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Constructive necessary and sufficient condition for the stability
of quasi-periodic linear impulsive systems

Mirko Fiacchini and Irinel-Constantin Morărescu.

Abstract— The paper provides a computation-oriented neces-
sary and sufficient condition for the global exponential stability
of linear impulsive systems, whose impulsions are assumed to
occur quasi-periodically. Based on the set-theoretic conditions
for robust stability of uncertain linear systems, the existence
of polyhedral Lyapunov functions is proved to be necessary
and sufficient for global exponential stability of quasi-periodic
linear impulsive systems. A constructive method is developed
for testing the stability of the system and for computing set-
induced polyhedral Lyapunov functions. The method leads to an
algorithm whose complexity is similar to the standard algorithm
related to discrete-time parametric uncertain systems with the
state matrix belonging to a convex polytopic set.

Index Terms— Reset systems, stability analysis, set theory

I. INTRODUCTION

The analysis and control design for impulsive systems
gained interest in the last decades. These systems that form
a subclass of hybrid ones, are defined as continuous dy-
namics that are affected by finite jumps at some discrete-
time instants, see [1]–[3]. The benefits of discontinuities in
the system behavior were first emphasized by Clegg, in [4],
that introduced an integrator with state reset to overcome
performance limitations of classical linear controllers. The
study of impulsive systems is nowadays motivated by sampled-
data systems and trigger or event-based control, for instance.

Several theoretical conditions for stability of impulsive
systems have been developed: see the Lyapunov and two
measures methods in the monograph [1], the ISS-based ap-
proaches [5] and the general hybrid systems approach [6]. Also
some constructive methods to test stability or stabilizability
of a quasi-periodic linear impulsive systems have appeared:
[7] proposed LMI based conditions; [8] leading to infinite
dimensional feasibility problems and [9] on control design and
weak-invariance for measure-driven differential inclusions.

In the present paper, we extend our preliminary work [10].
Our aim is to provide constructive necessary and sufficient
conditions yielding a numerical method for testing the sta-
bility of quasi-periodic linear impulsive systems. The period
between two reset instants has been considered as the sum
of a nominal reset period and a time-varying bounded term.
This second term increases the accuracy of the considered
model with respect to practical implementation. The proposed
approach is based on the necessary and sufficient conditions
for stability of parametric uncertain linear systems. From the
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results related to set-theory in control and invariance, see [11],
it is known that the existence of a contractive polytope for the
parametric uncertain linear or linear difference inclusion (LDI)
systems is necessary and sufficient for robust exponential
stability and then, polyhedral functions form a universal class
of Lyapunov functions, [12]–[14].

First the stability of a quasi-periodic linear impulsive system
is proved to be equivalent to robust stability of linear systems
with nonconvex nonpolytopic parametric uncertainties. Then,
the problem considered is whether a contractive polytope can
be obtained through a computationally affordable algorithm.
Affordability here means that the computational burden is
analogous to the standard algorithm for linear systems. It
is noteworthy that the standard algorithms for invariant set
computation assumes that uncertainties are bounded in a poly-
topic, thus convex, set. This allows at generating sequences of
polytopes converging to a contractive polytope. Since in the
case under study the uncertainties are not determined as the
convex hull of finite elements, the aforementioned procedure
cannot be directly applied. We derive theoretical results that
permit to provide constructive necessary and sufficient condi-
tions for the existence of a contractive polytope. We also give
an algorithm for obtaining it. The computational complexity
of this algorithm is substantially

Notation. R is the set of real numbers and N the set of
natural ones. We denote Nn , {i ∈ N : 1 ≤ i ≤ n}. For any
function x defined on R we denote x(t−), lim

τ 7→t,τ<t
x(τ) if the

limit exists. A C-set is a convex and compact set containing
the origin in its interior. For λ ∈ R and S ⊆ Rn, define λS ,
{λx ∈ Rn : x ∈ S}. The unitary ball in Rn with respect to the
norm ‖ · ‖p is Bn

p , {x ∈ Rn : ‖x‖p ≤ 1}.

II. SET-THEORY FOR NEARLY-PERIODIC RESET SYSTEMS

Given the interval ∆ = [τm,τM] with 0 < τm < τM ∈ R and
t0 ≤ τM , we define the set of admissible reset sequences as

Θ(∆) =
{
{tk}k∈N : tk+1 = tk +δk, δk ∈ ∆, ∀k ∈ N

}
. (1)

For any time sequence T ∈Θ(∆) consider the following linear
reset system, see [7], ẋ(t) = Acx(t), ∀t ∈ R+−T ,

x(t) = Arx(t−), ∀t ∈T ,
x(0) = x0 ∈ Rn,

(2)

where x ∈Rn is the system state and Ac, Ar ∈Rn×n are matri-
ces defining the continuous and reset dynamics, respectively.
The assumption of strict positivity of τm in (1) avoids Zeno
behavior (i.e. accumulation of reset instants) and the time
interval between two resets is upper-bounded by τM , i.e.

tk+1− tk ∈ [τm, τM], ∀k ∈ N.
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For given x0 and T ∈Θ(∆) the state at time t ∈ [tk, tk+1) is

x(t) = eAc(t−tk)Arx(t−k ), ∀t ∈ [tk, tk+1) (3)

then, the dynamics between two successive resets is given by
the following discrete dynamics

x(t−k+1) = eAc(tk+1−tk)Arx(t−k ) = eAc(δk)Arx(t−k ), (4)

where δk = tk+1− tk ∈ ∆. Thus, denoting A(δ ) = eAcδ Ar and
A(∆) = {A(δ ) : δ ∈ ∆}, the problem of stability of the linear
impulsive system (2) rewrites in terms of stability of the
following discrete-time parametric uncertain system

xk+1 ∈ A(∆)xk. (5)

Definition 1: System (2) is globally exponentially stable
(GES) if for any x0 and T ∈ Θ(∆) there exist c > 0,λ > 0
such that ‖x(t)‖≤ ce−λ t‖x0‖ while (5) is GES if for any k ∈N
there exist c > 0 and λ ∈ [0,1) such that ‖xk‖ ≤ cλ k‖x0‖.

It is noteworthy that system (2) is GES if and only if (5)
is so, see Theorem 1 in [7]. Notice that the set A(∆) is not
convex in general but it is compact, while the set in which
the parameter δ lies, i.e. the interval ∆, is trivially convex and
compact. Then, using the classical result from invariance and
set-induced Lyapunov functions for linear (uncertain) discrete-
time systems, see for instance [11], [12], [14], a necessary and
sufficient condition for GES can be given, as follows.

Theorem 2 ([12], [14]): There exists a Lyapunov function
for a linear parametric uncertain system if and only if there
exists a polyhedral Lyapunov function for the system.

The theorem above claims that the search of a Lyapunov
function can be limited to the family of polyhedral functions
or, equivalently, to the contractive polytopes.

Definition 3 ([11], [13]): Given λ ∈ [0,1] the C-set Ω ⊆
Rn is λ -contractive for the system (5) if A(δ )x ∈ λΩ for all
x ∈Ω and δ ∈ ∆.

Given a C-set Ω⊆ Rn, consider the sequence of sets{
Ω0 = Ω,
Ωk+1 = Qλ (Ωk,A(∆))∩Ω,

(6)

where

Qλ (S,A ) = {x ∈ Rn : Ax ∈ λS, ∀A ∈A }=
⋂

A∈A
A−1(λS),

with S⊆Rn and A ⊆Rn×n and A−1(·) denoting the preimage.
Some properties of the operator Qλ (·, ·) follow.

Lemma 4: Given λ ∈Rn, Ω,Γ⊆Rn and A ,B⊆Rn×n then
a) A ⊆B ⇒ Qλ (Ω,A )⊇ Qλ (Ω,B).
b) Ω⊆ Γ ⇒ Qλ (Ω,A )⊆ Qλ (Γ,A ).
c) If Ω is convex, then Qλ (Ω,A ) = Qλ (Ω,co(A )).
d) If Ω and A are polytopes, also Qλ (Ω,A ) is a polytope.
The iteration (6) together with an appropriate stop condition,

represents one version of the basic algorithm for obtaining
a λ -contractive set for the uncertain system (5). Moreover,
it terminates after a finite number of steps provided λ is
adequately chosen, see [13]. From this and the fact that every
λ -contractive set for a linear parametric uncertain system
(5) induces a global exponential Lyapunov function one gets

Proposition 5 below. Let us first recall that, given a C-set
S⊆ Rn, its gauge (or Minkowski) functional ΨS : Rn→ R is

ΨS(x) = min
α≥0
{α ∈ R : x ∈ αS}. (7)

Proposition 5 ([11], [13]): The linear parametric uncertain
system (5) is GES if and only if there exists λ ∈ [0, 1) such
that for all µ ∈ (λ ,1) and every C-set Ω there is k = k(µ,Ω)∈
N such that

Ωk ⊆ Qµ(Ωk,A(∆)), (8)

with Ωk as in (6). Moreover, ΨΩk(x) is a global exponential
Lyapunov function for the system (5).

Notice that condition (8) is equivalent to µ-contractivity of
the set Ωk. Notice also that the sets Ωk defined by (6) can be
non-polytopic. We would like to solve the following issue:

Problem 6: Given an exponentially stable uncertain system
described by (5), an initial polytopic C-set Ω and a λ such
that a C-set λ -contractive exists, does the recursion (6) with
stop condition (8) provide a µ-contractive polytope?

Notice that we are wondering whether the µ-contractive set,
that exists from Proposition 5, is a polytope or not. The answer
depends on the assumptions on A(∆). It has been proven that if
A(∆) is a polytope, then the algorithm provides µ-contractive
polytope, [11], [13]. Such results follow directly from the fact
that Qλ (·,A(∆)) maps polytopes into polytopes provided that
A(∆) is a polytope in Rn×n. If A(∆) is not polytopic, such
property is no more ensured in general (see [15]).

Our main objective is to provide a variation of the classical
recursive algorithm for contractive sets computation, such that
a polytopic contractive set, and then a polyhedral set-induced
Lyapunov function, can be obtained in finite time. Moreover,
such algorithm should have a computational complexity simi-
lar to the classical one. The algorithm is afterward adapted to
the case of study of nearly-periodic reset systems.

III. GAUGE FUNCTIONAL FORMALISM

Definition 7: Given a C-set Ω ⊆ Rn, define the gauge
functional:
• of a compact set S⊆ Rn: ΨΩ(S) = maxx∈S ΨΩ(x);
• of a matrix A ∈ Rn×n, as induced by the functional for a
vector: ΨΩ(A) = maxx∈Ω ΨΩ(Ax);
• of compact sets of matrices A ⊆ Rn×n, as induced by the
functional for a matrix: ΨΩ(A ) = max

A∈A
ΨΩ(A).

If Ω is symmetric, then ΨΩ(x) is a vector norm [11], [16].
Definition 8: The (Hausdorff) distance induced on Rn×n by

the gauge functional of the C-set Γ⊆ Rn is

dΓ(A ,B), inf
α∈R
{α ≥ 0 : A ⊆B+αBn×n

Γ
, B ⊆A +αBn×n

Γ
}

where Bn×n
Γ

, {A ∈ Rn×n : ΨΓ(A)≤ 1} and A ,B ⊆ Rn×n.
The next lemma follows from convexity of Ω (see [15]).
Lemma 9: Given the C-set Ω⊆ Rn, ΨΩ(A ) is such that

ΨΩ(A ) = ΨΩ(co(A )). (9)
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IV. COMPUTATION-ORIENTED NECESSARY AND
SUFFICIENT CONDITION

First we provide a necessary condition, together with its
implication, for a set to be λ -contractive for system (5).

Proposition 10: If system (5) is GES with convergence rate
λ ∈ [0, 1) then for every C-set Ω, every A ⊆ co(A(∆)) and for
all µ ∈ (λ ,1) there exists p = p(λ ,µ)∈N such that condition

Ωk ⊆ Qµ(Ωk,A ), ∀k ≥ p, (10)

holds, with Ωk given by{
Ω0 = Ω,
Ωi+1 = Qλ (Ωi, A )∩Ω,

(11)

Moreover, if Ω is a polytope in Rn and co(A ) a polytope in
Rn×n then Ωk are polytopes and ΨΩk(x) is a polyhedral global
exponential Lyapunov function for the system x+∈A x.

Proof: The result follows directly from [13] and the fact
that if x+ ∈ A(∆)x is GES, also x+∈A x is GES.

Proposition 10 implies that replacing the set A(∆) with
a set which is either polytopic or finite and contained in
co(A(∆)), then the recursion generates sequences of polytopes
and terminates with a contractive polytope, if the system is ex-
ponentially stable. This entails a relaxation of the uncertainty
bounds and then an only necessary condition. It also leads
to a first computationally affordable recursion for obtaining
approximations of the contractive polytopes for the system (5).

Corollary 11: Given Ω⊆Rn polytope with 0∈ int (Ω) and
A = {Ai}N

i=1 ⊆ co(A(∆)), then there exist λ ∈ [0,1) and µ ∈
(λ ,1) such that the recursion (11) with stop condition (10)
terminates in finite steps if the system (5) is GES.

Then, provided the system is GES, every finite selection of
matrices in co(A(∆)) gives in finite time a polytopic contrac-
tive set and a polyhedral Lyapunov functions, for adequate λ

and µ . This also means that, if one proves that no contractive
set exists for an uncertain system whose matrices forms a
subset of co(A(∆)), then the system is not exponentially stable.

Corollary 12: Given Ω⊆Rn polytope with 0∈ int (Ω) and
A = {Ai}N

i=1 ⊆ co(A(∆)), if there are no λ ∈ [0,1) and µ ∈
(λ ,1) such that the stop condition (8) holds for recursion (11),
then the system (5) is not GES.

The main practical drawback of the latter result is that it is
not trivial to prove that such pair of λ and µ does not exist.

Let us consider an increasing sequence of inner approxima-
tions of the set co(A(∆)) that converges to co(A(∆)). Let us
also consider the corresponding sequence of contractive sets
obtained by means of (11) and (10). The main idea is to prove
that the latter sequence converges to a polytopic contractive
set for system (5), if and only if (5) is GES.

Remark 13: The metric space of the compact sets of Rn×n

equipped with the Hausdorff distance (determined by the
unitary ball with respect to a matricial induced norm) is
complete, see [17], [18]. The limits below are taken with
respect to the topology associated with this distance.

Theorem 14: System (5) is GES if and only if for every C-
set Ω and every increasing sequence of compact convex sets
{A ( j)} j∈N such that A ( j) ⊆ co(A(∆)) and

lim
j→∞

co(A ( j)) = co(A(∆)), (12)

there exist λ ∈ [0,1), ν ∈ (λ ,1), k = k(λ ,ν) ∈ N and h =
h(λ ,ν) ∈ N such that condition

Ω
(h)
k ⊆ Qν(Ω

(h)
k , A(∆)) (13)

holds, with the sequence of sets Ω
( j)
k given by{

Ω
( j)
0 = Ω,

Ω
( j)
i+1 = Qλ (Ω

( j)
i , A ( j))∩Ω.

(14)

Moreover, if Ω is a polytope in Rn and co(A ( j)) are polytopes
in Rn×n then Ω

( j)
k are polytopes and Ψ

Ω
(h)
k
(x) is a polyhedral

global exponential Lyapunov function for (5).
Proof: Ω convex yields Qλ (Ω,A ( j)) = Qλ (Ω,co(A ( j)))

(see Lemma 4). So, throughout the proof we consider, without
loss of generality, that A ( j) is convex for all j ∈N. Therefore,
A ( j) = co(A ( j)) for all j ∈ N.

We need to prove that (13) is necessary and sufficient to
guarantee that (5) is GES. We start by necessity, i.e. (5)
is GES implies (13). From Proposition 10, there exist λ ∈
[0,1), µ ∈ (λ ,1) and k ∈ N such that Ωk is µ-contractive for
dynamics x+ ∈ A(∆)x. Since A ( j) is an increasing sequence,
Lemma 4 yields that for every C-set Ω and every i ≤ j one
has Qλ (Ω, A ( j))⊆Qλ (Ω, A (i)). Thus, by induction, one has

Ωi ⊆Ω
( j+1)
i ⊆Ω

( j)
i , ∀i ∈ N, ∀ j ∈ N. (15)

In particular, for i = k we have that ∀ j ∈ N the following
inclusions hold Ωk ⊆Ω

( j+1)
k ⊆Ω

( j)
k .

Let us recall that any decreasing sequence of compact
convex sets is convergent toward the intersection of all its
elements, see Lemma 1.8.1 in [17]. Then, (12) and (15) imply
that, for all i ∈ N, Ω

(∞)
i , lim

j 7→∞
Ω

( j)
i exists and contains Ωi.

Let us show that Ωi = Ω
(∞)
i for every i ∈ N. We already

proved above that, for all i ∈ N one has Ωi ⊆ Ω
(∞)
i . We start

the induction by noting that Ω0 = Ω
(∞)
0 = Ω. Suppose that

∃i ∈ N such that Ωi−1 = Ω
(∞)
i−1 and Ωi ⊆ Ω

(∞)
i but Ωi 6= Ω

(∞)
i .

Consequently there exists x ∈ Ω
(∞)
i such that x /∈ Ωi. From

(12), x ∈Ω
(∞)
i and Ωi−1 = Ω

(∞)
i−1, it follows that

x ∈ Qλ

(
Ω

(∞)
i−1, lim

j→+∞
A ( j)

)
= Qλ

(
Ωi−1, lim

j→+∞
co(A ( j))

)
= Qλ

(
Ωi−1,co(A(∆))

)
= Qλ

(
Ωi−1,A(∆)

)
= Ωi,

that contradicts x /∈ Ωi. We conclude that Ωi = Ω
(∞)
i for all

i ∈N. Thus, for the particular choice i = k one has Ωk = Ω
(∞)
k

meaning that: for every ε > 0 there exists h ∈ N such that

Ω
(h)
k ⊆Ωk + εBn ⊆Ωk + ερΩk = (1+ ερ)Ωk, (16)

with ρ = ΨΩk(B
n). From the µ-contractivity of Ωk and (15),

A(∆)Ω(h)
k ⊆ (1+ ερ)A(∆)Ωk ⊆ (1+ ερ)µΩ

(h)
k , (17)

for every ε > 0. Choosing ε such that 1+ερ < µ−1 (it exists
since µ < 1 and ρ is bounded) and defining ν =(1+ερ)µ < 1,
condition (13) holds and Ω

(h)
k is ν-contractive for (5).

If Ω and co(A ( j)) are polytopes, then Q j
λ
(Ω,co(A ( j)))

are polytopes too (Lemma 4). Thus Ω
(h)
k is a polytope and
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Ψ
Ω
(h)
k
(x) is a polyhedral global exponential Lyapunov function

for (5).
To prove sufficiency, consider {A ( j)} j∈N such that A j ⊆

co(A(∆)) and (12) holds. Suppose that there exist appropriate
λ ∈ [0,1), ν ∈ ν(λ ,1) and k = k(λ ,ν) such that (13) is
satisfied. Thus Ω

( j)
k is ν-contractive, by definition, which is

a sufficient condition for the parametric uncertain system (5)
to be globally exponentially stable with Ψ

Ω
( j)
k
(x) Lyapunov

function, polyhedral if Ω and A ( j) are polytopes.
Thus, any sequence of compact sets {A ( j)} j∈N whose

convex hull converges from the interior to the convex hull
of A(∆) generates a sequence of C-sets Ω

( j)
k that converges to

a contractive set for (5). If the sets A ( j) are polytopes or finite
sets (and Ω is a polytope), the sets Ω

( j)
k are also polytopes.

Corollary 15: Let system (5) be GES and consider λ ∈
[0,1), µ ∈ (λ ,1), k = k(λ ,µ) ∈ N such that Ωk is µ-
contractive. Then, for every ν ∈ (µ,1) and every increasing
sequence of compact convex sets {A ( j)} j∈N such that A ( j) ⊆
co(A(∆) with (12) there exists h= h(λ ,ν) such that Ω

( j)
k given

by (14) is ν-contractive for (5) for all j ≥ h.
Proof: As in the proof of Theorem 14, for every ε > 0

there is h ∈ N such that A(∆)Ω(h)
k ⊆ (1+ ερ)µΩ

(h)
k , see (16)

and (17). Then, for every ν ∈ (µ,1), with ν = (1+ ερ)µ for
appropriate ε , there exists h such that Ω

(h)
k is ν-contractive for

(5). Moreover since Ω
( j)
k is decreasing with respect to j,

Ω
( j)
k ⊆Ω

(h)
k ⊆Ωk + εBn ⊆ (1+ ερ)Ωk, ∀ j ≥ h,

and then, from µ-contractivity of Ωk,

A(∆)Ω( j)
k ⊆ (1+ ερ)µΩk ⊆ (1+ ερ)µΩ

( j)
k , ∀ j ≥ h.

Thus, all the sets Ω
( j)
k are ν-contractive for (5) for all j ≥ h.

The basic idea for certifying if a nearly periodic reset system
is GES is to generate appropriate inner approximations of the
set A(∆) and use it to compute a contractive C-set. As far as
the LDI (5) is GES, every sequence {A ( j)} j∈N whose convex
hull converges to the one of A(∆) leads to a contractive C-set
for (5). Thus, we can restrict our attention to finite sets A ( j).
This, together with polytopic Ω, would lead to sequences of
polytopic Ω

( j)
k , thus numerically analogous to similar methods

for linear systems.
Remark 16: An important computational implication of

considering inner approximations of co(A(∆)) rather than
outer ones, as for instance in [7], is that they are obtained much
easier. Every finite set A contained in co(A(∆)) is an inner
approximation. Adding a matrix A /∈A such that A∈ co(A(∆))
to A leads to a tighter approximation of co(A(∆)). Then,
the sequences of A ( j) can be easily generated by adequately
selecting sequences of points on the boundary of co(A(∆)).

Thus, the main computational issue for the practical appli-
cation of the result in Theorem 14 is checking whether the
condition (13) is satisfied, i.e. if

Ax ∈ νΩ
( j)
k , ∀A ∈ A(∆), ∀x ∈Ω

( j)
k ,

⇔ AΩ
( j)
k ⊆ νΩ

( j)
k , ∀A ∈ A(∆).

If A(∆) is polytopic, it is sufficient to check the previous
inclusion only for a finite number of matrices A∈A(∆), i.e. the
vertices of A(∆). When A(∆) is not polytopic, convex or not,
condition (13) concerns an uncountable number of matrices
in A(∆). The following considerations are aimed at providing
tractable conditions to check whether (13) is satisfied.

Given the two generic sets Λ⊆Rp×n and A ⊆Rn×m define

ΛA =
⋃

Γ∈Λ

ΓA =
⋃

Γ∈Λ

⋃
Σ∈A

ΓΣ.

Proposition 17: Suppose that A ⊆ Rn×n compact is such
that for every C-set Ω there exists λ ∈ [0, 1) such that for all
µ ∈ (λ ,1) there is k = k(λ ,µ) ∈ N such that (10) holds, with
Ωk given by the sequence of sets defined by (11). If Λ⊆Rn×n

is such that
A(∆)⊆ Λco(A ), (18)

with
ΨΩk(Λ)< µ

−1, (19)

then (5) is GES and ΨΩk(x) is a global exponential Lyapunov
function for (5).

Proof: From the stop condition (10), it follows that Ωk ⊆

Ωk ⊆ Qµ(Ωk, A ) =
⋂

A∈A
A−1

µΩk, ⇔

⇔ Ax ∈ µΩk, ∀A ∈A, ∀x ∈Ωk, ⇔ ΨΩk(A x)≤ µΨΩk(x).

Let us notice that (9) and (18) imply

ΨΩk(A(∆)x)≤ΨΩk(Λco(A )x) = max
A∈co(A )

ΨΩk(ΛAx)

≤ max
A∈co(A )

ΨΩk(Λ)ΨΩk(Ax)< µ
−1 max

A∈co(A )
ΨΩk(Ax)

= µ−1ΨΩk(co(A )x) = µ−1ΨΩk(A x)

≤ µ−1µΨΩk(x) = ΨΩk(x),

where the equality is due to (9). Then there exists ε ∈ [0,1)
such that Ωk is ε-contractive for the system (5) and ΨΩk(x) is
a global exponential Lyapunov function.

The results above leads to the following theorem, that
provides the method for checking whether system (5) is GES.

Theorem 18: The system (5) is GES if and only if for
every two sequences of compact sets {A ( j)} j∈N increasing,
and {Λ( j)} j∈N such that{

A ( j) ⊆ co(A(∆))⊆ Λ( j)co(A ( j)),

lim j→+∞ Λ( j) = I,
(20)

there exist λ ∈ [0,1), ν ∈ (λ ,1), k ∈ N and h ∈ N such that
Ω

(h)
k , given by (14) is ν-contractive for x+ ∈A (h)x and

Ψ
Ω
(h)
k
(Λ( j))< ν

−1. (21)
Proof: The sufficiency part, that is (21) implies the

system (5) is GES, follows directly from Proposition 17.
In the following we treat the necessity part. We suppose that

(5) is GES and we prove the existence of λ ∈ [0,1), k,h ∈ N
and ν ∈ (λ ,1) such that Ω

(h)
k is ν-contractive for x+ ∈A (h)x

and (21) holds, for all A ( j), Λ( j) such that (20) is satisfied.
First notice that ΨΓ(Λ

( j)) ≥ 1 for every symmetric C-set Γ,
otherwise, i.e. if ΨΓ(Λ

( j))< 1, one has

ΨΓ(A
( j)) = ΨΓ(co(A ( j)))≤ΨΓ(Λ

( j)co(A ( j)))

≤ΨΓ(Λ
( j))ΨΓ(co(A ( j)))< ΨΓ(co(A ( j))),

(22)
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that is absurd. Moreover Λ( j)→ I with respect to the Hausdorff
distance stated in Definition 8, for a given symmetric C-set Γ.
This means that, for every ε > 0 there exists jε ∈N such that

Λ
( j) ⊆ I + εBn×n

Γ
, I ⊆ Λ

( j)+ εBn×n
Γ

,

for all j ≥ jε , which yields

ΨΓ(Λ
( j))≤ΨΓ(I + εBn×n

Γ
)≤ΨΓ(I)+ΨΓ(εBn×n

Γ
) = 1+ ε.

Thus, for every ν ∈ (λ ,1) and every symmetric C-set Γ,
there exists jν ∈ N such that ΨΓ(Λ

( j))< ν−1, ∀ j ≥ jν . From
Proposition 10, for every A ( j) and every ν ∈ (λ ,1), there
exists p = p(λ ,ν) such that Ω

( j)
k is ν-contractive x+ ∈A (h)x,

for all k≥ p. Therefore, for h ∈N and k ∈N big enough, (21)
holds for Γ = Ω

(h)
k and Ω

(h)
k is ν-contractive for x+ ∈A (h)x.

V. FINITELY DETERMINED
POLYTOPIC LYAPUNOV FUNCTIONS

In the following we emphasize and solve the two main
computational concerns that appear in the iterative procedure
provided in the previous section. The first issue is the fact
that the one-step backward operator, basis of such algorithms,
does not necessarily generates polytopic sets unless the set
of matrices and the initial set are both polytopic. The second
main issue concerns the stop condition of the procedure.

First issue: The proposed solution to the first issue is to
generate a sequence of polytopic sets {A ( j)} j∈N, in the space
of matrices, that converges to the set A(∆). It has been proved
that if the original system is GES, then the contractive set for
the sets of the sequence is contractive also for the original
system, for j big enough, see Theorem 14.

Thus, the first step concerns a possible method to generate
the sequence of sets in the space of matrices

{
Λ( j)

}
j∈N and{

A ( j)
}

j∈N such that conditions (20) hold. The set of matrices
A(∆) defined in Section II are given such that

A(∆) = {eAcδ Ar : δ ∈ [τm, τM]}
= {eAcδ eAcτmAr : δ ∈ [0, τm− τM]}=

⋃
δ∈∆m

eAcδ Am = ΛmAm,

with

Am = eAcτmAr, ∆m = [0, τM− τm], Λm =
⋃

δ∈∆m

eAcδ .

Fact 19: Given system (2), the sequences of sets Λ( j) ⊆
Rn×n and A ( j) ⊆ Rn×n, with j ∈ N defined as

τ( j) = (τM− τm) j−1, A ( j) =
j⋃

i=0

eAcτ( j)iAm,

∆( j) = [0, τ( j)], Λ
( j) =

⋃
δ∈∆( j)

eAcδ ,
(23)

satisfy (20) and {A ( j)} is increasing.
Second issue: If one is able to efficiently check the condi-

tion (21), then the stop condition is computationally affordable
(Theorem 18). In practice one has to find an affordable method
to evaluate the function ΨΩ(eAcδ ) with δ ∈ ∆, or at least its
maximum, for appropriate polytope Ω and ∆ = [0, τ].

Lemma 20: Given the polyhedral C-set Ω= {x∈Rn : Hx≤
1}, where H ∈ Rh×n, the system ẋ = Acx and β ∈ R, if there
exists T ∈ Rh×h such that HAc = T H,

T 1≤−β1,
Ti, j ≥ 0, ∀i 6= j.

(24)

holds, then
ΨΩ(x(t))≤ e−β t

ΨΩ(x(0)), (25)

is satisfied for all t ≥ 0.
Proof: The proof, based on the comparison lemma, is

the same as in [11], [19], without positivity constraint on β .

Thus, an upper bound on ΨΩ(Λ) converging to 1 as τ( j)

goes to 0 can be obtained.
Proposition 21: Given the polytope Ω= {x∈Rn : ‖Hx‖∞≤

1}, with H ∈ Rh×n, and the set ∆ = [0, τ], then

ΨΩ(Λ)≤max
{

1, e−β ∗τ
}
, (26)

with Λ =
⋃

δ∈∆ eAcδ and β ∗ = sup
T,β
{β ∈ R : s.t. (24)}.

Proof: From Lemma 20 and the fact that x(t) = eActx
with x(0) = x, then

ΨΩ(Λ) = max
δ∈∆

ΨΩ(eAcδ ) = max
δ∈∆

max
x∈Ω

ΨΩ(eAcδ x)

≤max
δ∈∆

max
x∈Ω

e−β ∗δ
ΨΩ(x) = max

δ∈∆

e−β ∗δ ,

since e−β ∗δ > 0 for all β ∗ and δ . Since e−β ∗δ is a monotonic
function of δ , its maximum is attained at the boundary of the
interval ∆ and then (26) follows.

Proposition 21 provides an easily computable (i.e. through
an LMI problem in T and β ) upper bound of the function
ΨΩ(Λ) for Λ that is a nonconvex set in Rn×n. Most impor-
tantly, such an upper bound converges to one as τ tends to
zero. This means that ΨΩ(Λ

( j)) converges to 1 as j→ ∞.
A sketch of the algorithm for checking whether the system

(5), and then also system (2), is GES follows.

Algorithm 1 Checking GES of system (5) with A(δ ) ∈ A(∆)
Input: Values τm,τM ∈ R, λ ∈ [0,1) and ν ∈ [λ ,1); C-set Ω.

1: for j ∈ NN do
2: Get τ( j),A ( j),∆( j) and Λ( j) from (23).
3: From (14), get Ω

( j)
k s.t. Ω

( j)
k ⊆ Qν(Ω

( j)
k, A ( j)).

4: if Ω
( j)
k 6= {0} then

5: From Proposition 21 get b( j) s.t. Ψ
Ω
( j)
k
(Λ( j))≤ b( j).

6: if b( j) < ν−1 then
7: The system (5) is GES. return
8: end if
9: end if

10: end for

VI. NUMERICAL EXAMPLES

In this section we present two illustrative examples that
provide a comparison with results from the literature.
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Example 22: Consider the system taken from [7], with

Ac =

 0 −3 1
1.4 −2.6 0.6
8.4 −18.6 4.6

 , Ar =

 1 0 0
0 1 0
0 0 ε

 ,
(27)

where ε = 10−10. Unlike [7] in the matrix Ar we use ε ≈
0 instead of 0, but we can reasonably assert that the results
obtained hold also for the system in [7].

Applying the Algorithm 1, we found out that, using λ =

0.945 and j = 52 in (23) and k = 17, the set Ω
(52)
17 is λ -

contractive for the system with A (52) and Λ(52) such that

Ψ
Ω
(52)
17

(Λ(52))≤ 1.0575 < 1.0582 =
1
λ
,

for τM = 0.475, where the first inequality results from the
application of Proposition 21. Thus, the necessary and suffi-
cient condition for the system to be GES is satisfied, with a
contraction rate bounded above by 0.9993375. The obtained
result is illustrated in Figure 1 where the sets Ω

(52)
17 and

eAcτ(52)
λΩ

(52)
17 are depicted. Remarkably, the estimation of the

maximal interval [τm,τM] for which GES is preserved is almost
twice the value obtained in [7], i.e. 0.375 instead of 0.2.

Fig. 1. Ω
(52)
17 in light gray and the set eAcτ(52)

λΩ
(52)
17 in dark gray.

Example 23: This example has been chosen to provide a
comparison in terms of conservatism, with the recent interest-
ing results presented in [8]. The method proposed in the cited
work for checking whether an impulsive system, substantially
equal to (5), is GES, consists in finding a matrix P > 0 such
that the parameterized LMI condition

AT
r eAT

c δ PeAcδ Ar < P, (28)

holds for all δ ∈ ∆. This is equivalent to look for a quadratic
Lyapunov function for the uncertain system (5) which might be
very conservative when dealing with uncertain linear systems.
Recall that, as noticed in Section II, the conservatism is
completely removed by considering homogeneous polyhedral
functions in spite of quadratic ones. In fact, consider the
system (2) with

Ac =

[
−0.031 0.0095
−0.0951 −0.0309

]
, Ar =

[
0.9589 0.2230
−0.0687 1.0561

]
,

with τm = 2 and τM = 5. A necessary condition for (28) to hold
for all δ ∈ ∆ is clearly that is must be satisfied in particular
for δ = τm and δ = τM . But it can be proved that a P > 0 such
that (28) is satisfied does not exists (see [15]).

A polytope that is contractive with λ = 0.995 for the system
x+ ∈A (16)x is obtained with k = 12 and it is such that

Ψ
Ω
(16)
12

(Λ(16))≤ 1.0047 < 1.0050 =
1
λ
,

which implies that Ω
(16)
12 is contractive also for x+ ∈ A(∆)x,

with contraction 0.995 · 1.0047 = 0.9996765. Thus, the sys-
tem (5) is GES, although the guaranteed contraction of the
robust contractive set Ω

(16)
12 is very close to one.

VII. CONCLUSIONS

In this paper we use set theory to provide a constructive
method for testing whether an impulsive linear system is
globally exponentially stable. The approach is particularly
suitable since the computational burden is analogous to that
required for linear uncertain polytopic systems. The compu-
tational aspects related to the implementation of the method
have been considered. Finally, the results have been applied to
illustrative examples that provide comparisons with analogous
existing methods from the literature.
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