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Continuous opinions
and discrete actions in social networks: a multi-agent system approach

N. R. Chowdhury, I.-C. Morărescu, S. Martin, S. Srikant

Abstract— This paper proposes and analyzes a novel multi-
agent opinion dynamics model in which agents have access to
actions which are quantized version of the opinions of their
neighbors. The model produces different behaviors observed
in social networks such as disensus, clustering, oscillations,
opinion propagation, even when the communication network
is connected. The main results of the paper provides the
characterization of preservation and diffusion of actions
under general communication topologies. A complete analysis
allowing the opinion forecasting is given in the particular
cases of complete and ring communication graphs. Numerical
examples illustrate the main features of this model.

I. INTRODUCTION

The analysis of social networks received an increasing interest
during the last decade. This is certainly related with the
increasing use of Facebook, Twitter, LinkedIn and other on-line
platforms allowing to get information about social networks.
Multi-agent systems have been shown to efficiently model how
opinion dynamics occur as a result of social interactions [1].
The existing models can be split in two main classes: those
considering that opinions can evolve in a discrete set and
those considering a continuous set of values that can be taken
by each agent. The models in first class come from statistical
physics and the most employed are the Ising [2], voter [3] and
Sznajd [4] models. When the opinions are not constrained to a
discrete set, we can find in the literature two popular models:
the Deffuant [5] and the Hegselmann-Krause [6] models. They
are usually known as bounded confidence models since they
depend on one parameter characterizing the fact that one
agent takes into account the opinion of another only if their
opinions are close enough. The bounded confidence models
above do not guarantee consensus and instead several local
agreements can be reached. The Hegselmann-Krause model
has been adapted in [7] to a model of opinion dynamics with
decaying confidence.

In order to more accurately describe the opinion dynamics and
to recover more realistic behaviors, a mix of continuous opinion
with discrete actions (CODA) was proposed in [8]. This model
reflects the fact that even if we often face binary choices or
actions, the opinion behind evolves in a continuous space of
values. For instance we may think that car A is 70% more appro-
priate for our use than car B. However, our action will be 100%
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buy car A. Moreover, our neighbors often only see our action
without any access to our opinion. Similar idea was employed in
[9] where it is studied the emergence of consensus under quan-
tized all-to-all communication. In this paper the authors assume
constant interaction weights and quantized information on the
opinion of all the other individuals belonging to a given social
network. In [10], a system with quantized communication and
general communication topologies is studied. There, the author
focuses on consensus (up to the quantizer precision) while in the
present paper, we precisely focus on dynamics such as dissensus
which occur within the quantizer precision. As explained above,
this is of particular relevance for the social sciences.

Whatever is the model employed to describe the opinion
dynamics, many studies focus on the emergence of consensus
in social networks [11], [12], [5], [13]. Nevertheless, this
behavior is rarely observed in real large social networks. The
present study provides a possible explanation for dissensus
even though the communication graph is connected.

Conceptually the model proposed in this paper is close to
the one in [9] with the difference that we are considering
state-dependent interaction weights instead of constant ones.
Beside the heterogeneity introduced in the model by the
state-dependent interaction weights we are also dealing with
more general interaction topologies and we are not trying to
characterize consensus. Instead we highlight that extremist
individuals are less influenceable, that several equilibria can
be reached and one can also have oscillatory behaviors in the
network. From behavioral view-point our model is close to
the one in [8] (this similarity is highlighted in Section II). The
difference here is that we are able to analytically study this
model and go beyond simulations and theirs interpretation.

The main contributions of this work are threefold. (i) We pro-
pose a consensus-like dynamics that approaches the dynamics
described in [8]. This CODA model is given by a quantized
consensus system with state-dependent interaction weights. (ii)
We describe the possible equilibria of the proposed model and
depict the main properties characterizing the opinions dynamics.
Precisely, we provide a criterion to detect stabilization of the
actions of a group of agents and to predict the propagation
of this action throughout the network. Our criterion depends
on the initial conditions and interaction topology only. (iii)
We completely analyze some particular interaction topologies
such as: the complete graph and the ring graph.

The rest of the paper is organized as follows. Section II
formulates the problem and illustrates that our model is
close to the one proposed in [8]. In Section III we show
when the quantization effect is removed i.e. in the context
of continuous opinions with continuous actions (COCA), that



consensus is always achieved provided that the interaction
graph is connected. The main features of our CODA model
under general interaction topologies are derived in Section IV.
Precisely we characterize the preservation and the propagation
of actions inside a group and outside it, respectively. Some
particular interaction topologies such as: the complete graph
and the ring graph are analyzed in V.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a network of n agents denoted by V = {1, . . . , n}.
The interaction topology between agents is described by a
fixed graph G = (V, E) that can be directed or not. Let Ni
be the set of agents that influence i according to the graph
G (i.e. j ∈ Ni ⇔ (j, i) ∈ E) and ni be the cardinality of Ni.
Initially, agent i ∈ V has a given opinion pi(0) = p0i ∈ (0, 1)
and this opinion evolves according to a discrete-time protocol.
Let pi(k) be the opinion of agent i ∈ V at time k. Assume
that ∀i ∈ V, pi(0) 6= 1

2 and introduce the action value
qi(k) ∈ {0, 1} as a quantized version of pi(k) defined by:

qi(k) =

 0 if
(
pi(k) <

1
2

)
,

0 if
(
pi(k) =

1
2 and pi(k − 1) < 1

2

)
,

1 otherwise.

Two distinct situations are considered in the following.
COCA model: each agent has access to the opinion of
its neighbors. In this case, our model simply writes as a
consensus protocol with state-dependent interaction weights.
Precisely, the opinion of an agent i ∈ V updates according
to the following rule

pi(k + 1) = pi(k) +
pi(k)(1− pi(k))

ni

∑
j∈Ni

(pj(k)− pi(k)).

(1)

Denoting by p(·) = (p1(·), . . . , pn(·)) the vector that collects
the opinions of all agents, the collective opinion dynamics
is given by:

p(k + 1) = (In +A(p(k))) p(k), (2)

where A(p(k)) is the opposite of the Laplacian matrix
associated to adjacency matrix (aij(k))ij with off-diagonal
weights aij(k) = pi(k)(1 − pi(k))/ni if j ∈ Ni and
aij(k) = 0 otherwise.

Remark 1: We assume that p0i belongs to (0, 1) which is a
normalized version of R. Doing so, the matrix In +A(p(k))
is row stochastic and for all k ∈ N one has p(k) ∈ (0, 1).

CODA model: provides the main model under study in this
paper. This model assumes that each individual has access only
to the action of its neighbors. The opinion of agent i ∈ V in
this case updates according to the following rule:

pi(k + 1) = pi(k) +
pi(k)(1− pi(k))

ni

∑
j∈Ni

(qj(k)− pi(k)).

(3)

Remark 2: For an agent i ∈ V , both COCA and CODA models
propose interaction weights depending only on the opinion pi.

We can emphasize a natural partition of V in two
subsets N−(k) = {i ∈ V | qi(k) = 0} and
N+(k) = {i ∈ V | qi(k) = 1}. The main objective
of this paper is to study how these sets evolve in time and
what is the behavior of the opinions pi(k) inside these sets.
Throughout the paper we denote by n−(k) and n+(k) the
cardinality of N−(k) and N+(k), respectively. Similarly,
for an agent i we denote by N−i (k) = Ni ∩ N−(k) and
N+
i (k) = Ni ∩ N+(k) and by n−i (k) and n+i (k) the

cardinalities of these sets.

The CODA model (3) was inspired by Martins’ model [8]
which was formulated in terms of the following bayesian
update. Let us denote by p̃i(k) the opinion of agent i ∈ V
at time k ∈ N when using Martins’ model [8]. The updates
of this opinion follows the rule described below. When agent
i is influenced by agent j,

p̃i(k + 1)

1− p̃i(k + 1)
=

p̃i(k)

1− p̃i(k)
· α

1− α
if qj(k) = 1, (4)

and where α is replaced by 1− α if qj(k) = 0. The constant
α ≥ 0.5 is a model parameter linked to the amplitude of opinion
change as a result of interactions. This parameter does not
appear in our model. The study [8] is based on numerical experi-
ments and do not present a theoretical analysis. The simulations
found in [8] where obtained with α = 0.7. The simulations
appear to be qualitatively close to the ones resulting from our up-
date (3) (see Section VI). To understand this fact, one can show
that for α = 2/3 ≈ 0.7, and qj(k) = 1, update (3) and (4) are
equivalent for small pi(k) values. Similarly, if qj(k) = 0 the
two updates are equivalent for pi(k) values close to 1. For other
pi(k) values, pi(k+1) still remains close to p̃i(k+1). These
facts are illustrated in Figure 1. As a consequence, our CODA
model (3) can be seen as a consensus-type version of Martins’
model. One advantage of our model is to explicitly explains
why extremist agents with opinion close to 0 or 1 hardly change
their actions. This is due to the weight pi(1−pi) in update (3).
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Fig. 1. Comparison of the CODA model (3) and the model by Martins [8].
The two top curves display the update (3) and (4) when the influencing agent
has action qj = 1. The two bottom curves display the update (3) and (4)
when the influencing agent has action qj = 0. Discontinuous red lines
correspond to update (3) while strait blue lines correspond to update (4).

III. ANALYSIS OF THE COCA MODEL

When agents have a direct access to opinions without quantifi-
cation, opinions tend to a consensus at exponential speed as is
shown in the present section. This is no longer the case when



agents only have access the quantized actions instead of opin-
ions of their neighbors, as will be shown in Section IV. It is note-
worthy that an opinion stays constant according to dynamics (1)
if it is initialized at the value 0 or 1. Therefore, by the following
assumption we exclude these extreme cases from the analysis.

Assumption 1: There exists a strictly positive constant
ε ∈

(
0, 12
)

such that for all i ∈ V , one has p0i ∈ [ε, 1− ε].

For a subset of agents, V ′ ⊆ V and for all k ∈ N, let us
define mV′(k) := min

j∈V′
pj(k) and MV′(k) := max

j∈V′
pj(k).

The following result can be easily proven by induction.

Lemma 1: Let V ′ ⊆ V such that V ′ is isolated i.e. for all
i ∈ V ′, for all j ∈ V \ V ′, (j, i) /∈ E . Then,

1) MV′(k + 1) ≤MV′(k)

2) mV′(k + 1) ≥ mV′(k)

Let us assume for the rest of this section that the graph is
strongly connected.

Applying Lemma 1 with V ′ = V one obtains that sequences
mV(k) and MV(k) are both monotonic and bounded, thus
convergent. The interaction weight from the agent j ∈ Ni to

the agent i at time k is defined by aij(k) :=
pi(k)

(
1−pi(k)

)
ni

.
Taking into account that p0i ∈ [ε, 1 − ε], the behavior of
the function x 7→ x(1 − x) on (0, 1) and Lemma 1, one
deduces that aij(k) ∈ [ ε(1−ε)ni

, 1
4ni

] for all k ∈ N and j ∈ Ni.
Moreover, for all i ∈ V one has 1 ≤ ni ≤ n− 1 yielding

aij(k) ∈
[
ε(1− ε)
n− 1

,
1

4

]
, ∀i ∈ V, ∀j ∈ Ni. (5)

Since aii = 1 −
∑
j∈Ni

aij , straightforward computation
shows that

aii(k) ∈
[
3

4
, 1− ε(1− ε)

]
, ∀i ∈ V. (6)

Equation (5) and (6) shows that Assumption 1 in [14] holds
true. Moreover, in this paper we are dealing with a fixed
(strongly) connected graph meaning that Assumption 2 and
3 in [14] also hold. Therefore the following result is a
consequence of Theorems 1 and Lemma 1 in [14].

Proposition 2: As far as the graph G is (strongly) connected
and Assumption 1 is satisfied, the update rule (1) guarantees
asymptotic consensus of all opinions. Furthermore, there exist
two constants β ∈ (0, 1) and T ∈ N such that ∀k ∈ N

MV(k + T )−mV(k + T ) ≤ β
(
MV(k)−mV(k)

)
.

IV. ANALYSIS OF THE CODA MODEL

For the remaining part of this work we consider the update rule
(3). In this section we derive the set of possible equilibrium
points and we give the conditions guaranteeing that the action qi
of the agent i ∈ V is preserved/changed over time. Throughout
the rest of the paper we assume that ∀i ∈ V, pi(0) ∈ (0, 1).

A. Characterization of equilibria

Let us define the following finite set of rational numbers:

S =

{
k

m

∣∣∣ k,m ∈ N, k ≤ m ≤ n− 1

}
⊂ Q. (7)

The main result of this section states that the possible
equilibrium points of the opinions belong to S. Let us first
introduce an instrumental result. For the rest of the paper we

use the notation ri(k) :=
n+i (k)

ni
.

Lemma 3: Let i ∈ V , pi(0) ∈ (0, 1). Then, for all k ∈ N,
one of the following relations holds

pi(k) < pi(k + 1) < ri(k), (8)

pi(k) > pi(k + 1) > ri(k), (9)

or
pi(k) = pi(k + 1) = ri(k). (10)

Moreover, ∀k ∈ N, pi(k) ∈ (0, 1).

Proposition 4: Let i ∈ V and suppose Assumption 1 holds.
If
(
n+i (k)

)
k≥0 (and thus

(
n−i (k)

)
k≥0) is stationary, then

the sequence of opinions
(
pi(k)

)
k≥0 converges and has the

following limit :

p∗i = lim
k→∞

pi(k) =
lim
k→∞

n+i (k)

ni
∈ S.

Conversely, if the sequence of opinions
(
pi(k)

)
k≥0 converges

towards a non-extreme value p∗i ∈ (0, 1), then the sequence(
n+i (k)

)
k≥0 is stationary and the equality between the limits

still holds.

Proof: If the sequence
(
n+i (k)

)
k≥0 is stationary, one

gets that n+i (k) is constant for k bigger than or equal to a
fixed integer k∗. Let us denote by ρ∗i the value of ri(k) for
k ≥ k∗. According to Assumption 1, pi(0) ∈ (0, 1), so that
Lemma 3 applies. By induction one has either

∀k ≥ k∗, pi(k) ≤ pi(k + 1) ≤ ρ∗i (11)

or
∀k ≥ k∗, pi(k) ≥ pi(k + 1) ≥ ρ∗i . (12)

In the first case
(
pi(k)

)
k≥0 is increasing and upper-bounded,

in the second
(
pi(k)

)
k≥0 is decreasing and lower-bounded.

Thus
(
pi(k)

)
k≥0 converges. Denote p∗i its limit. If p∗i = 1,

equation (11) must be satisfied and ρ∗i = 1. If p∗i = 0, equa-
tion (12) must be satisfied and ρ∗i = 0. Finally, if p∗i ∈ (0, 1),
one can take the limit of equation (3) to show that p∗i = ρ∗i .

Reversely, assume that the sequence of opinions
(
pi(k)

)
k≥0

converges to a limit p∗i ∈ (0, 1). So that for some k∗ ∈ N,
∀k ≥ k∗, pi(k) ∈ (0, 1). As a consequence, equation (3)
rewrites as

pi(k + 1)− pi(k)
pi(k)(1− pi(k))

+ pi(k) = ri(k).

Taking the limit of the previous equation shows that
(n+i (k)/ni)k≥0 converges and is thus stationary and its limit
satisfies ρ∗i = p∗i . Since n+i (k), ni ∈ N and n+i (k) ≤ ni, it
is clear that p∗i ∈ S.



B. Preservation of actions

In this subsection we investigate the conditions ensuring that
the action qi does not change over time. More precisely, we
provide a criterion to detect when a group of agents sharing
the same action will preserve it for all time. For the sake of
simplicity we focus on qi(0) = 0 but using similar arguments
the same results can be obtained for qi(0) = 1.

Lemma 5: Let i ∈ V , if n−i (k) ≥ n
+
i (k) and qi(k) = 0 then

qi(k + 1) = 0.

In the sequel we denote by |A| the cardinality of a set A.

Definition 6: We say a subset of agents A ⊆ V is a robust
polarized cluster if the following hold:

• ∀i, j ∈ A, qi(0) = qj(0);
• ∀i ∈ A, |Ni ∩A| ≥ |Ni \A|.

Remark 3: Notice that, in this section we do not make any
assumption on the connectivity of the interaction graph. This
means in particular that it may happen to have ni = 0 for
some agents belonging to A above.

The next result explains why the word robust appears in the
previous definition.

Proposition 7: If A is a robust polarized cluster with
qi(0) = 0 for a certain i ∈ A then

• ∀i ∈ A, ∀k ∈ N, qi(k) = 0;

• ∀i ∈ A, lim
k→∞

pi(k) ≤
1

2
.

Proof: The proof will be done by induction. Let us
remark first that following the first item of Definition 6 we
have qi(0) = 0,∀i ∈ A. Let us assume that for a fixed k∗

and ∀i ∈ A one has qi(k∗) = 0. Let us also recall that the
interaction graph under consideration is fixed. Therefore we still
have that |Ni ∩A| ≥ |Ni \A|. Moreover, |Ni ∩A| ⊆ N−i (k∗)
implying that n−i (k

∗) ≥ n+i (k
∗),∀i ∈ A. Thus, Lemma 5

yields that ∀i ∈ A one has qi(k∗+1) = 0 and the proof ends.
C. Change and diffusion of actions

The goal of this subsection is twofold. First to provide
conditions at a given time k ∈ N guaranteeing that the action
of a fixed agent i ∈ V will change at time k + 1. Secondly,
we analyze the propagation/diffusion of the action of a robust
polarized cluster inside the overall network. Due to the
symmetry of reasonings we continue to focus only on one
case qi(0) = 0 or qi(0) = 1.

Proposition 8: Let i ∈ V and k ∈ N such that pi(k) >
1

2

and n−i (k) > n+i (k). Let ε(n+i (k), ni) ∈
(
0,

1

2

)
be the

unique positive real solution of the equation:

x3 −
(
1

2
− ri(k)

)
x2 − 3

4
x+

(
1

2
− ri(k)

)
1

4
= 0. (13)

Then pi(k+1) ≤ 1

2
if and only if pi(k) <

1

2
+ ε(n+i (k), ni).

The previous result states that an agent will change its action
when it is influenced by more opposite actions, only if its

opinion is sufficiently close to the boundary between the
actions. The notion of sufficiently closed depends on the
proportion of opposite actions that influence the agent and
is exactly quantified by ε(n+i (k), ni).

Lemma 9: Let i ∈ V and Ti ∈ N such that
n−i (k) > n+

i (k), ∀k ≥ Ti. Then it exists k∗ ≥ Ti
such that qi(k) = 0, ∀k ≥ k∗.

The next result characterizes the diffusion of the action of
a robust polarized cluster over the network.

Proposition 10: Let us consider the sets A1, A2, . . . , Ad
such that

• A1 is a robust polarized set with qi(0) = 0 for a certain
i ∈ A1 (and thus ∀i ∈ A1, qi(0) = 0);

• ∀h ∈ {1, . . . , d− 1} and ∀i ∈ Ah+1 one has

|Ni ∩Ah| > |Ni \Ah|.

Then, for all h ∈ {1, . . . , d}, ∃Th ∈ N, such that,

∀k ≥ Th,∀i ∈ Ah, qi(k) = 0,

where one can choose T1 = 0. Consequently, ∀i ∈
d⋃

h=1

Ah

one has lim
k→∞

pi(k) ≤
1

2
.

Proof: The proposition with h = 1 and T1 = 0 follows
from the Proposition 7. For h > 1, we proceed recursively.
Assume that the proposition holds for h ∈ {1, . . . , f} with
f < d and show that it holds for h = f + 1. We know that
∀i ∈ Af+1 one has

|Ni ∩Af | > |Ni \Af |.

Moreover Ni ∩ Af ⊆ N−i (k), ∀k ≥ Tf and ∀i ∈ Af+1.
Therefore we can apply Lemma 9 for any i ∈ Af+1. Choosing
Tf+1 = max

i∈Af+1

Ti one obtains that the proposition holds for

h = f + 1.

The last part of the statement is a simple consequence of

the fact that ∀i ∈
d⋃

h=1

Ah one has qi(k) = 0,∀k ≥ T where

T = max
h∈{2,...,d}

Th.

V. SOME PARTICULAR NETWORK TOPOLOGIES

A. Complete graph

In this subsection we use previous results to completely
characterize the opinion dynamics when the interactions are
described by the complete graph.

Proposition 11: If n−(0) > n+(0) then ∀i ∈ V the limit
behavior of the opinion is given by lim

k→∞
pi(k) = 0. Reversely,

n+(0) > n−(0) implies lim
k→∞

pi(k) = 1.

Let us consider now the case n−(0) = n+(0). It is noteworthy
that in this case n = |V| is even and



• ∀i ∈ N+(0) one has |Ni ∩ N−(0)| = n
2 > n

2 − 1 =
|Ni \N−(0)|.

• ∀i ∈ N−(0) one has |Ni ∩ N+(0)| = n
2 > n

2 − 1 =
|Ni \N+(0)|.

If the initial conditions are not symmetric w.r.t.
1

2
an agent

will cross from N+ to N− (or reversely) and we recover
the situation treated in Proposition 11. Therefore, to finish
the analysis we give the following result that deals with

initial conditions symmetrically displayed w.r.t.
1

2
. This case

emphasizes an interesting oscillatory behavior of the opinions.

Proposition 12: Assume that n+(0) = n−(0) and moreover

∀i ∈ {1, . . . , n2 } there exist ηi(0) ∈
(
0,

1

2

)
such that

pi(0) =
1

2
− ηi(0) and pn

2 +i(0) =
1

2
+ ηi(0). (14)

Then n+(k) = n−(k), ∀k ∈ N and ∃k∗ ∈ N such that
∀k ≥ k∗,∀j ∈ V ,

|pj(k)−
1

2
| ≤ ε∗ and

(
pj(k)−

1

2

)(
pj(k + 1)− 1

2

)
< 0,

where ε∗ < 1
6(n−1) is the unique positive solution of the

equation

x3 +
1

2(n− 1)
x2 +

3

4
x− 1

8(n− 1)
= 0.

Remark 4: The result above states that all the agents in the
network will finish by oscillating around 1

2 in a 2ε∗ strip.

B. Ring graph

Throughout this section we consider the particular configuration
in which the interactions are described by an undirected
graph in which each vertex has exactly two neighbors. In the
following we identify agent n+ 1 as agent 1 and agent 0 as
agent n. For a precise representation of the graph we assume
that ∀i ∈ {1, . . . , n} one has Ni = {i− 1, i+ 1}.

Proposition 13: Under the ring graph topology the opinions
dynamics (3) leads to the following properties:

• the set S defined in (7) reduces to
{
0,

1

2
, 1

}
;

• if ∃i ∈ V such that qi(0) = qi+1(0) = 0 then {i, i+1} is
a robust polarized cluster (i.e. qi(k) = qi+1(k), ∀k ∈ N);

• if ∀i ∈ V one has qi(0) = 1− qi+1(0) then
– either the initial opinions are not symmetric w.r.t.

1

2
and agents will change actions asynchronously

leading to robust polarized sets {i− 1, i, i+ 1}.
– or pi(0) ∈

{
1
2 − σ,

1
2 + σ

}
,∀i ∈ V and agents

will change actions synchronously preserving
n−(k) = n+(k),∀k ∈ N. Moreover, for σ solving

8σ3 + 8σ2 + 14σ − 1 = 0

one has pi(k) ∈
{

1
2 − σ,

1
2 + σ

}
,∀i ∈ V,∀k ∈ N

VI. NUMERICAL ILLUSTRATIONS

A. Influential minority

We illustrate that a well connected minority can convince a
majority of agents located in the periphery of the interaction
network. Proposition 10 can be used to predict the phenomenon
given the topology of the social network and the initial actions
only. Figure 2 illustrates this fact. From Proposition 10,
taking A1 = {1, 2, 3, 4}, A2 = {5, 6, 7, 8}, A3 = {9} and
A4 = {10}, we predict that all agents will converge to a
state with action lim qi = 0. We see in Figure 2-B that
initially agents 9 and 3 tend to approach 1/2 since they have
neighbors equally distributed over 1/2. This behavior changes
when agent 8 passes the 1/2 threshold. Moreover, the action
diffusion propagates to agent 10 even though it originally
had no neighbor with qi(0) = 0. The decrease of agent 10
towards 0 only starts when agent 9 passes the 1/2 threshold.
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Fig. 2. Illustration of the action diffusion process described in Proposition 10.
Agents 1, 2, 3 and 4 start with qi(0) = 0 and form a robust polarized cluster
(Definition 6), while agents 5, 6, 7, 8, 9 and 10 start with qi(0) = 1. All
agents converge to a state with action lim qi = 0.

B. CODA on a square lattice

We illustrate our results when the topology of interactions is a
square lattice. First, we use a 6× 6 lattice (see Figure 3). As
illustrated in Figure 3-B, for this type of structure, the smallest
robust clusters are formed by 2 × 2 squares. As expected
from Proposition 7, the robust clusters keep their initial
actions and patches of same actions form around the robust
clusters. Notice also that the values of convergence lie in set
{0, 1/4, 1/3, 1/2, 2/3, 3/4, 1} as predicted by Proposition 4.

Patches of agents with same actions are also observed for
bigger lattice (see Figure 4 for an instance final actions in a
50× 50 lattice where initial conditions were drawn following
independent uniform distributions.). This is in accordance with
the patterns found in [8].

C. Oscillatory dynamics on a ring graph

The following simulation displays the oscillation of
agents’opinion around 1/2 when the interaction graph is
complete and when the initial opinions are symmetrically
distributed around 1/2 (see Proposition 12). Figure 5 shows
an instance of this phenomenon for a system of 100 agents.
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Fig. 3. Illustration of the CODA dynamics on a 6× 6 square lattice. (A)
Each colored squared cell represents the initial opinion of an agent. Agents
communicate with adjacent cells (above, below, left and right). (B) Robust
clusters initially detected. (C) Final opinions of the agents. (D) Trajectories
of the agents’opinions. Red lines correspond to agents belonging to a robust
cluster with qi(0) = 1. Blue lines correspond to agents belonging to a robust
cluster with qi(0) = 0.
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Fig. 4. Illustration of the CODA dynamics on a 50× 50 square lattice. Each
colored squared cell represents the opinion of an agent after 100 iterations where
initial conditions were drawn following independent uniform distributions.
Agents communicate with adjacent cells (above, below, left and right).
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Fig. 5. Trajectories of 100 agents with the complete interaction graph and
initial opinions distributed symmetrically around 1/2.

VII. CONCLUSIONS

In this paper we have introduced a novel opinion dynamics
model in which agents have access to actions which are
quantized version of the opinions of their neighbors. The

model reproduces different behaviors observed in social
networks such as dissensus, clustering, oscillations, opinion
propagation. The main results of the paper provides the
characterization of preservation and diffusion of action under
general communication topologies. A complete analysis of the
opinions behavior is given in the particular cases of complete
and ring communication graphs. Numerical examples illustrate
the main features of this model.
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