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Integrating safety distances with trajectory planning by modifying the

occupancy grid for autonomous vehicle navigation
Hafida Mouhagir1,2, Reine Talj 1, Véronique Cherfaoui1 , François Aioun2, Franck Guillemard2

Abstract—The goal of the work in this paper is to use
occupancy grid in integrating safety distances with the planning
strategy for autonomous vehicle navigation. The challenge is to
avoid static and dynamic obstacles at high speed with respect
to some specific road rules while following a global reference
trajectory. Our local trajectory planning algorithm is based
on the method of clothoid tentacles. It consists on generating
clothoid tentacles in the egocentered reference frame related to
the vehicle. Using information provided from sensors, we build
an occupancy grid that we modify to take into consideration
safety distances. We use this modified occupancy grid to classify
each tentacle as navigable or not navigable. By formulating
the problem as Markov Decision Process, only one tentacle
among the navigable ones is chosen as the vehicle local reference
trajectory.

I. INTRODUCTION

Autonomous vehicle (AV) technologies have the poten-
tial to significantly improve transportation safety and offer
immense social, economic and environmental benefits. As
driving functions become increasingly automated, not only
do technical specifications and safety regulations become
increasingly outdated, but there is also a shift in responsibility
from the human driver to the vehicle itself. Thus recently,
there have been many studies aimed at increasing the safety
of autonomous vehicles [1][2].

One of the most important qualities expected from an AV
is avoiding collision with static and dynamic obstacles [3] in
its path beside road following, lane keeping and lane change.
There are different theoretical and experimental works for
road following, lane keeping [4] [5] and lane changing
[6][7] [8] using geometric reasoning, control theory or other
methods. Some of them impose specific constrains on the
dynamic variables of the vehicle and some specifically min-
imize parameters like time, distance, acceleration, curvature
and such.

In [9] and [10], the authors analyzed the obstacle avoidance
problem through planning techniques. They used RRT algo-
rithm (Rapidly exploring Random Trees) and lattice planners.
Both techniques sample the state space using data structures
(trees and lattices respectively) , trying to explore it in a
quick and safe fashion. Quick exploration is accomplished
in both cases and a series of possible paths are provided to
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the planning module for the vehicle to follow. However, the
planning horizon is claimed to be relatively large and, with
regard to the dynamic nature of on-road driving, where obsta-
cles or obstructions appear suddenly, re-planning routines are
needed to supplement these incremental search approaches.
Therefore, some of the approaches use a limited horizon, both
in terms of time and space. One of these approaches is the
tentacles method.

The tentacles method uses a set of virtual antennas that
are called tentacles and an egocentric occupancy grid around
the vehicle [11]. The occupancy grid expresses the state of
the environment surrounding the vehicle and contains the
obstacles if they exist. The tentacle is a geometric shape that
models a possible trajectory of the vehicle and we can find in
the literature multiple shapes of tentacles. In [11], the shape
adopted for tentacles is circular. The weakness of this ap-
proach appears in considering all the tentacles generated for
a certain speed as trajectory candidates even if their curvature
is not well-suited to the current vehicle steering angle. An
improvement has been made by introducing clothoid tentacles
method [12]. The clothoid approach considers the current
dynamical state of the vehicle and makes a smooth variations
in the vehicle dynamic variables. Other notable works are
summarized in the survey [13].

This paper is based on an original method for trajectory
planning with clothoid tentacle, to avoid static obstacles
and follow the reference trajectory, coupled with a decision
process inspired from well known MDP (Markovian Decision
Process) model, this previous work is described in [14]. This
work is distinguished by three key contributions. The first
is replacing static obstacles by dynamic ones. The second
is the introduction of lateral and longitudinal safety distance
while overtaking. The third contribution is the validation of
the algorithm with higher speed with respect to the real road
dimensions.

The paper is organized as follows: Section II presents
our navigation strategy based on the method of clothoid
tentacles in a occupancy grid and Markov Decision Process.
Section III explains how we integrate longitudinal and lateral
safety distance by using occupancy grid. The simulation
results based on data taken from SCANeR™studio simulator
[15] are discussed in Section IV. Finally, conclusions and
perspectives are given is Section V.



II. PRESENTATION OF THE NAVIGATION STRATEGY

The trajectory planning goal is the computation of an
obstacle free route from an initial position to a final position
while following a desired global reference trajectory defined
on a global map. The vehicle must be able to interact coher-
ently with its surrounding environment by using perception
information and by efficiently utilizing these descriptions in
a short-term planning and decision making. Our trajectory
planning strategy is divided into three main steps (Fig. 1):
• Creating and updating occupancy grid with data coming

from exteroceptive sensors.
• Generating tentacles which will represent dynamically

feasible trajectories.
• Choosing the best tentacle that the vehicle will execute.

Figure 1: Trajectory planning strategy (V is the vehicle
velocity and δ is the current steering angle)

A. Generating clothoid tentacles

At a local on-road level, one of the most popular technique
of trajectory planning is based on a search space which
contains a certain geometric curve (e.g. clothoids or splines)
and several lateral shifts of this curve. The method of
tentacles consists of using a set of virtual antennas called
tentacles in the egocentered reference frame related to the
vehicle. Tentacles are a geometrical shape which models
the dynamically feasible trajectories of the vehicle. Several
forms of tentacles exist: circular tentacles [11] and clothoid
tentacles [12][16]. In our work, we use clothoid tentacles
because this method considers the current dynamical state
of the vehicle and make smooth variations in the vehicle
dynamic variables such as the yaw rate, the sideslip angle
and the steering angle.

Clothoid is a curve whose curvature varies linearly with
curvilinear abscissa, also known as an Euler spiral, Cornu
spiral or linarc. Its expression is presented by (1):

ρ =
2

k2
s (1)

where ρ is the clothoid curvature, s is the curvilinear abscissa
and k is a constant, representing the clothoid parameter.

For a fixed speed, all the tentacles begin at the center
of gravity of the vehicle and take the shape of clothoid.
Every clothoid represents a trajectory with a specific steering
angle. Tentacles with the largest bent (those of the extremity)
correspond respectively to the positive and negative maximal
value of the steering angle which the vehicle can make at the

current speed without losing stability. The length of tentacles
increases with the increase of the speed.

We assume that all tentacles generated for a given speed
Vx have the same length:

Ltentacle(m) =

{
t0 Vx − L0 Vx > 1(m/s)

2(m) Vx ≤ 1(m/s)
(2)

where t0 = 7s and L0 = 5m.
The initial curvature ρ0 of the tentacles is calculated from

the current vehicle steering angle δ0 .

ρ0 =
tan δ0
L

where L is the vehicle’s wheelbase. The set of calculated
clothoids depends on the vehicle speed and corresponds to
feasible trajectories of the vehicle without losing stability till
some defined distance (Fig. 2).
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(a)Vx = 6m/s , δ0 = 0.3 rad
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Figure 2: Examples of set of clothoid tentacles

After generating the tentacles in order to guarantee a
secure navigation, a security region is generated around each
tentacle (see state definition in II-C for details). This area
takes into account the width of the vehicle plus a security
margin. Using the superposition of the security area within
a security distance with the occupancy grid, the navigable
tentacles are obtained. The final step of the method is to
choose the best tentacle from several navigable tentacles. The
best tentacle is then considered as a trajectory to execute for a
time sampling duration. If there is no navigable tentacle, the
algorithm chooses the tentacle having the greatest distance to
the first obstacle and they proceed to brake the vehicle with
a constant deceleration along this tentacle.

In order to choose the best tentacle, we use a method
inspired from the Markov Decision Process.

B. Occupancy grid

The occupancy grid representation employs a multidi-
mensional (typically 2D or 3D) tessellation of space into
cells, where each cell stores a probabilistic estimate of its
occupancy state. The occupancy grid is built by a mapping
process that integrate sensor data coming from exteroceptive
sensor (Camera, Lidar, Radar) and the pose of the vehicle.

A 2D egocentered grid is constructed as a discrete rep-
resentation of the environment around the vehicle by a set



of square cells. Each cell contains information about the
occupancy of the corresponding surface. There are various
frameworks used for creating and updating occupancy grid
like Bayesian framework and evidential framework. Fig. 3
shows an occupancy grid [17] example based on evidential
theory.

For evidential theory (also called Dempster-Shafer theory
or Belief function theory), the mass is assigned to all subset
of the domain which able this theory to represent uncertainty
and conflict. In Fig.3, the green color in the occupancy
grid shows the navigable space, the red shows the occupied
space, while the blue represents conflicting cells and the
black represents unexplored cells. The color intensity reflects
the certainty degree. In this paper, only binary grids are
considered (free/occupied cells)( Fig. 3).

Figure 3: Occupancy grid example. The rectangle represents
the vehicle

C. Proposed MDP approach for trajectory planning with
tentacles

A Markov Decision Process (MDP) is a discrete-time
state-transition system. It offers a framework for autonomous
robot navigation in dynamic environments [18]. It can be
characterized by a finite set of states S, a set of actions
A, and a reward function R, transition probabilities T, and
discount factor γ. The actions are characterized by transition
probabilities distributions, and we write T (s′/s, a) = p to
denote that s′ is reached with probability p when action a is
performed in state s.

∀s ∈ S ∀a ∈ A
∑
s′∈S

T (s′/s, a) = 1

The agent always knows what state it is in. A real-valued
reward function R : S × A → R reflects the objectives,
tasks and goals to be accomplished by the agent, withR(s, a)
denoting the utility of being in state s and taking action a.
Discount factorγ ⊂ [0, 1) is the discount rate used to calculate
the long-term attenuation.

At each of a sequence of discrete time steps (Fig. 4), the
agent perceives the state of the environment,st , and selects an

Figure 4: The MDP principle

action,at. In response to the action, the environment changes
to a new state, st+1 and emits a scalar reward, rt+1 ∈ R.
The agent’s goal is to maximize the total amount of reward
it receives over the long run. More formally, in the simplest
case, the agent should choose each actionat so as to maximize
the expected discounted return over the planning horizon h
(which could be infinite). This is usually referred to as the
value (V):

V =

h∑
t=0

γtrt (3)

Figure 5: States of MDP model with clothoid tentacles

As described previously, we have to define the states of the
system, the actions that can be taken, the transition matrix
and the reward that the agent will receive for each action.
• States: are represented by circles si around the tentacles

(Fig. 5), their diameter represent the width of the vehicle
with a margin of security. Each tentacle is composed of
ns states, and we dispose ofnt tentacles. After assigning
for every state a reward regarding if it’s free, occupied
and close from the reference trajectory, we merge the
states si of every tentacle in order to have just one state
sf per tentacle.

• Actions: we dispose of nt actions because each tentacle
represents an action.

• Transition probabilities: in this work, we assume that
we don’t have a possible transition from one tentacle to
another. Thus we choose deterministic transitions; for all
states s and all a ∈ A(s) we assume that p(s′ | s, a) = 1
for a unique s′ ∈ S , whilep(s′′ | s, a) = 0 for all s′′ 6= s′



. Thus each action leads deterministically from one state
to another (or the same).

• Reward: we will define a different reward for every state
depending on its occupancy degree (R(si|occupied) = Ro

andR(si|free) = Rf), and its closeness to the reference
trajectory (R(si|trajectory)). Moreover, we add a positive
reward if the tentacle is one of the left side tentacles
(R(sf | left)) because the overtaking is always done on
the left side of the vehicle that precede us, in order to
avoid ambiguity in case of total symmetry of tentacles
(δ0 = 0) when executing an overtaking manoeuvre.

Using occupancy grid, rewards are defined as following:

R(sf ) =

ns∑
k=0

γkt R(sik|trajectory) +

ns∑
k=0

γkoR(sik|occupied)

+

ns∑
k=0

γkfR(sik|free) +R(sf | left) (4)

where γt , γo and γf are discount factors that can be used
to change the behaviour of our approach, and that represent
distance attenuation of each kind of reward.

Details regarding the choice and the calculations of each
parameters is given in [14]. However, some changes were
made, to our original approach. In our previous paper, the ten-
tacle is classified as non-navigable if an obstacle is detected
within a distance less than the collision distance lc which is
the distance needed to stop a vehicle traveling with a speedVx
, with a maximum longitudinal deceleration am = 1.5m/s2

that maintains passenger comfort. It is calculated by:

lc =
V 2
x

2am
+ ls (5)

Where ls is a security marge. If the obstacle is beyond
Lc, the tentacle is classified as navigable. At higher speed,
the collision distance increases and knowing that the road
borders are considered as obstacle, it becomes harder to find a
navigable tentacle along this distance. Thus, we replaced the
collision distance by a safety distance which corresponds to
the distance travelled during one second, with a given speed.
We changed also the expression ofR(si|trajectory) (eq. 6) in
order to make the reference trajectory more attractive for the
ego-vehicle:

R(s|trajectory) = 104/d (6)

In our previous work, we validate the algorithm by testing
an overtaking scenario with static obstacle. The next step is to
validate it with dynamic obstacle and to respect traffic rules.
In the next section, we explain how we integrate traffic rules
using the occupancy grid.

III. INTEGRATION SAFETY DIMENSIONS USING THE
OCCUPANCY GRID

In order to respect safety distances, we modify the occu-
pancy grid (Fig. 8). We suppose that we dispose of sensor

that provide information about the position and the velocity
of each obstacle.

Suppose an autonomous vehicle is driving at a velocityV1.
In front of it another car (obstacle) is driving at a constant
velocity 0 < V2 < V1 in the same direction. The ego-vehicle
intends to overtake it.

According to highway code: for a safe driving during an
overtaking manoeuver, two conditions must be respectedV1−
V2 ≥ 20km/h and the vehicle must leave a safe lateral and
longitudinal distance with other vehicles.

• Lateral distance: according to traffic rules in France,
when passing a pedestrian or two wheeled vehicle, the
vehicle must leave 1m space in urban area and 1.5m
outside urban area. Inspired by this rule and since regular
road width for a freeway is 3.5m and the regular vehicle
width is 2m [19] (Fig. 6). If we suppose that during an
overtaking manoeuvre the ego-vehicle passes through the
middle of the other lane, then the lateral distance that it
must keep with other vehicles is about 1.5m.

• Longitudinal distance: according to traffic rules, the
vehicle must keep 2 seconds of reaction time during ideal
conditions. The distance travelled during those 2 seconds
is called longitudinal safety distance (Fig. 7).

When overtaking, the vehicle must leave a safe longitudinal
and lateral distance with the vehicle it’s overtaking; the
longitudinal distance as described below is the distance over 2
seconds with the ego-vehicle speed (SD1 = 2s∗V1); and since
the ego-vehicle must not return to the line of traffic until it’s
far enough past the other vehicle to avoid a collision, then it
must leave a second safety distance with the vehicle behind it,
which depends on this other vehicle’s speed (SD2 = 2s∗V2).

Figure 6: The road width and lateral safety distance

Figure 7: Longitudinal safety distance



In order to respect safety distances, we expand laterally
and longitudinally the obstacle in the occupancy grid (Fig.
9). The actual dimensions of the obstacle are represented by a
circle of diameter2m, we expand its beam by0.5m from each
side in order to respect lateral distance. As it was mentioned
in II-C, the tentacle is classified as navigable if no obstacle
is detected within a distance less than the distance travelled
during one second with a given speed which is in our case
SD1/2. Then to satisfy the safety distance over 2 seconds,
we need to expand the obstacle width by SD1/2 in the back
and by SD2 in the front.

The expansion is made by adding circles with varying
diameter which satisfies the following equation:

di−front = d0 − i
d0 − 0.5

SD2
i = 1..SD2 (7)

di−back = d0 − i
d0 − 0.5

SD1/2
i = 1..SD1/2 (8)

with d0 = 3m is the diameter of the circle representing the
vehicle.

Figure 8: The obstacle shadow after a lateral and longitudinal
expansion

Figure 9: A view of the obstacle expansion in the grid with
V1 = 20m/s and V2 = 5m/s in the left, V2 = 10m/s in the
middle and V2 = 0m/s in the right

IV. SIMULATION RESULTS

A. System set-up

In this part we report the simulation results based on data
taken from SCANeR™studio simulator. The data taken from
the SCANeR™studio was processed and simulated in Matlab.
With these data, we generate a global map indicating the ref-
erence trajectory with its right and left borders and obstacles
with red circles (Fig. 10). We indicated the navigable space
of the road by black cells having the value "0" and the non-
navigable space by white cells having the value "1".

According to the traffic rules, it is necessary to have
a sufficient field of view around the ego-vehicle in order
to decide if the overtaking is safe or not. This field of
view increases with higher speed. Considering the limited
sensing range of the actual perception sensors and without
communication between vehicles, an overtaking manoeuvre
can’t be done safely in two sense traffic road. Thus, in our
work, we use the highway which is composed of two-lane
road with a single sense of traffic.

At every sampling period (100 ms in our case) the sensor
provides a new measure and the occupancy grid, considered
to be ego-centered around the vehicle, is built. This 2D
occupancy grid is constituted of 800*800 cells. The size of
each cell is 25cm* 25cm.We suppose that the frequency used
for grid generation is sufficient to ensure safe navigation.

Figure 10: Global map of a test scenario from
SCANeR™studio simulator

The parameters of the MDP like-model are provided
in [14]. We changed the number of circles per tentacles
(ns = 50). Since we use higher speed, the tentacle’s length
increases. Then we needed to cover more space.

B. Results

We evaluate the presented approach with a scenario of
overtaking manoeuvre of a dynamic obstacle. We generate
the local map and apply our algorithm to choose the tentacle
to follow at each sampling step. The validation was done
with different speed for the ego-vehicle: 10m/s and 20m/s,
and for the vehicle in front: 10m/s and 5m/s.

In Figures 11 and 12 present the reactions of the algorithm
when the ego-vehicle overtake an obstacle (speed: 10m/s,
5m/s) with 20m/s and 10m/s speed. The red line represents
the reference trajectory, the blue: trajectory of the ego-vehicle
trajectory, the yellow: the middle of the left lane, the black:
the borders of the road. The first star is the obstacle position
at the beginning of the overtaking and the second one is the
position of the obstacle at the end of the overtaking. We
observe that the vehicle can make an overtaking manoeuvre
with respect to lateral and longitudinal safety distances.

The results ( Table. I )show that our approach respect the
lateral and longitudinal safety distances. We can characterize
our algorithm by being careful when returning to the refer-
ence trajectory. The use of clothoid tentacle includes already



Figure 11: Overtaking manoeuvre and following the reference
trajectory with V1 = 20m/s and V2 = 10m/s.

Figure 12: Overtaking manoeuvre and following the reference
trajectory with V1 = 10m/s and V2 = 5m/s

a safety distance. This form of tentacles makes a smooth
variations in the vehicle dynamic variables such as the yaw
rate, the sideslip angle and the steering angle. Thus the return
to reference trajectory is not sharp. We work in reducing
SD2 by making the reference trajectory more attractive and
quantifying the safety distance integrated into the tentacle
approach.

V. CONCLUSION AND PERSPECTIVES

In this work, the goal is to integrate considerations of
respecting the traffic rules in the planning algorithm. The
simulation results show good performance of our algorithm
in avoiding dynamic obstacles with respect to safety dis-
tances. In fact, this reactive algorithm does not accumulate
data and it takes into account vehicle dynamics and real
road structure by using the shape of the clothoid. Among
the perspectives, we aim to consider the uncertainty of
the environment surrounding the vehicle. This improvement
would be at the perception level, by using an occupancy
grid based on evidential theory, that can be considered in
the reward calculation. Further, an interesting extension of
our method would be to consider the uncertainty on actions
by introducing stochastic transitions instead of deterministic
ones.

We also look to implement our algorithm in a robotized
vehicle in order to demonstrate the validity of the algorithm.

V1 V2 SD1 theo.SD′1 SD2 theo.SD′2 LD

20 10 38.7 40 27 20 1.5
20 5 39 40 15 10 1.4
10 5 20.5 20 16 10 1.5

Table I: Approximate measurements of longitudinal and
lateral distances. Velocity (m/s) and distance (m). SD′1 and
SD′2 represent the theoretical distances to respect.
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