynamic inventory.

4.6. Test result collection

For this part, we used the s3cmd tool to send to a
Amazon S3 bucket all our current results. For obvious speed
and cost reasons, the scripts synchronizes only the files not
already present in the bucket. We use the same command
to download results for analysis.

4.7. Jenkins

Even with the orchestration offered by Ansible, launch-
ing all these scripts manually is not very efficient and can
be complicated, mostly since we want to execute a lot of
tests. In this case we have launched tests on more than 70
different configurations, each one launched 6 times. Indeed,
we need to test a lot of instance types combinations for the
BPMS and the database, including several different numbers
of injected parallel processes. It was necessary to find a tool
able to launch tests for us in an easy way, with a defined
list of parameters and able to show logs feedback.

Jenkins8 is an open source tool designed for continuous
integration. It is possible to use it to make tests runs within
a web-based user interface. We used it for the sake of
simplicity, its scripting ability, and the capability to show
different runs, and their log files. We used several plugins
to simplify even more the processing, namely : Ansible

8. https://jenkins.io/

plugin, Rebuilder plugin, Environment injector plugin, Con-
ditional Buildstep plugin. We have two parts : parameterized
jobs who call their Ansible counterparts, a job calling the
command for result archiving and a parametrized Jenkins
pipeline who launches the jobs and is able to launch mul-
tiple times the test. A Jenkins pipeline is a customizable
job orchestration command where it is possible to put a
Groovy script for calling jobs. The scripting language is
very powerful, for instance it is possible to put exception
catching, and we have used to trigger in all the cases the
destroy job. Indeed in case of blocking errors, the reserved
instances continue to be rented and it can become very
expensive : it is important to destroy as soon as they are
not needed anymore. We have also added a parameter for
the number of test launches, adding simply a loop who will
call the specified number of times the test job.

4.8. Overview

Figure 3. Test architecture used for the cloud configuration capability
determination for EC2. We show here the orchestration units and a target
generated configuration. A similar manner, without the Ansible database
playbook, and with RDS instance creation and destruction is used for the
RDS scenario described in chapter 5.

Figure 3 presents the global architecture. Setting up this
entire test pipeline to conduct performance evaluation of
different deployments remains a tedious task but we have
seen that thanks to the cloud and of current administration
automation tools it is possible to deploy and test a software
stack under different configuration in a fully automated way
and to conduct repeatable execution. In the next section, we
describe the kind of result that we were able to produce
based on this environment. At this point it is interesting
to note that changing the software to test is mainly a
matter of Docker Image production and to define the needed
parameters in the Ansible playbook and the Jenkins jobs and
pipeline.



5. Experimentation

5.1. Overview

A first version of this framework was used for the
resource size estimation in [7]. In this paper, various AWS
m3 family EC2 instances were used for the database and
the application server. For this experimentation, we have
launched tests against RDS Postgres, with db.r3 family
instances (memory optimized) for the persistence tier, and
with c4 (computing power optimized) family instances for
the BPMS part.

For our tests, we have used the standard process, the
reference process used for performance comparison between
versions of BonitaBPM. This process is composed of 20
sequential automated tasks each one updating 15 string
process variables from a constant and executing afterwards
a connector repeatingly computing the Fibonacci number of
25 with a recursive method, until 150 milliseconds or more
have passed.

The goal of our experimentation is to find the capacity
of cloud resources in tasks per seconds. As a task could
be very fast to execute, and the main metric used for
size estimation in BonitaBPM benchmark tool is process
based, we have used a reference time for the mean process
duration. More precisely, we wanted our process to have
a mean duration of 10 seconds : an arbitrary but realistic
value for the standard process. Indeed, if we look only
at the duration of the Fibonacci connectors, we obtain 3
seconds where we must add the process time of each process
instantiation, variables allocation, workflow evaluation, and
process termination. When launched with only one parallel
inject business process, the duration of a process is about 5
seconds, as we will see in the figure 4.

We tested with different numbers of parallel process ex-
ecution, and instance types for the database and application
server. We have tuned BonitaBPM on the number of threads
reserved for connectors and execution of tasks and on the
database connection count, each one based on the parallel
process number. The memory assigned to the Java(tm) VM
of the BPMS’ application server has also been tuned for each
cloud configuration. We have also kept a unique specific
parameter group for each RDS database, this one having
most important parameters calculated from the size of the
memory of the instance type. A parameter group is an AWS
RDS reusable list of parameters used to tune the database.
The list of parameters we used is listed in table 2.

Name Tier Usage
name global test name
nb launch global number of launches of the test
database instance type database instance type file for database
bonita instance type BPMS instance type file for Bonita
parallel launch benchmark number of parallel instances
configuration BPMS Bonita configuration file
worker size BPMS number of assigned threads
bonita version BPMS version
test userid global unique test identifier

TABLE 2. USED PARAMETERS.

As the tests can be long, and expensive - we pay the
cloud configurations during the tests - we have experimented
a limited number of parallel processes, and then simply done
a linear regression between the nearest upper and lower tests
results around 10 seconds. For instance, if we obtain for
10 parallel processes a meantime of 5 seconds and for 20
parallel processes a meantime of 15 seconds, we will deduce
we can use 15 process for a meantime of 10 seconds. We
have then looked at the mean number of tasks per seconds
for this number of processes.

5.2. Results

Figure 4. Process mean time for number of parallel process. Errors bars
represent minimum and maximum values obtained. The red line represent
the 10 seconds reference.

In figure 4, we can find the mean process execution time
compared to the number of injected parallel processes. The
throughput per second is simply obtained by dividing the
total duration by the total number of executed tasks, 60000
in this case.

The task throughput and task throughput for one dollar is
in table 3. This last metric is important to see which type of
cloud instances are the cheapest to use for a given quality
of service. We can see here that less powerful instances
are more interesting, except for the generic instance type
m3.medium used for the database tier or both the database
tier and BPMS tier. However this configuration remains less
expensive for a low throughput of tasks. More powerful
resources are more expensive to use, but are still useful
when higher task throughput is required. The configuration
db.r3.large / c4.large is the cheapest configuration to use
(with the higher throughput for one dollar).

Another interesting thing to notice here is that the
db.r3.large / c4.2xlarge is a lot more expensive to use than
the other db.r3.large based configurations, and is not able
provide a throughput as high as the db.r3.xlarge / db.r3.large
while being more expensive. This can be correlated with the
fact that a cloud configuration uses both the database tier



DB inst. type AS inst. type price task TP task TP per $
db.m3.medium m3.medium 0.177 16.400 92.656
db.m3.medium c4.large 0.223 23.157 103.845
db.r3.large c4.large 0.399 55.164 138.255
db.r3.large c4.xlarge 0.518 58.067 112.100
db.r3.xlarge c4.large 0.674 65.113 96.607
db.r3.large c4.2xlarge 0.757 61.474 81.208
db.r3.xlarge c4.xlarge 0.793 83.236 104.963
db.r3.xlarge c4.2xlarge 1.032 89.149 86.384
db.r3.2xlarge c4.2xlarge 1.587 105.794 66.663
db.r3.2xlarge c4.4xlarge 2.063 107.585 52.150
db.r3.4xlarge c4.4xlarge 3.173 115.283 36.332
db.r3.4xlarge c4.8xlarge 4.126 129.279 31.332

TABLE 3. PRICE, MEAN TASK THROUGHPUT, AND MEAN TASK
THROUGHPUT BY DOLLAR FOR A MEAN STANDARD PROCESS DURATION

OF 10 SECONDS.

and the BPMS tier, and paying more only for one of the tier
could become counterproductive. This is visible in the figure
5. However, this needs to be tested more, as noisy neighbor
effects could be partially at the origin of these results, as
we can see in the error bars of figure 4.

Figure 5. Price vs mean task throughput for each tested configuration.
Shapes represent the database tier resource type, colors the BPMS tier
resource type.

6. Conclusion

In this paper, we have presented our framework that
allows to conduct extensive tests of the execution of a BPMS
engine under different cloud and engine configuration and
to collect data in order to compare the result. Thanks to the
entire automation of the test pipeline, based only a collection
of open source tools it is possible to execute the test with
as many configuration as we need the number of time we
need. It remains also very flexible and cost effective. We
spent around 250 $ in AWS credit to conduct all the tests
needed for this paper, including runs that were required
to validate the framework. This price could be reduced
on AWS by using spot instances, that would allow to use
VM at a fraction of the price. This framework also works
with Vagrant for testing purposes, and with on premises

computers, with a static inventory including hard coded
IP adresses for each tier, and without the cloud instance
creation and destruction.

In the near future, we plan to enhance the framework
with the capability of testing clustered configurations and
other database vendors. These operations are easy to add,
since we just have to rely on the creation and orchestration
of new docker images. We also want to add the possibility
to test other BPMS, and to couple this framework with a
load balancer and an resource allocation and scheduling
algorithm as in [7]. Finally, we plan to make more inten-
sive benchmarks in order to better estimate the price and
efficiency of BPMS on cloud configurations.

Acknowledgments

The authors would like to thank Amazon Web Services
for the free credits (this paper is supported by an AWS in
Education Research Grant Award).

References

[1] V. Ferme, A. Ivanchikj, and C. Pautasso, “A framework
for benchmarking BPMN 2.0 workflow management systems,”
in International Conference on Business Process Management.
Springer, 2015, pp. 251–259, 00006. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-23063-4 18

[2] M. Geiger, S. Harrer, and J. Lenhard, “Process Engine
Benchmarking with BetsyCurrent Status and Future Directions,”
ZEUS 2016, p. 37, 2016, 00000. [Online]. Available:
http://www.infosys.tuwien.ac.at/zeus2016/proceedings.pdf#page=42

[3] M. Baruwal Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk,
“Smart CloudBenchA framework for evaluating cloud infras-
tructure performance,” Information Systems Frontiers, vol. 18,
no. 3, pp. 413–428, Jun. 2016, 00003. [Online]. Available:
http://link.springer.com/10.1007/s10796-015-9557-2

[4] F. Charoy, A. Guabtni, and M. V. Faura, “A dynamic
workflow management system for coordination of coopera-
tive activities,” in Business Process Management Workshops.
Springer, 2006, pp. 205–216, 00024. [Online]. Available:
http://link.springer.com/chapter/10.1007/11837862 21

[5] C. Boettiger, “An introduction to Docker for reproducible
research, with examples from the R environment,” arXiv
preprint arXiv:1410.0846, 2014, 00002. [Online]. Available:
http://arxiv.org/abs/1410.0846

[6] P. Venezia, “Review: Puppet vs. Chef vs. Ansible vs. Salt,” Nov. 2013.
[Online]. Available: http://www.infoworld.com/article/2609482/data-
center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html

[7] G. Rosinosky, S. Youcef, and F. Charoy, “An Efficient Approach
for Multi-tenant Elastic Business Processes Management in
Cloud Computing environment,” 2016, 00000. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01300188/


