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Time scale modeling
for consensus in sparse directed networks with time-varying topologies

Samuel Martin∗, Irinel-Constantin Morărescu∗ , Dragan Nešić#

Abstract— The paper considers the consensus problem in
large networks represented by time-varying directed graphs.
A practical way of dealing with large-scale networks is to
reduce their dimension by collapsing the states of nodes
belonging to densely and intensively connected clusters into
aggregate variables. It will be shown that under suitable
conditions, the states of the agents in each cluster converge
fast toward a local agreement. Local agreements correspond
to aggregate variables which slowly converge to consensus.
Existing results concerning the time-scale separation in large
networks focus on fixed and undirected graphs. The aim of
this work is to extend these results to the more general case of
time-varying directed topologies. It is noteworthy that in the
fixed and undirected graph case the average of the states in
each cluster is time-invariant when neglecting the interactions
between clusters. Therefore, they are good candidates for the
aggregate variables. This is no longer possible here. Instead,
we find suitable time-varying weights to compute the aggregate
variables as time-invariant weighted averages of the states in
each cluster. This allows to deal with the more challenging
time-varying directed graph case. We end up with a singularly
perturbed system which is analyzed by using the tools of two
time-scales averaging which seem appropriate to this system.

I. INTRODUCTION

Large dynamical systems of interacting units such as
power grids, transportation networks or the brain can be
modeled as multi-agent systems. Unfortunately, these models
consist of very large number of coupled differential equations
whose analysis becomes intractable. Therefore, it is crucial to
reduce the complexity of the system by proposing appropriate
reduced-order models that still capture the asymptotic behavior
of the network. A natural approach is to merge a number of
agents into a single node whose state approximates the states
of the agents that generated it. This idea has been successfully
applied for networks represented as fixed undirected graphs
[1], [2], [3], [4], [5]. An extension of this idea to networks
represented as fixed directed graphs was proposed in [6].

The goal of this paper is to provide a methodology to
generate appropriate reduced systems for multi-agent systems
with a large number of agents interacting through directed
time-varying networks. A fundamental assumption is that the
interaction network consist of sparsely connected clusters of
densely connected agents [3], [4], [7]. An interesting feature
of these networks is that the agents first converge fast toward
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a local agreement inside the clusters and then they slowly
converge to a global consensus. This time scale separation
has been emphasized and used for the analysis of power grids
with fixed and undirected interconnections [3], [4], [5]. The
same feature has been used in [8] for clusters detection in
large scale networks. However, up to now, only symmetric and
time-invariant communication networks have been dealt with.

In the case of fixed and undirected graph the average of
the states in each cluster is time invariant when neglecting the
interactions between clusters. Therefore, it is natural to use it as
an aggregate state. When the interactions are directed and time
varying we have to define appropriate aggregate variables. To do
so, we introduce time-varying weights defining a time-invariant
weighted average (using reasoning similar to [9]) as aggregate
state of a cluster isolated from the other clusters. As a result
we exhibit a time-scale separation in the network justifying
the approximation of the overall network dynamics with the
dynamics of the slow aggregate variables. It is important
to note that unlike the fixed undirected interconnections
graph [3], [4], [5], the resulting singularly perturbed system
in this paper is not in standard form and we cannot use the
standard tools [10], [11]. Instead it is more natural to employ
averaging theory for two time-scales systems [12], [13], [14].
Note that these results are not restricted to periodic systems.
The contribution of the paper can be summarized as follows:

• we provide the assumptions guaranteeing that the conver-
gence is faster inside clusters than between clusters;

• under these assumptions, we show that time-scale
separation occurs and can be used for analysis of
directed and time varying interconnections;

• we use averaging theory for two time-scales systems
which seems to be appropriate, under the stated
conditions, for the analysis of networks structured in
sparsely connected clusters of densely connected agents.

The rest of the paper is organized as follows. Section II
introduces the model under study, the assumptions allowing to
rewrite the model in singular perturbation form and presents
the main contributions related to the singular perturbation
modeling and analysis. In Section III we give some technical
results concerning the two time-scales modeling. The singular
perturbation analysis is provided in Section IV and an
illustrative numerical examples is presented in Section V.
Notation. The following standard notation will be used
throughout the paper. The set of non-negative integers, real and
non-negative real numbers are denoted by N, R and R+, respec-
tively. For a matrix A we denote by ‖A‖∞ its infinity norm. The
transpose of a matrix A is denoted by A>. By Ik we denote the
k×k identity matrix. 1k and 0k are the column vectors of size
k having all the components equal 1 and 0, respectively. A non



trivial subset S of a set C , denoted as S @ C , is a non-empty
set with S ( C . A directed path of length p in a given directed
graph G = (N , E) is a union of directed edges

⋃p
k=1(ik, jk)

such that ik+1 = jk, ∀k ∈ {1, . . . , p− 1}. The node j is con-
nected to node i in a directed graph G = (N , E) if there exists
at least a directed path in G from i to j (i.e. i1 = i and jp = j).

II. PRELIMINARIES

A. Model statement
Let N , {1, . . . , n} be a set of n agents. By abuse of

notation we denote both the agent and its index by the same
symbol i ∈ N . Each agent is characterized by a scalar state
xi ∈ R,∀i ∈ N that evolves according to the following
consensus system

ẋi(t) =

n∑
j=1

aij(t)(xj(t)− xi(t)), ∀i ∈ N , (1)

where aij(t) ≥ 0 are twice continuously differentiable and
uniformly upper-bounded functions of time representing the
interaction weights. Let x(t) = (x1(t), . . . , xn(t))> ∈ Rn
be the overall state of the network collecting the states
of all the agents. Under these conditions, there exists a
unique differentiable function of time x : R+ → Rn whose
components satisfy equation (1) for all t ∈ R+ [15], and it is
bounded [16]. We call it the trajectory of the overall system.
We say the trajectory asymptotically reaches a consensus
when there exists a common agreement value α ∈ R such that

lim
t→+∞

xi(t) = α, ∀i ∈ N .

In the sequel, agents are assumed to be partitioned in m non-
empty clusters: C1, C2, . . . , Cm ⊂ N , that are assumed to be
given or can be easily identified. For instance clusters may corre-
spond to groups of agents which are spatially close to each other
while different clusters are distant to each other. Let us introduce
the following supplementary notation: M , {1, . . . ,m} and
ni denotes the cardinality of cluster Ci and

¯
n = mini∈M ni.

Without loss of generality, we permute the agents’ labels accord-
ing to the partition so that when j ∈ Ci and j′ ∈ Ci+1, j < j′.

Denote A(t) = (aij(t)) the adjacency matrix of
communication weights at time t, D(t) = diag(dii(t))
with dii(t) =

∑
j∈N aij(t), and L(t) = D(t) − A(t)

its associated Laplacian matrix. We denote as AI(t) =
diag(A1(t), . . . , Am(t)) the block-diagonal intra-cluster
adjacency matrix where for k ∈M, Ak(t) = (aij(t))(i,j)∈C2k .
We also denote by Lk(t) the Laplacian matrix associated
to Ak(t) and LI(t) = diag(L1(t), . . . , Lm(t)) the block-
diagonal Laplacian matrix associated to AI(t). The inter-cluster
communications are then described by AE(t) = A(t)−AI(t)
and its associated Laplacian matrix LE(t) = L(t) − LI(t).
The inter-cluster adjacency matrix has zero elements AEij(t)
if i and j belong to the same cluster.

B. Framework assumptions
In the following let us introduce some notation and the main

hypotheses of this work. For two subsets of nodes A,B ⊂ N ,
the sum of communication weights from B to A is denoted as

wA←B(t) =
∑

i∈A,j∈B
aij(t).

Let us also recall some notation in [3], [4], [5] by adapting
them to cope with non constant internal communications:

cI(t) = min
k∈M,S@Ck

wS← (Ck\S)(t),

γE(t) = max
k∈M

wCk← (N\Ck)(t),

δ(t) =
γE(t)

cI(t)
.

(2)

Assumption 1 (Intra-cluster communication): There exist
constants

¯
c ≥ 0,KI ≥ 1 such that cI(t) ≥

¯
c,∀t ≥ 0 and for

any cluster k ∈M and for all non trivial subsets S @ Ck,
wS← (Ck\S)(t) ≤ KI · w(Ck\S)←S(t), ∀t ≥ 0.

As proven in the sequel, Assumption 1 ensures exponential
consensus inside each cluster seen as an independent network
(see Lemma 1). This will justify the merging of all the nodes
belonging to a cluster into one aggregate node.

Assumption 2 (Inter-cluster communication): There exist
constants KE ≥ 1 and

¯
a ∈ (0, 1) such that for all non trivial

subset S @M, for all t ≥ 0, the two following equations hold :∑
k∈S

wCk← (N\Ck)(t) ≤ KE ·
∑
k∈S

w(N\Ck)←Ck(t), (3)

∑
k∈S

∑
h∈M\S

wCk←Ch(t) ≥ cI(t)ε
¯
a. (4)

Assumption 2 ensures consensus of the aggregate state
associated with the clusters, where equation (3) ensures
reciprocity of the external interactions while equation (4)
guarantees their persistence when Assumption 1 is satisfied (see
e.g. [17] for definitions). Constant

¯
a can be chosen arbitrarily

small. It is necessary that KI ≥ 1 and KE ≥ 1 and the
equality corresponds to symmetric communication. The next
assumption ensures that the total communication weight which
a cluster Ck receives cannot exceed a proportion of the weight
received by any non-trivial subset of Ck from the rest of Ck.

Assumption 3: The ratio between internal and external
interaction weights (defined in (2)) is bounded by a constant
bound ε > 0 : for all t ≥ 0,

δ(t) ≤ ε.
The purpose of Assumption 3 is to ensure that the partition

in clusters corresponds to the distribution of communication
weights. It prevents cases where two subsets of a cluster are
more connected to the outside than with each other. As it will
be detailed in section III, Assumption 3 is necessary in order
to exhibit a two time-scale separation of the system.

Remark 1: Assumption 3 guarantees that for each cluster
k ∈M and for all non trivial subsets S @ Ck,

wCk← (N\Ck)(t) ≤ ε · wS← (Ck\S)(t), ∀t ≥ 0.

Remark 2: Note that Assumption 3 does not follow from
Assumptions 1 and 2 hold. For a counter-example see [18].

Remark 3: For instances of classes of communication
weights satisfying Assumptions 1 and 2, see [16]. Section V
also provides an instance where Assumptions 1, 2 and 3 are
all satisfied.

Using the formalism of communication in clusters, one has
the following result.



Proposition 1: Supposing that Assumptions 1, 2 and 3 hold,
the trajectory of system (1) reaches consensus exponentially
fast.

Proof: As shown in [18, Theorem 1], Assumptions 1, 2
and 3 ensure the cut-balance condition in [16]. Moreover, (4)
and the lower-bound imposed on cI(t) guarantee that there
exists a strongly connected graph G = (N , E) such that∫ t

0

aij(s)ds ≥ εt
¯
a
¯
c, ∀(j, i) ∈ E

and following [17, Proposition 4] one obtains the exponential
convergence toward consensus.

Remark 4: Proposition 1 applies in the more general setting
of integral equations with non smooth aij (see [16]) but in
the present study, we use only smooth aij due to the singular
perturbation analysis that is presented in the next section.

From Proposition 1, it is known that the trajectory
of system (1) will converge to consensus. It remains to
characterize this convergence. In particular, we want to show
that convergence occurs faster within clusters than between
clusters. Therefore aggregating the nodes inside clusters yields
a smaller dimension model that approximates the overall
dynamics. The analysis is carried out for general time-varying,
non-symmetric communication weights.

C. Contributions
Firstly, we show that under Assumptions 1, 2 and 3 the

system (1) rewrites in a singular perturbation form:
dŷ

dtf
(tf ) = εA11(tf , ε)ŷ(tf ) + εA12(tf , ε)ẑ(tf ),

dẑ

dtf
(tf ) = εA21(tf , ε)ŷ(tf ) +A22(tf , ε)ẑ(tf ),

(5)

where ε is a small parameter, tf represents the fast time-scale
that will be defined as well as all the matrices involved in
the dynamics. The matrices Aij(tf , ε) will be shown to be
continuously differentiable in their arguments and the norms
of matrices A11(tf , ε), A12(tf , ε) and A21(tf , ε) will be
proven to be bounded above by a constant while the norm of
A22(tf , ε) is bounded below away from 0 (see equation (18)).
The bounds are uniform in time tf and in ε. Roughly speaking,
ŷ ∈ Rm and ẑ ∈ Rn−m describe the aggregate state of
the clusters and the disagreement variables inside clusters,
respectively. It is worth mentioning that we will emphasize
the presence of a slow time-scale ts = εtf and show that ŷ
evolves slowly while ẑ evolves fast.

Assumption 4: Suppose that the following limit exists and
is independent of tf

Aav = lim
T→∞

1

T

∫ tf+T

tf

A11(s, 0)ds.

We define the reduced (slow) system and boundary layer (fast)
system: 

dys
dts

(ts) = Aavys(ts);

dzf
dtf

(tf ) = A22 (tf , 0) zf (tf );
(6)

to approximate the solutions of system (5). The following
approximation result is based on Theorem 1 in [12].

Theorem 1: Let ys(0) = ys,0 ∈ Rm and
zf (0) = zf,0 ∈ Rn−m some fixed initial conditions to
system (6). Set the same initial conditions to system (5),
independently of ε. Then, under Assumptions 1, 2, 3 and 4, for
any fixed ε > 0, system (5) possesses unique bounded solutions
ŷ(tf , ε) and ẑ(tf , ε) defined on R+ (here, the dependence in
ε is made explicit), and system (6) possesses unique bounded
solutions ys and zf defined on R+. These solutions satisfy

lim
ε→0

sup
tf∈R+

‖ŷ(tf , ε)− ys(εtf )‖ = 0,

lim
ε→0

sup
tf∈R+

‖ẑ(tf , ε)− zf (tf )‖ = 0.

Furthermore, for any fixed ε > 0, the trajectories ŷ(tf , ε)
and ys(εtf ) converge exponentially fast to consensus and the
trajectories ẑ(tf , ε) and zf (tf ) converge exponentially fast
to 0, when tf →∞.

III. TWO TIME-SCALE MODELING

Using the matrix notation, system (1) can be represented as

ẋ = −L(t)x = −(LI(t) + LE(t))x. (7)

A. Aggregate state

When trying to reduce the model and carry out time-scale
separation between internal and external dynamics, difficulties
arrise when the internal communication are neither constant
nor symmetric as it was assumed in [3], [4], [5]. In the present
section, we introduce some time-varying weights defining
a time-invariant weighted average for stand alone clusters,
which defines the aggregate state of the cluster.
Let us consider the isolated internal dynamics :

˙̃xCk(t) = −Lk(t)x̃Ck(t), (8)

which corresponds to the internal dynamics xCk(t) when
LE(t) = 0, where xCk(t) denotes the vector collecting states
xi(t) for i ∈ Ck. We define, for all t, τ ≥ 0 with t ≤ τ , the
fundamental matrix Φk(t, τ) of system (8) such that

x̃Ck(τ) = Φk(t, τ)x̃Ck(t). (9)

As a direct consequence of Lemma 6 in [9], for all t, τ ≥ 0 with
τ ≥ t, for any i, j ∈ Ck, weight Φkij(t, τ) is non-negative and∑

j∈Ck

Φkij(t, τ) = 1. (10)

Lemma 1: Under Assumption 1 (intra-cluster communi-
cation) system (8) converges to consensus at exponential rate.

Lemma 1 is a direct consequence of Proposition 4 [17].
In the sequel, we assume that Assumption 2 is satisfied so
that x̃Ck converges to a consensus at exponential speed. We
denote the limit matrix Φk(t,∞) = limτ→∞Φk(t, τ), which
exists thanks to Lemma 1. Moreover, since x̃Ck converges
to a consensus independently of the inital conditions, there
exists qk(t) ∈ Rnk such that

Φk(t,∞) = 1 · (qk(t))T . (11)

Vector qk(t) plays an important role in the rest of the study,
in particular it serves to define an invariant for the isolated
internal dynamics (8) as given in the next lemma.



Lemma 2: The vector qk(t) satisfies

qk(t)T · 1 = 1

and its components qki (t) are positive uniformly bounded i.e.,
for all t ≥ 0 and i ∈ Ck,

qki (t) ∈ [qmin, qmax] ∈ (0, 1),

with
qmin = (exp(−KI)/n̄)

n̄−1
, qmax = 1− (

¯
n− 1)qmin,

where
¯
n = mink∈{1,...,m} nk and n̄ = maxk∈M nk.

Furthermore, quantity qk(t)T · x̃Ck(t) is invariant in time, i.e.,

∀t ≥ 0, qk(t)T · x̃Ck(t) = qk(0)T · x̃Ck(0).

Proof: See the Appendix in [19].
Remark 5: Computing vector qk(t) is straightforward

when the internal communication weights are constant up to a
multiplicative factor, i.e., Lk(t) = lk(t)Lk(0), with lk(t) ∈ R
(but not necessarilly symmetric). In this case, qk is constant,
obtained as the left eigenvector of Lk(0) associated to the
eigenvalue 0 such that (qk)T1nk

= 1 (see for instance [20]).
More generally, qk(t) can be computed whenever the internal
dynamics is simple enough to be computed analytically. In
other cases, the time-scale separation still occurs naturally
as the present study shows and Lemma 2 provides bounds
for the invariant qk(t)T · x̃Ck(t).

In the following we introduce variables y(t) ∈ Rm which
corresponds to the cluster-aggregate state collecting weighted
averages of the agents’ states in each cluster:

yk(t) = (qk(t))>xCk(t) or y(t) = J(t)x(t) ∈ Rm,

with xCk the vector collecting the states xi of the nodes
i ∈ Ck and where J(t) is the following block-diagonal matrix:

J(t) = diag
(
(q1(t))>, (q2(t))>, . . . , (qm(t))>

)
∈ Rm×n.

(12)
The next lemma states that in each cluster k, the weight vector
qk(t) is taken so that y is invariant through system (7) when no
inter-cluster communication takes place. This justifies why y(t)
is a good candidate to represent the cluster-aggregate states.

Lemma 3: Suppose Assumption 3 holds. When ε (defined
in Assumption 3) equals 0, no inter-cluster communication
takes place, and in this case, y is invariant in time i.e.,

ε = 0⇒ LE(t) = 0⇒ ẏ(t) = 0. (13)

In this case, if Assumptions 1 (intra-cluster communication) is
also satisfied, the trajectory xCk in each cluster k is identical
to x̃Ck and converges at exponential speed to a local consensus
with consensus value yk(0).

Proof: The first part of statement (13) is a consequence
of the second inequality in Assumption 2. The second part
of statement (13) is a direct consequence of Lemma 2. The
convergence to consensus comes from Lemma 1. Denote x∗Ck ∈
R the consensus value. Then, limt→∞ xCk(t) = x∗Ck1 and

yk(0) = lim
t→∞

yk(t) = x∗Ck lim qk(t)T1nk
= x∗Ck ,

where we successively used equation (13), the definition of
yk and Lemma 2.

B. Disagreement variables

In the following, we provide a change of variable adapted
to the clustered communication with non-symmetric and
time-varying weights. First, In order to characterize the
disagreement inside each cluster, let us introduce the variable
z(t) ∈ Rn−m which represents for all k ∈ M the distances
to the first agent in Ck :

z(t) = Qx(t),

with Q = diag(Q1, Q2, . . . , Qm) where

Qk =


−1 1 0 . . . 0
−1 0 1 . . . 0

...
...

...
...

...
−1 0 0 . . . 1

 ∈ R(nk−1)×nk .

The initial state variable x(t) can be written in function of
y(t) and z(t) as follows :

x(t) = Hy(t) + Q̃(t)z(t), (14)

where H = diag
(
1n1 ,1n2 , . . . ,1nm

)
∈ Rn×m, Q̃(t) =

diag(Q̃1(t), Q̃2(t), . . . , Q̃m(t)) and Q̃k(t) ∈ Rnk×(nk−1)

such that

Q̃k(t) =


−qk2 (t) −qk3 (t) . . . −qknk

(t)
1− qk2 (t) −qk3 (t) . . . −qknk

(t)
−qk2 (t) 1− qk3 (t) . . . −qknk

(t)
...

...
...

...
−qk2 (t) −qk3 (t) . . . 1− qknk

(t)

 .

Matrices Q, Q̃(t) were chosen to verify the following lemma.
Lemma 4: The following properties hold true
• Qk1nk

= 0, (qk(t))>Q̃k(t) = 0,
• QkQ̃k(t) = Ink−1

• Q̃k(t)Qk = Ink
− 1nk

(qk(t))>

Proof: The first property is obvious. The second comes
from property (qk(t))>1nk

= 1 meaning that
∑nk

i=1 q
k
i (t) = 1

(see Lemma 2). For the third one, we compute each element
of the first column of the product Q̃k(t)Qk. The first element
is
∑nk

i=2 q
k
i (t) and is replaced by 1− qk1 (t) while the rest of

them are
∑nk

i=2 q
k
i (t)− 1 which is replaced by −qk1 (t).

Remark 6: We note that definitions of y(t) and z(t)
coincide with those used in [4] if we consider that the
interactions are symmetric and constant i.e. aij(t) = aji(t).
We also note that, for constant symmetric interactions, the
variables y(t) and z(t) can be introduced using another metric
[3] such that Q̃ = Q>.

Using equation (14), system (7) can be rewritten to make
explicit the dynamics in terms of variables y(t) = J(t)x(t)
and z(t) = Qx(t) :{

ẏ(t) = Ā11(t)y(t) + Ā12(t)z(t),

ż(t) = Ā21(t)y(t) + Ā22(t)z(t),
(15)

where{
Ā11(t) = −J(t)L(t)H, Ā12(t) = −J(t)L(t)Q̃(t),

Ā21(t) = −QL(t)H, Ā22(t) = −QL(t)Q̃(t).



C. Time-scale separation
The next lemma shows that the aggregate variable y and

the intra-cluster disagreement variable z evolve according to
different time-scale, parametrized by factor ε.

Lemma 5: The ∞-norms of the matrices in (15) satisfy

‖Ā11(t)‖∞ = ‖J(t)L(t)H‖∞ ≤ 2cI(t)ε,

‖Ā12(t)‖∞ = ‖J(t)L(t)Q̃(t)‖∞ ≤ 2cI(t)ε,
‖Ā21(t)‖∞ = ‖QL(t)H‖∞ ≤ 2cI(t)ε,

‖Ā22(t)‖∞ = ‖QL(t)Q̃(t)‖∞ ≥ (1− 8ε)cI(t).

(16)

The proof of the lemma is given in the Appendix in [19].
The only matrix in system (15) which is not O(cI(t)ε) is

Ā22 which corresponds to the influence of z on its dynamics.
As a consequence, Lemma 5 shows that variables y behave as
slow variables compared to the z variables. To reveal this fact,
we rescale the time with a fast time scale tf =

∫ t
0
cI(s)ds

and a slow time scale ts = εtf . This rescaling is well
defined since according to Assumption 1, tf diverges when
t → ∞. The transformation t 7→ tf is invertible and so is
t 7→ ts. We denote t = ψ(tf ) the reverse transformation.
Then y(t) = y(ψ(tf )) , ŷ(tf ), z(t) = z(ψ(tf )) , ẑ(tf ).
Matrices Āij are also rescaled as{

A11(tf , ε) =
Ā11(ψ(tf ))
cI(ψ(tf ))·ε , A12(tf , ε) =

Ā12(ψ(tf ))
cI(ψ(tf ))·ε ,

A21(tf , ε) =
Ā21(ψ(tf ))
cI(ψ(tf ))·ε , A22(tf , ε) =

Ā22(ψ(tf ))
cI(ψ(tf ))

.

Thanks to Assumption 3, the rescaling is well defined. At this
point, the dependance in ε has been made explicit to stress
that the singular perturbation approximation corresponds to
set ε = 0 (see below equation (19)).

Without entering in details, writing the system (15) in the
slow time-scale leads to non-standard singularly perturbed
system because of the appearance of the term 1/ε inside the
matrix arguments. Thus singular perturbation analysis in [10]
cannot be applied. Nevertheless, using averaging theory [12],
[14] for singularly perturbed systems we can approximate the
behavior of system (15) using the fast-time scale dynamics.

Lemma 6: In the fast time-scale system (15) is described by
dŷ

dtf
(tf ) = εA11(tf , ε)ŷ(tf ) + εA12(tf , ε)ẑ(tf ),

dẑ

dtf
(tf ) = εA21(tf , ε)ŷ(tf ) +A22(tf , ε)ẑ(tf ),

(17)

where the ∞-norms of the matrices in (5) satisfy

‖A11(tf , ε)‖∞ ≤ 2, ‖A12(tf , ε)‖∞ ≤ 2,
‖A21(tf , ε)‖∞ ≤ 2, ‖A22(tf , ε)‖∞ ≥ (1− 8ε).

(18)

Proof: Using equation (15),
dŷ

dtf
(tf ) =

d(y ◦ ψ)

dtf
(tf ) =

dψ

dtf
(tf )

dy

dt
(ψ(tf ))

=
(Ā11(ψ(tf ))y(ψ(tf )) + Ā12(ψ(tf ))z(ψ(tf )))

cI(ψ(tf ))
.

Moreover,

Ā11(ψ(tf ))/cI(ψ(tf )) = εA11(tf , ε),

and analogous equalities hold for Ā12 and Ā22 while

Ā22(ψ(tf ))/cI(ψ(tf )) = A22(tf , ε).

The bounds on the ∞-norms directly come from Lemma 5.

IV. SINGULAR PERTURBATION ANALYSIS

The dynamics given in Lemma 6 fits in the generic form
of systems treated in [12], [14]. Let zf be the solution of

dzf
dtf

(tf ) = A22 (tf , 0) zf (tf ). (19)

Note that for ε = 0 the matrix A22 and corresponds to intra
clusters communication only and zf (tf ) = Qx̃(ψ(tf )). So, as
given in Lemma 3, system (19) converges to 0 exponentially
fast. Denote A11(s, 0) = limε→0A11(s, ε), which exists
thanks to equation 18.

Let Aav be defined in Assumption 4 and ys be the solution of

dys
dts

(ts) = Aavys(ts). (20)

Proposition 2: Denote ys,k for k ∈M the k-th component
of ys. Under Assumption 4, system (20) is a consensus system
described element-wise by

dys,k
dts

(ts) =
∑
j∈M

askl(ys,l(ts)− ys,k(ts)), k ∈M, (21)

where askl = limT→∞
1
T

∫ tf+T

tf

∑
j∈Cl

∑
i∈Ck

qki (ψ(s))aij(ψ(s))

cI(ψ(s))ε

is independent of tf . Moreover, under Assumption 2 (Inter-
cluster communication) ys reaches consensus exponentially fast.

Proof: See [19].

We are now ready to prove the main result of the study.
Proof of Theorem 1: We want to apply Theorem 1 in [12].
Notice that system (5) rewrites as

dŷ

dtf
(tf ) = εf(tf , ts, ŷ, ẑ, ε),

dẑ

dtf
(tf ) = g(tf , ts, ŷ, ẑ, ε),

(22)

where, following the notation in [12],

f(tf , ts, ŷ, ẑ, ε) = A11(tf , ε)ŷ(tf ) +A12(tf , ε)ẑ(tf ),
g(tf , ts, ŷ, ẑ, ε) = εA21(tf , ε)ŷ(tf ) +A22(tf , ε)ẑ(tf )

(23)
It is worth noting that in our case f and g do not depend
explicitly on the slow time ts. Equation żf = g(tf , τ, y, zf , 0)
where τ and y are regarded as parameters corresponds to
equation (19). According to Lemma 3, zf converges at
exponential speed to 0 so that Hypothesis H1 in [12] is
satisfied. Moreover, f0 in H2 in [12] is

f0(τ, y) = lim
T→∞

1

T

∫ t+T

t

f(s, τ, y, zf (s), 0)ds

= lim
T→∞

1

T

∫ t+T

t

A11(s, 0)y +A12(s, 0)zf (s)ds

= lim
T→∞

1

T

∫ t+T

t

A11(s, 0)ds · y = Aav · y

where we used the exponential decrease of zf and the bound
on ‖A12(s, 0)‖∞ in equation (18) to remove the second
term under the integral. Assumption 4 shows that H2 and
equation (2.4) in [12] are satisfied. The averaged equation
(2.5) in [12] corresponds to equation (20), whose trajectory



are bounded and converge to consensus at exponential speed
thanks to Proposition 2. As a consequence, Hypothesis H3 and
H4 in [12] are satisfied. Finally, H5 is also satisfied because
g(tf , τ, y, zf , 0) is independent of y. Under Hypotheses H1
through H5, Theorem 1 in [12] provides the expected result.

V. NUMERICAL ILLUSTRATIONS
Consider the multi-agents system (1) with 8 agents and two

clusters whose communication pattern is defined in Figure 1.
When not null, internal communication weights are set to
aij(t) = 2+cos(2t) in cluster 1, to aij(t) = 1 in cluster 2 and
external communication weights are set to aij(t) = ε(sin(t) +
2)/3 where ε is a constant parameter. As a consequence,
Assumption 1, 2, 3 and 4 are all satisfied. In the present case,
internal weights vary in time all with the same multiplicative
factor so that qk(t) is time-invariant and correspond to the
left eigenvector of Lk(0) associated to eigenvalue 0 such that
qk1nk

= 1 (see Remark 5 for the computation of qk in the
general case). We simulate the system with initial conditions
x(0) = (6, 6.3, 4.4, 5.2, 3, 3.5, 0.4, 2.2)T (see Figure 2). As
expected from Proposition 2 and Lemma 3, all aggregate
variables converge to consensus and disagreement variables
converge to 0, even when ε is not small. When ε = 1 the ap-
proximations are not precise, but they approch the real variables
uniformly as ε diminishes, as expected from Theorem 1.

1

2

3

4

5

6

7

8

Fig. 1. Communication graph. Red and blue circles are agents in cluster 1
and 2 respectively. Bold and dashed thin arrows correspond to communication
inside and between clusters, respectively. Arrows are replaced by lines when
the communication is bidirectional. Only communications with non-zero
weight are displayed.

VI. CONCLUSION

In the present study, we have extended the singular
perturbation analysis for linear consensus systems found in [4]
to time-varying and directed networks. We have emphasized
that the right tool to study the network at hand is averaging
theory for two time-scales systems.
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[4] J. Chow and P. Kokotović, “Time scale modeling of sparse dynamic
networks,” IEEE Transactions on Automatic Control, vol. 30, no. 8,
pp. 714–722, 1985.

[5] D. Romeres, f. Dörfler, and F. Bullo, “Novel results on slow coherency
in consensus and power networks,” in European Control Conference,
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