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Stability analysis of singularly perturbed switched and impulsive linear
systems

Jihene Ben Rejeb, Irinel-Constantin Morărescu, Antoine Girard and Jamal Daafouz

Abstract— This paper proposes a new methodology for stability
analysis of singularly perturbed linear systems whose dynamics
is affected by switches and state jumps. The overall problem
is formulated in the framework of hybrid singularly perturbed
systems and we use Lyapunov-based techniques to investigate
its stability. We emphasize that, beside the stability of slow and
fast dynamics, we need a dwell-time condition to guarantee the
overall singularly perturbed system is globally asymptotically
stable. Furthermore, we characterize this dwell-time as the sum
of one term related to the stabilization of systems evolving
on one time-scale (slow dynamics) and one term of the order
of the parameter defining the ratio between the time-scales.
As highlighted in the paper the second term is required to
compensate the effect of the jumps introduced in the state of the
boundary layer system by the switches and impulses affecting
the overall dynamics. Some numerical examples illustrates our
results.

Index Terms— Singular Perturbation, Switched systems, Reset
systems, Dwell-time.

I. INTRODUCTION

Systems characterized by dynamical processes that evolve on
different time scales are encountered in a broad domain of
science going from biology [1], [2] to engineering [3], [4].
When several orders of magnitude differentiate the various
time scales, the standard analysis becomes more difficult and
singular perturbation theory [5], [6] is used to approximate
the dynamics by decoupling the slow dynamical processes of
the faster ones. The stability analysis is done separately for
each time scale and under appropriate assumptions one can
conclude on the stability of the overall system. Significant
results related to stability analysis and approximation of
solutions of singularly perturbed systems can be found in
[7], [8], [9]. Various biological singularly perturbed systems
are analyzed from a geometric perspective in [10].

Another feature that characterizes many physical systems
is the presence of discrete events that occur during the
continuous dynamics. These events may be represented either
by some change of dynamics without state jumps or by
impulses on the state of the system. The first type of events
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leads to the class of switched systems. Stabilization and
exponential stability of singularly perturbed linear switched
systems are considered in [11], [12]. The state jumps/resets
can be physical as in the case of mechanical systems with
impacts or electrical circuits with diodes, but they can also
be generated by the control strategy as in the case of event-
triggering control [13]. More general hybrid systems include
discrete events that can involve both switches and state
jumps. This framework can be motivated by the implemen-
tation of hybrid feedback control algorithms through fast
actuators. A stability result for this class of systems can be
found in [4].

In this paper we focus on the stability analysis of linear
switched systems affected by state jumps/resets. The main
contributions of the current work are:

• a new methodology for stability analysis of linear singu-
larly perturbed systems with switches and impulsions.

• the characterization of the minimal dwell-time between
two events that ensures the stability of the overall
singularly perturbed system.

It is noteworthy that, the required dwell time is the sum of
two terms. The first one is the regular dwell-time guaran-
teeing the stability of linear switched systems evolving on
one time-scale but whose dynamics do not share a common
Lyapunov function. The second one is of order of the
parameter characterizing the ratio between the time-scales
of the processes involved in the singularly perturbed system.
Our approach is based on classical singular perturbation
theory [5] with Lyapunov function arguments for hybrid
systems (see [14] for details).

The paper is organized as follows. Section II is devoted to
preliminary results concerning singularly perturbed systems.
Section III describes the switched impulsive system model
in the singular perturbation form. Section IV states the
main results along with its Lyapunov-based proofs. Three
examples are given in Section V to illustrate the applicability
of the proposed approach. Some conclusions are presented
at the end of the paper.

NOTATION

Throughout this paper, R+ , Rn and Rn×m denote respec-
tively, the set of nonnegative real numbers, the n dimensional
Euclidean space and the set of all n×m real matrices. The
identity matrix of dimension n is denoted by In. We also
denote by 0n,m ∈ Rn×m the matrix whose components are



all 0. For a matrix A ∈ Rn×n, ‖A‖ denotes the spectral
norm i.e. induced 2 norm. A > 0 (A < 0) means that A is
positive definite (negative definite). We write A> and A−1

to respectively denote the transpose and the inverse of A.
The matrix A is said to be Hurwitz if all its eigenvalues
have negative real parts. A is said to be Schur if all its
eigenvalues have modulus smaller than one. We also use
x(t+k ) = lim

δ→0, δ>0
x(tk + δ).

II. PRELIMINARIES

In this section we reformulate some results on the Lyapunov
stability of linear singularly perturbed systems. These will
be used in the next sections to prove the main results of the
paper concerning the stability of multiple time-scale systems
in presence of switches and impulses.
Let us consider the singularly perturbed linear system :{

ẋ(t) = A11x(t) +A12z(t)

εż(t) = A21x(t) +A22z(t)
(1)

where x(t) ∈ Rnx , z(t) ∈ Rnz and ε > 0 is a small
parameter. Let us assume that A22 is non-singular and
proceed with the change of variable(

x(t)
y(t)

)
=

(
Inx 0nx,nz

A−122 A21 Inz

)(
x(t)
z(t)

)
. (2)

In the variables x, y the system becomes:{
ẋ(t) = A0x(t) +B1y(t)

εẏ(t) = A22y(t) + ε(B2x(t) +B3y(t))
(3)

where

A0 = A11 −A12A
−1
22 A21, B1 = A12,

B2 = A−122 A21A0, B3 = A−122 A21A12.

Let us make the following assumption:

Assumption 1: A0 and A22 are Hurwitz.

Under the previous assumption, there exist symmetric pos-
itive definite matrices Qs ≥ Inx , Qf ≥ Inz and a positive
number λ such that:

A>0 Qs +QsA
>
0 ≤ −2λQs

A>22Qf +QfA
>
22 ≤ −2λQf

Due to space-limitations the following 3 results are given
without proofs.

Proposition 1: If A0 and A22 are Hurwitz then there exists
ε1 > 0 such that

V (x, y) = x>Qsx+ y>Qfy

is a Lyapunov function for system (3) for all ε ∈ (0, ε1).

In the following, let us denote Ws(t) =
√
x(t)>Qsx(t)

and Wf (t) =
√
y(t)>Qfy(t). Let us also introduce the

following notation b1 = ‖QsB1‖, b2 = ‖QfB2‖ and
b3 = ‖QfB3‖

Proposition 2: Let ε1 as in Proposition 1, then for all ε ∈
(0, ε1), θ > 0 and t ≥ 0

Wf (t) ≤Wf (0)e−
λ
ε t + εβ1

√
V (0)e−λ(1−θ)t

where β1 = max(b2,b3)
λ(1−ε1(1−θ)) .

Proposition 3: Let ε1 as in Proposition 1, let 0 < ε2 <
min(ε1, 1) then for all ε ∈ (0, ε2), θ > 0 and t ≥ 0

Ws(t) ≤Ws(0)e−λt+εβ2Wf (0)e−λt+εβ3
√
V (0)e−λ(1−θ)t

where β2 = b1
λ(1−ε2) and β3 = b1β1

λθ .

III. PROBLEM FORMULATION

In this paper, we consider a switched system of the form:(
ẋ(t)
εż(t)

)
= Aσk

(
x(t)
z(t)

)
, ∀t ∈ (tk, tk+1], k ∈ N (4)

with impulsive dynamics:(
x(t+k )
z(t+k )

)
= Jνk

(
x(tk)
z(tk)

)
, ∀k ≥ 1 (5)

where x(t) ∈ Rnx , z(t) ∈ Rnz , 0 = t0 < t1 < . . . are
the instants of discrete events (switches, impulses or both),
σk ∈ I and νk ∈ J with I and J finite sets of indices, Ai

and Jj are matrices of appropriate dimensions for all i ∈ I,
j ∈ J , and ε > 0 is a small parameter characterizing the
time scale separation between the slow dynamics of x and
the fast dynamics of z.

Remark 1: Switches and impulses can, but need not, be
concomitant. Indeed, if σk = σk+1 and Jνk 6= Inx+nz , then
at time tk an impulse occurs but no switch. Similarly, if
Inx+nz ∈ {Jj | j ∈ J }, for Jνk = Inx+nz and σk 6= σk+1,
then a switch occurs at time tk but no impulse.

For i ∈ I, j ∈ J , let

Ai =

(
Ai11 Ai12
Ai21 Ai22

)
, Jj =

(
Jj11 Jj12
Jj21 Jj22

)
,

where Ai11, J
j
11 ∈ Rnx×nx , and Ai22, Ai12, Ai21, Jj22, Jj12, Jj21

are of appropriate dimensions.

Let us impose the following standard assumption [5] in the
singular perturbation theory framework:

Assumption 2: Ai22 is non-singular for all i ∈ I.

Then, we perform the following time dependent change of
variable:(

x(t)
y(t)

)
= Pσk

(
x(t)
z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (6)

where, for all i ∈ I

Pi =

(
Inx 0nx,nz

(Ai22)
−1Ai21 Inz

)
.

It is worth noting that the matrix Pi is invertible and for all
i ∈ I

P−1i =

(
Inx 0nx,nz

−(Ai22)−1Ai21 Inz

)
.



Using (6), the continuous dynamics (4) in the variables x, y
becomes:(

ẋ(t)
εẏ(t)

)
=

(
Aσk0 Bσk1
εBσk2 Aσk22 + εBσk3

)(
x(t)
y(t)

)
,

∀t ∈ (tk, tk+1], k ∈ N
(7)

where for all i ∈ I one has
Ai0 = Ai11 −Ai12(Ai22)−1Ai21, Bi1 = Ai12,

Bi2 = (Ai22)
−1Ai21A

i
0, B

i
3 = (Ai22)

−1Ai21A
i
12.

Similarly, the jump map (5) is rewritten in the x, y variables
as: (

x(t+k )
y(t+k )

)
= Rνkσk→σk+1

(
x(tk)
y(tk)

)
, ∀k ≥ 1 (8)

where for all i, i′ ∈ I, j ∈ J ,

Rji→i′ = Pi′J
jP−1i

Remark 2: It is worth emphasizing that the jump map
Rνkσk→σk+1

is uniquely defined i.e., when a jump and a switch
occur simultaneously we can either consider that the switch
precedes the jump or the reverse.

IV. STABILITY ANALYSIS

We study the stability of system (7)-(8) by using Lyapunov
function arguments. We state the following result which is a
particular case of [15, Theorem 1].

Proposition 4: Consider the hybrid system (7)-(8) and a
positive scalar εmax. The equilibrium point (x∗, y∗) = (0, 0)
is globally asymptotically stable, for all ε ∈ [0, εmax) if there
exists a function t 7→ V (x(t), y(t)) such that V (0, 0) = 0,
V (x, y > 0, ∀(x, y) 6= (0, 0) and the following hold for any
(x(0), y(0)) 6= (0, 0):

(i) for all ε ∈ [0, εmax) and t ∈ (tk, tk+1]

V̇
(
x(t), y(t)

)
< 0,

(ii) for all tk, k ∈ N

V
(
x(tk+1), y(tk+1)

)
< V

(
x(tk), y(tk)

)
The stability analysis will be performed by considering the
Lyapunov function defined by

V (x, y) = x>Qσks x+ y>Qσkf y,

and showing that under appropriate conditions V satisfies
Proposition 4. In the rest of the paper, we assume the stability
of each mode of the slow and fast dynamics. In other words
the following holds.

Assumption 3: Ai0 and Ai22 are Hurwitz for all i ∈ I.

From the previous assumption, we can deduce that there exist
symmetric positive definite matrices Qis ≥ Inx , Qif ≥ Inz ,
for i ∈ I and a positive number λ such that

Ai
>

0 Qis +QisA
i
0 ≤ −2λQis

Ai
>

22Q
i
f +QifA

i
22 ≤ −2λQif

Remark 3: Proposition 1 states that there exists ε1 > 0 such
that the linear dynamics (4) are all stable for all ε ∈ (0, ε1).

In the sequel, the Lyapunov functions of the decou-
pled dynamics defined in section II become Ws(t) =√
x(t)>Qσks x(t) and Wf (t) =

√
y(t)>Qσkf y(t) where σk ∈

I is the corresponding mode over the time interval (tk, tk+1].
For each mode i ∈ I, let bi1 = ‖QisBi1‖ , bi2 = ‖QifBi2‖,
bi3 = ‖QifBi3‖. Let bh = max

i∈I
bih , h ∈ {1, 2, 3} and define

β1 =
max(b2, b3)

λ(1− ε1(1− θ))
, β2 =

b1
λ(1− ε2)

, β3 =
b1β1
λθ

. (9)

The next result characterizes the variation of Ws and Wf

during continuous dynamics between two events.

Lemma 5: Under Assumption 3, let ε ∈ (0, ε2), and let τk =
tk+1 − tk for a sequence (tk)k≥0 of event times. Then for
all k ∈ N,

Ws(tk+1) ≤Ws(t
+
k )(1 + εβ3)e−λ(1−θ)τk

+Wf (t
+
k )ε(β2 + β3)e−λ(1−θ)τk (10)

Wf (tk+1) ≤Ws(t
+
k )εβ1e−λ(1−θ)τk

+Wf (t
+
k )
(
e−

λ
ε τk + εβ1e−λ(1−θ)τk

)
. (11)

Proof: This is straightforward from Propositions 2 and
3 by remarking that

√
V ≤Ws+Wf and e−λt ≤ e−(1−θ)λt.

In the following we complete the characterization of the
variation of Ws and Wf by analyzing their behavior when
an event occurs.

Remark 4: There exist a positive scalar α ≥ 1 such that, for
all i, i′ ∈ I(

Qis 0nx,nz
0nz,nx Qif

)
≤ α2

(
Qi

′

s 0nx,nz
0nz,nx Qi

′

f

)
(12)

and let γ ≥ 0 such that

γ2 = max
i,i′∈I,j∈J

∥∥∥(Rji→i′)>( Qis 0nx,nz
0nz,nx Qif

)
Rji→i′

∥∥∥
(13)

Remark 5: In order to keep the notation simple, we intro-
duce the matrix :

Mτ =

(
(1 + εβ3)e−λ(1−θ)τk ε(β2 + β3)e−λ(1−θ)τk

εβ1e−λ(1−θ)τk e−
λ
ε τk + εβ1e−λ(1−θ)τk

)
Lemma 6: Let ε1 as in Remark 3, 0 < ε2 < min(ε1, 1) and
let β1,β2,β3 be defined by (9). Let α and γ satisfying (12)
and (13) respectively and let τk = tk+1 − tk for a given
sequence (tk)k≥0 of event times. Then, for all k ∈ R+,

V (tk+1) ≤ ζ2ρ(Mτ )
2V (tk) (14)

where ζ =
√
2αγ and ρ(Mτ) is the infinity norm of Mτ i.e.

maximum absolute row sum of the matrix.



Proof: Lemma 5 and Remark 4 yield(
Ws(tk+1)
Wf (tk+1)

)
≤Mτ

(
Ws(t

+
k )

Wf (t
+
k )

)
where the inequality is meant component-wise. Conse-
quently, using that V (t) = ‖(Ws(t),Wf (t))

>‖2 one obtains
that

V (tk+1) =Ws(tk+1)
2 +Wf (tk+1)

2

≤ ρ(Mτ)
2(Ws(tk) +Wf (tk))

2

≤ 2ρ(Mτ)
2V (t+k )

On the other hand

V (t+k ) =

(
x(t+k )
y(t+k )

)>(
Q
σk+1
s 0nx,nz

0nz,nx Q
σk+1

f

)(
x(t+k )
y(t+k )

)
≤
(
x(tk)
y(tk)

)>
(Rνkσk→σk+1

)>
(
Q
σk+1
s 0nx,nz

0nz,nx Q
σk+1

f

)
Rνkσk→σk+1

(
x(tk)
y(tk)

)
≤ α2

(
x(tk)
y(tk)

)>
(Rνkσk→σk+1

)>
(

Qσks 0nx,nz
0nz,nx Qσkf

)
Rνkσk→σk+1

(
x(tk)
y(tk)

)
≤ α2γ2

∥∥∥∥( x(tk)
y(tk)

)∥∥∥∥2

Using that, for all i ∈ I one has Qis ≥ Inx and Qif ≥ Inz ,
it follows that ∥∥∥∥( x(tk)

y(tk)

)∥∥∥∥2 ≤ V (tk)

yielding that (14) holds.

We can now state the main result of this paper.

Theorem 7: Consider the singularly perturbed system (4)-
(5). Suppose that Assumptions 3 hold and ε1 such that
0 < ε1 <

1
(b1+b2)2

4θλ2
+
b3
λ +1−θ

. Let also consider α and γ such

that (12) and (13) hold. Let 0 < ε2 < min(ε1, 1) and let
0 < ε3 < min(ε2,

1
β2+2β3

, 1
2ζβ1

).
Then, for all ε ∈ (0, ε3), the system is globally asymptoti-
cally stable if the inter-event time τk satisfies :

τk >
1

λ
max

{
1

(1− θ)

(
ln(ζ) + ε(β2 + 2β3),

ε ln

(
ζ

1− 2ζεβ1

)}
(15)

where ζ = αγ and β1, β2, β3 are given in Propositions 2-3.

Proof: In view of Assumptions 3 item (i) of Proposition
4 holds for all ε ∈ (0, ε1). To prove that inter-event time
τk given by (15) guarantees the stability of the singularly
perturbed system given by (4)-(5), we analyze the behavior
of the Lyapunov function and prove that:

V (tk+1) < V (tk), ∀k ∈ R+.

From Lemma 6, this is the case if all row sums of ζMτ are
strictly smaller than 1. In other words, the system is globally
asymptotically stable if the following inequalities hold

ζ
(
1 + ε(β2 + 2β3)

)
e−λ(1−θ)τk < 1

ζ
(
2εβ1e−λ(1−θ)τk + e−

λ
ε τk
)
< 1

Since e−(1−θ)λτk ≤ 1 for all θ ∈ (0, 1), it follows :

e−λ(1−θ)τk(1 + ε(β2 + 2β3)) <
1

ζ
(16)

2εβ1 + e−
λ
ε τk <

1

ζ
(17)

These are equivalent to

τk >
1

λ(1− θ)
ln

(
ζ
(
1 + ε(β2 + 2β3)

))
τk >

ε

λ
ln

(
ζ

1− 2ζεβ1

)
Using that ln

(
1 + ε(β2 + 2β3)

)
≤ ε(β2 + 2β3) for all

ε ≥ 0, one gets that (16), (17) hold as far as:

τk >
1

λ(1− θ)

(
ln(ζ) + ε(β2 + 2β3)

)
τk >

ε

λ
ln

(
ζ

1− 2ζεβ1

)
These inequalities are satisfied if (15) holds.

Remark 6: Let

τ∗ =
1

λ
max

{
1

(1− θ)

(
ln(ζ) + ε(β2 + 2β3),

ε ln

(
ζ

1− 2ζεβ1

)}
.

Theorem 7 gives a lower bound on the dwell time between
two consequent events ensuring the two time scale system
(4)-(5) is globally asymptotically stable. However, this lower
bound on the dwell time condition may be subject to some
conservatism. This means that the overall system can be
stable when the time interval between consecutive events is
less than τ∗.

A closer look at τ∗ reveals that:

τ∗ = max
(
O(1) +O(ε),O(ε)

)
(18)

In Corollary 1 we show that O(1) term vanishes when the
stability of the slow dynamics is not affected by the discrete
events. On the other hand we also show that the O(1) term
is required for stability of linear impulsive and/or switched
systems evolving on only one time-scale (see Proposition 8).

Corollary 1: Let us suppose that all the modes of the slow
dynamics with jumps in (4) - (5) share a common Lyapunov
function. Thus (12) can be reformulated as: there exist
positive scalars γ1, γ2 > 0 such that

Wf (t
+
k ) ≤ γ1Ws(tk) + γ2Wf (tk) and Ws(t

+
k ) ≤Ws(tk)



Consequently, the minimum dwell time in (15) guaranteeing
the global asymptotic stability becomes

τ∗ =
ε

λ
max

{
β3 + (β2 + 2β3)(γ1 + γ2),

ln

(
γ1 + γ2

1− γεβ1(1 + γ1 + γ2)

)}
= O(ε).

Remark 7: • In Corollary 1 the dwell time is closely
related to the singular perturbation parameter ε. The
length of the time interval between two consecutive
events is lower bounded by the time it takes for fast
dynamics to compensate the potential increase of Lya-
punov function at jumps or/and switchings.

• When J = ∅, Corollary 1 improves the result [11], [3]
by emphasizing that the dwell time is O(ε) if all the
slow dynamics share a common Lyapunov function.

Let us now study the meaning of O(1) term in the expression
of τ∗. To do that, we consider the following linear impulsive
switched system{

ẋ(t) = Aσkx(t) ∀t ∈ (tk, tk+1]

x(t+k ) = Jνkx(tk)
(19)

where the state x(t) belongs to Rnx .
Let us assume that the matrices Ai are all Hurwitz. We note
again that there exist symmetric definite positive matrices
Qi ≥ Inx and λ ∈ R+ such that

(Ai)>Qi +QiAi ≤ −2λQi (20)

Let α̂ ≥ 1 such that for all i, j ∈ I one has

Qi ≤ α̂2Qj

and define ζ̂ = α̂
√
maxi∈I,j∈J ‖ (Jj)>QiJj ‖.

Remark 8: Notice that parameters α̂ and ζ̂ are equivalent to
α, ζ respectively in the two-time scale case.

Proposition 8: System (19) is asymptotically stable if the
following inequality holds

tk+1 − tk ≥
ln(ζ̂)

λ

V. ILLUSTRATIVE EXAMPLES

In this section, three examples of hybrid systems are used
to verify the performance of the proposed strategy. In the
first example, we assume that discontinuities only occur due
to the switching signals. The second example is given to
demonstrate the validity of the results above for impulsive
systems. In the last example, we suppose that both jumps
and switchings may occur at the same time.

A. Switched system

Let us introduce the singularly perturbed system (4)-(5) with
Jνk = Inx+nz and σk ∈ I = {1, 2}. Let us consider a
switched system having two modes defined by:

A1
11 = −1, A1

12 = 5, A1
21 = 0, A1

22 = −1. (21)

A2
11 = −1, A2

12 = 0, A2
21 = 5, A2

22 = −1. (22)

Straightforwardly one has Aσ0 = −1 and Aσ22 = −1 i.e., the
reduced (slow) system and the boundary layer (fast) system
are stable. Nevertheless, as shown in [12], for any ε > 0 there
exists a periodic switching signal that renders the overall
system unstable. To illustrate this, we fix ε = 0.003 and let
the initial condition (x(0), z(0))> = (1, 1)>. It can be seen
in Figures 1 and 2 that the switched singularly perturbed
system is unstable for a periodic switching signal σ of period
0.02 sec.
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Fig. 1. State trajectories with τk = 0.02 sec
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Fig. 2. State trajectories with τk = 0.02 sec

It is noteworthy that, for ε3 = 0.0048 and ε = 0.003, the
dwell-time condition in Corollary 1 yields τk = 0.023 sec.
Indeed considering a dwell-time larger than 0.023 sec the
system becomes stable.

B. Reset system

Consider now the singularly perturbed system (4)-(5) with a
continuous dynamics defined by the matrix A2 in (22). The
reset map is described by a single matrix:

J =

(
0.48 0.49
0.39 0.59

)
(23)



As in the previous example, the matrices A0 and A22 are
Hurwitz, i.e. Assumptions 3 hold. Choosing the same value
of ε and starting with the same initial condition as in the
previous example, the obtained value of the required inter-
event period stabilizing the overall system is given by τk =
1.255 sec. Simulating the dynamics with periodic jumps of
period 1.2 sec we noticed that the trajectories diverge. On
the other hand, the simulation result in Figure3 shows that
the period of 1.255 sec between two consecutive resets is
sufficiently large and the continuous dynamics last enough
to compensate the increase of states during jumps, which
render the system asymptotically stable.
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Fig. 3. State trajectories with τk = 1.255 sec

C. Hybrid system

Let us consider the system (4)-(5) with matrices (21)-(23).
Setting again ε = 0.003 and applying Theorem 7 we obtain
a period separating two consecutive events that has to be
larger than τk = 1.95 sec. In this case the system is
asymptotically stable for all time periods lower-bounded by
τk. The trajectories of system (4)-(5) for τk = 1.95 sec are
shown in Figure 4.
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Fig. 4. State trajectories with τk = 2 sec

Notice that A1
21 = 0 explaining the very fast convergence

of z during the first period. At t1 = 2 s, both a switch and
a jump occur simultaneously. We also note that A2

21 6= 0
meaning that the convergence speed of z is slower due to
the influence of the slow variable x. At time t2 = 2t1 only
a jump occurs meaning that the slow variable x continues to
affect the dynamics of z.

VI. CONCLUSIONS

In this paper we proposed sufficient dwell-time condition for
the stability of two-time scales switched impulsive systems.
We emphasized that the required dwell-time consists of a
sum of two terms. The first one corresponds to the stabiliza-
tion of the slow dynamics while the second one is of order of
the parameter characterizing the time-scale separation and is
required for the stabilization of the dynamics on the slow
manifold. The results have been illustrated by numerical
simulation of linear systems affected by switches and/or state
jumps.
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