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KEVIN MUGO

Abstract. Let E be an elliptic curve with invariant j 0 ∈ Q, and denote K = Q(j 0 ) as a number field. Assume that the canonical composition

G K(i) ρ E,4 ----→ SL 2 (Z/4Z) → P SL 2 (Z/4Z) ≃ ----→ S 4
as a projective representation is surjective. We show that j 0 = 0, 1728, ∞, and that the splitting field M of the quartic polynomial q(r) = r 4 + 32 j 0 r + 4 j 0 is an S 4 -extension of K.

Congruence Subgroups and Modular Curves

Recall that we have an left action

• : SL 2 (Z) × H * → H * defined by a b c d • τ = a τ + b c τ + d
and the extended upper-half plane H * = x + i y y > 0 ∪ P 1 (Q) is isomorphic to the unit disk via the map H * → P 1 (C) which sends τ to q = e 2πiτ . For any positive integer N, we consider the congruence subgroups

Γ 0 (N) = a b c d ∈ SL 2 (Z) c ≡ 0 mod N Γ 1 (N) = a b c d ∈ SL 2 (Z) a ≡ d ≡ 1, c ≡ 0 mod N Γ(N) = a b c d ∈ SL 2 (Z) a ≡ d ≡ 1, b ≡ c ≡ 0 mod N
Using the Dedekind eta function η(τ ) = q 1/24 ∞ n=1 1 -q n , we define the following maps

1 H * Γ(4) z / / P 1 (C) 2 z(τ ) = 2 η(τ ) η(4τ ) 2 η(2τ ) 3 2 H * Γ(2) ∩ Γ 1 (4) k / /
x x r r r r r r r r r r 

k(τ ) = 4 η(τ ) η(4τ ) 2 η(2τ ) 3 4 H * Γ 1 (4)
t(τ ) = 256 η(4τ ) η(τ ) 8 H * Γ(2) λ / / r r r
x x r r r r r r r r r r

P 1 (C) 2 { { v v v v v v v v v v v v λ(τ ) = 16 η(τ /2) η(2τ ) 2 η(τ ) 3 8 H * Γ 0 (2) w / / P 1 (C) 3 w(τ ) = -64 η(2τ ) η(τ ) 24 H * Γ(1) J / / P 1 (C) J(τ ) = 1 + 240 ∞ n=1 σ 3 (n) q n 3 1728 q ∞ n=1 1 -q n 24
Here k is the elliptic modulus, λ is the modular lambda function, and J is Klein's absolute invariant.

Lemma 1. With the maps as defined above, we have the identities

k(τ ) = z(τ ) 2 t(τ ) = 16 k(τ ) 2 1 -k(τ ) 2 = 16 z(τ ) 4 1 -z(τ ) 4 λ(τ ) = 4 k(τ ) k(τ ) + 1 2 = 4 z(τ ) 2 z(τ ) 2 + 1 2 w(τ ) = - t(τ ) t(τ ) + 16 64 = λ(τ ) 2 4 λ(τ ) -1 = - 4 k(τ ) 2 k(τ ) 2 -1 2 = - 4 z(τ ) 4 z(τ ) 4 -1 2 J(τ ) = 4 w(τ ) -1 3 27 w(τ ) = t(τ ) 2 + 16 t(τ ) + 16 3 1728 t(τ ) t(τ ) + 16 = 4 λ(τ ) 2 -λ(τ ) + 1 3 27 λ(τ ) 2 λ(τ ) -1 2 = k(τ ) 4 + 14 k(τ ) 2 + 1 3 108 k(τ ) 2 k(τ ) 2 -1 4 = z(τ ) 8 + 14 z(τ ) 4 + 1 3 108 z(τ ) 4 z(τ ) 4 -1 4
In particular, these maps are isomorphisms of compact Riemann surfaces.

We omit the proof since it is a straightforward computation by looking at the q-series expansions.

Automorphisms of the Riemann Sphere

Using the formulae in Lemma 1, we see that the map

H * Γ(4) ։ H * Γ(1)
which sends z → J = (z 8 + 14 z 4 + 1) 3 108 z 4 (z 4 -1) 4

is a covering map of Riemmann surfaces, so we can focus on the group of Deck transformations. This automorphism group is

Aut H * Γ(4) ։ H * Γ(1) ≃ Γ(1) Γ(4) ≃ P SL 2 (Z/4Z) ≃ S 4 .
The automorphisms of the Riemann sphere P 1 (C) are just the Möbius transformations, so the group

S 4 = σ 0 , σ 1 , σ ∞ σ 0 2 = σ 1 3 = σ ∞ 4 = σ 0 σ 1 σ ∞ = 1
as expressed in terms of the rational functions

σ 0 (z) = 1 -z 1 + z , σ 1 (z) = i -z i + z , and σ ∞ (z) = i z leaves J invariant.
Along these lines, that is, using the formulae in Lemma 1, we find the following subgroups and the corresponding rational functions which are invariant under them:

Q(i, r) r = ( * ) V 4 2 Q(i, λ) λ = 4 z 2 z 2 + 1 2 D 4 3 o o o o o o o o o o o o Q(i, w) o o o o o o o o w = - 4 z 4 z 4 -1 2 S 4 Q(i, J) J = z 8 + 14 z 4 + 1 3 108 z 4 (z 4 -1) 4
Here we have define the following subgroups of S 4 as triangle groups: 

• D 4 = a, b, c a 2 = b 2 = c 4 = a b c = 1 is the dihedral group as expressed in terms of the Möbius transformations a = σ 0 σ ∞ 2 σ 0 , b = σ ∞ σ 0 σ ∞ 2 σ 0 , and c = σ ∞ ; • V 4 = a, b, c a 2 = b 2 = c 2 = a b c = 1 is the Klein four group as expressed in terms of the Möbius transformations a = σ ∞ 2 , b = σ 0 σ ∞ 2 σ 0 , and c = σ ∞ 2 σ 0 σ ∞ 2 σ 0 ; • Z 4 = a, b, c a = b 4 = c 4 = a b c = 1 is the cyclic group as expressed in terms of the Möbius transformations a = 1, b = σ ∞ , and c = σ ∞ 3 . • Z 2 = a, b, c a = b 2 = c 2 = a b c = 1 is
= σ ∞ σ 1 , b = σ 0 σ ∞ 2 σ 1 , c = σ ∞ 3 σ 0 .
The function r mentioned above is given by the rational function

r(z) = z (z 4 -1) (1 + i) z 2 -(1 + i) z -i z 2 -(1 -i) z + i z 2 + (1 + i) z -i .

Splitting Fields and S 4 -Extensions

We use the hauptmoduli on the modular curves previously discussed to study splitting fields of polynomials.

Theorem 2. Let be K = Q J(z) be that transcendental extension of Q in terms of the rational function

J(z) = z 8 + 14 z 4 + 1 3 108 z 4 z 4 -1 4 ,
and choose an elliptic curve E over K with invariant j(E) = 1728 J(z). The following are equal:

(1) The splitting field K(i) z of 16 z 8 + 14

z 4 + 1 3 -j(E) z 4 (z 4 -1) 4 .
(2) The splitting field K(i) r 1 , r 2 , r 3 , r 4 of r 4 + 32 r/j(E) + 4/j(E).

(3) The splitting field K(i) t 1 , t 2 , t 3 , t 4 , t 5 , t 6 of t 2 + 16 t + 16 3 -j(E) t t + 16 .

(4) The splitting field K E[4] x = K(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) of the 4-division polynomial ψ 4 (x).

Proof. Let E be any elliptic curve over K with invariant j(E) = 1728 J(z). There exists

D ∈ K × such that E has a Weierstrass model y 2 + a 1 x y + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 in terms of the F -rational quantities b 2 = a 2 1 + 4 a 2 b 4 = a 1 a 3 + 2 a 4 b 6 = a 2 3 + 4 a 6 b 8 = a 2 a 2 3 -a 1 a 3 a 4 -a 2 4 + a 2 1 a 6 + 4 a 2 a 6
and

a 1 = 0 a 2 = 0 a 3 = 0 a 4 = 3 J(z) D 2 / 1 -J(z) a 6 = 2 J(z) D 3 / 1 -J(z)
Recall that J(z) is invariant under the group

S 4 = σ 0 , σ 1 , σ ∞ σ 0 2 = σ 1 3 = σ ∞ 4 = σ 0 σ 1 σ ∞ = 1 .
For what follows, define the Q(i)-rational functions

x 1 = x(z)
x 2 = x σ 0 (z)

x 3 = x σ 1 (z)
x 4 = x σ 1 σ 0 (z)

x 5 = x σ 0 σ ∞ σ 1 (z) x 6 = x σ 0 σ ∞ σ 1 σ 0 (z) t 1 = t(z) t 2 = t σ 0 (z) t 3 = t σ 1 (z) t 4 = t σ 1 σ 0 (z) t 5 = t σ 0 σ ∞ σ 1 (z) t 6 = t σ 0 σ ∞ σ 1 σ 0 (z) r 1 = r(z) r 2 = r σ ∞ (z) r 3 = r σ ∞ 2 (z) r 4 = r σ ∞ 3 (z) in terms of the Q(i)-rational functions σ 0 (z) = 1 -z 1 + z x(z) = -D (z 4 -5) (z 8 + 14 z 4 + 1) (z 4 + 1) (z 8 -34 z 4 + 1) σ 1 (z) = i -z i + z t(z) = 16 z 4 1 -z 4 σ ∞ (z) = i z r(z) = z (z 4 -1) (1 + i) z 2 -(1 + i) z -i z 2 -(1 -i) z + i z 2 + (1 + i) z -i
The splitting field of the polynomial 16 z 8 + 14 z 4 + 1 3 -j(E) z 4 (z 4 -1) 4 is the function field K(i) z because we have the factorization

16 Z 8 + 14 Z 4 + 1 3 -j(E) Z 4 (Z 4 -1) 4 = 16 σ∈S 4 Z -σ(z) .
The splitting field K(i) r 1 , r 2 , r 3 , r 4 of r 4 + 32 r/j(E) + 4/j(E) is contained in K(i) z because r ν ∈ K(i) z and we have the factorization

r 4 + 32 j(E) r + 4 j(E) = 4 ν=1 r -r ν .
The splitting field K(i) t 1 , t 2 , t 3 , t 4 , t 5 , t 6 of t 2 + 16 t + 16 3 -j(E) t t + 16 is contained in K(i) r 1 , r 2 , r 3 , r 4 because we have the identity

t 1 = -16 4 ν=1 i ν r ν 2   4 ν=1 i ν r ν 2 + 4 ν=1 (-i) ν r ν 2 
 so that each t ν ∈ K(i) r 1 , r 2 , r 3 , r 4 , and we have the factorization

t 2 + 16 t + 16 3 -j(E) t t + 16 = 6 ν=1 t -t ν .
The splitting field K E[4] x = K(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) of the 4-division polynomial

ψ 4 (x) = 2 x 6 + b 2 x 5 + 5 b 4 x 4 + 10 b 6 x 3 + 10 b 8 x 2 + (b 2 b 8 -b 4 b 6 ) x + (b 4 b 8 -b 2 6 ) is contained in K(i) t 1 , t 2 ,
t 3 , t 4 , t 5 , t 6 because we have the factorization

ψ 4 (x) = 2 6 ν=1 x -x ν where x ν = -D t ν + 20 t ν 2 + 16 t ν + 16 t ν + 8 t ν 2 + 16 t ν -8 . Finally, K(i) z is contained in K E[4] x because z = (x 6 -x 2 )/(x 1 -x 2 ).
Hence the splitting fields are indeed equal.

Modular Curves as Moduli Spaces

The moduli spaces X 0 (N), X 1 (N), and X(N) consist of pairs (E, C), (E, P ), and (E, P, Q) of elliptic curves E with a cyclic subgroup C of order N, a specified point P of order N, or full level N structure P, Q ≃ Z N × Z N , respectively. By "forgetting" the level structures, we have a commutative diagram

H * Γ(N) ∼ / / X(N) H * Γ 1 (N) ∼ / / X 1 (N) H * Γ 0 (N) ∼ / / X 0 (N)
We will make these maps explicit when N divides 4. To begin, we have the following result which was known to Felix Klein.

Theorem 3.

(1) The general linear group

GL 2 (Z/4 Z) = a b c d ∈ Mat 2×2 (Z/4 Z) a d -b c ∈ Z/4 Z × = γ 0 , γ 1 , γ ∞ γ 0 4 = γ 1 6 = γ ∞ 4 = γ 0 γ 1 γ ∞ = I
can be expressed in terms of the 2 × 2 matrices

γ 0 = 3 3 2 1 , γ 1 = 3 1 1 0 , and γ ∞ = 2 3 3 0 .
(2) The group homomorphism γ ν to the cosets σ ν = γ ν V 4 in terms of the normal subgroup

V 4 = ± 1 0 0 1 , ± 1 2 2 3 = γ 0 2 , γ 1 3 , γ ∞ 4 induces a short exact sequence 1 ---→ V 4 ---→ GL 2 (Z/4 Z) ---→ S 4 ---→ 1
in terms of the symmetric group

S 4 = σ 0 , σ 1 , σ ∞ σ 0 2 = σ 1 3 = σ ∞ 4 = σ 0 σ 1 σ ∞ = 1 .
(3) Denote the rational functions c 4 (z) = 9 z 8 + 14 z 4 + 1 c 6 (z) = 27 z 12 -33 z 8 -33 z 4 + 1

J(z) = z 8 + 14 z 4 + 1 3 108 z 4 (z 4 -1) 4 =⇒ J(z) = c 4 (z) 3 c 4 (z) 3 -c 6 (z) 2 ;
and let E z be the elliptic curve y 2 = x 3 -3 c 4 (z) x -2 c 6 (z) with invariant j(E z ) = 1728 J(z) as defined over the field

K = Q J(z) = Q c 4 (z), c 6 (z) . Then E z [4] = P z , Q z ≃ Z 4 × Z 4 is generated by the points P z = -3 (z 4 -5) : 54 (z 4 -1) : 1 Q z = -3 (z 4 + 6 z 3 + 6 z 2 + 6 z + 1) : 54 i z (z + 1) 2 (z 2 + 1) : 1 . (4) The map H * Γ(4) → P 1 (C) → X(4) which sends τ → z = z(τ ) → (E z , P z , Q z ) is an isomorphism. (5) Denoting M = K r 1 , r 2 , r 3 , r 4 as the splitting field of the quartic polynomial r 4 + 32 r/j(E z ) + 4/j(E z ), then M(i) = K E z [4] x = K(x 1 , x 2 , x 3 , x 4 , x 5 , x 6
) is the splitting field of the 4-division polynomial ψ 4 (x).

This gives explicit information about the full level 4 structure of an elliptic curve. The complete list of "forgetful" maps can be found below.

z _ H * Γ(4) / / X(4) E z : y 2 = x 3 -3 c 4 (z) x -2 c 6 (z) P z = 3 (5 -z 4 ) : 54 (1 -z 4 ) : 1 Q z = 3 (5 z 4 -1) : 54 z 2 (z 4 -1) : k = z 2 ? E t : y 2 -t x y + t 2 y = x 3 -t x 2 P t = (0 : 0 : 1) λ = 4 k (k + 1) 2 ? H * Γ(2) / / X(2) E λ : y 2 = x (x -1) (x -λ) P λ = (0 : 0 : 1) Q λ = (1 : 0 : 1) w = - t (t + 16) 64 = λ 2 4 (λ -1) _ H * Γ 0 (2) / / X 0 (2) E w : y 2 = x 3 + 2 x 2 + 1 1 -w x
C w = (0 : 0 : 1), (0 : 1 : 0)

J = (4 w -1) 3 27 w H * Γ(1) / / X(1) E J : y 2 = x 3 + 3 J 1 -J x + 2 J 1 -J O J = (0 : 1 : 0)
Proof. The first two statements are straightforward to verify. As for the third and fourth statements, the following table explicitly lists the 16 elements in

E z [4] = P z , Q z .
It suffices to show the final statement. The idea will be to focus on the following subfields and their Galois groups:

K E z [4] I M(i) = K E z [4] x g g g g g g

±I

dd dd dd dd dd dd dd dd dd dd dd dd dd dd dd

M = K(r 1 , r 2 , r 3 , r 4 ) V 4 F (i) l l l l l l l l l l l l l l l ker SL 2 Z 4Z → SL 2 2 g g g g g g F = K E z [2] ker GL 2 Z 4Z → GL 2 Z 2Z K(i)
g g g g g g g g g g g g g SL 2 (Z/4Z) dd dd dd dd dd dd dd dd dd dd dd

K = Q(J) GL 2 (Z/4Z) Q Let M = K r 1 , r 2 ,
r 3 , r 4 be the splitting field of r 4 + 32 r/j(E z ) + 4/j(E z ) viewed as a polynomial over K(J). Theorem 2 asserts that

M(i) = K(i) r 1 , r 2 , r 3 , r 4 = K E z [4] x = K(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 )
where the x ν are the roots of the 4-division polynomial ψ 4 (x) of E z . In fact, to be quite explicit in the notation used during the proof above,

P = P x 1 = -3 (z 4 -5) σ 0 (P z ) = Q z x 2 = -3 (z 4 + 6 z 3 + 6 z 2 + 6 z + 1) σ 1 (P z ) = P z ⊕ Q z x 3 = -3 (z 4 + 6 i z 3 -6 z 2 -6 i z + 1) σ 1 σ 0 (P Z ) = P z ⊕ [3]Q z x 4 = -3 (z 4 -6 i z 3 -6 z 2 + 6 i z + 1) σ 0 σ ∞ σ 1 (P z ) = [2]P z ⊕ [3]Q z x 5 = -3 (z 4 -6 z 3 + 6 z 2 -6 z + 1) σ 0 σ ∞ σ 1 σ 0 (P z ) = P z ⊕ [2]Q z x 6 = 3 (5 z 4 -1)
Using the maps γ ν → σ ν one can determine the action of GL 2 (Z/4Z) on these coordinates. For example, is easy to verify that the rational function

x 2 -x 5 x 3 -x 4 (x 1 -x 2 ) 2 -(x 2 -x 6 ) 2 (x 1 -x 2 ) 2 + (x 2 -x 6 ) 2 = i
is invariant under SL 2 (Z/4 Z), so we may conclude that K(i) is that subfield of K(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) which is invariant under the special linear group SL 2 (Z/4 Z).

The subgroup

V 4 ֒→ GL 2 (Z/4Z) ≃ Aut E z [4] acts on E z [4] = P z , Q z ≃ Z 4 × Z 4
, so we have a permutation representation V 4 → GL 6 (F ) coming from the induced action on the roots x ν of the 4-division polynomial ψ 4 (x). This representation sends

± 1 0 0 1 →       
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

       and ± 1 2 2 3 →       
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

      
.

It is easy to check that the roots -e 4 -e 5 -e 6 e 1 e 2 + e 2 e 3 + e 3 e 1 are invariant under the action of V 4 , so we may conclude that M = K r 1 , r 2 , r 3 , r 4 = K e 1 , e 2 , e 3 , e 4 , e 5 , e 6 is that subfield of K(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) which is invariant under V 4 . In fact, since we have the factorization

e 1 = x 1 + x 6 2 = - c 6 (z) c 4 (z) r 1 r 3 + r 2 r 4 r 1 r 3 + r 2 r 4 + 24 r 1 r 2 r 3 r 4 e 2 = x 2 + x 5 2 = - c 6 (z) c 4 (z) r 1 r 2 + r 3 r 4 r 1 r 2 + r 3 r 4 + 24 r 1 r 2 r 3 r 4 e 3 = x 3 + x 4 2 = - c 6 (z) c 4 (z) r 1 r 2 + r 3 r 4 r 1 r 2 + r 3 r 4 + 24 r 1 r 2 r 3 r 4 e 4 = (x 1 -x 6 ) (x 2 -x 5 ) 48 = 3 4 c 4 (z) +r 1 -r 2 -r 3 + r 4 e 5 = (x 2 -x 5 ) (x 3 -x 4 ) 48 = 3 4 c 4 (z) -r 1 + r 2 -r 3 + r 4 e 6 = (x 3 -x 4 ) (x 1 -x 6 ) 48 = 3 4 c 4 (z) -r 1 -r 2 + r 3 +
ψ 2 (x) = 4 x 3 -3 c 4 (z) x -2 c 6 (z) = 4 (x -e 1 ) (x -e 2 ) (x -e 3 )
we have the F = K(e 1 , e 2 , e 3 ) = K E z [2] as the splitting field of the 2-division polynomial ψ 2 (x).

Main Result

We can now state and prove the main result.

Corollary 4. Let E be an elliptic curve with invariant j 0 ∈ Q, and denote K = Q(j 0 ) as a number field. Assume that the canonical composition

G K(i) ρ E,4 ---→ SL 2 (Z/4Z) → P SL 2 (Z/4Z) ≃ ---→ S 4
as a projective representation is surjective.

(1) j 0 = 0, 1728, ∞.

(2) The splitting field M of the quartic polynomial q(r) = r 4 + 32 j 0 r+ 4 j 0 is an S 4 -extension of K.

Proof. We show the first statement. If j 0 = 0, then E would have Weierstrass model y But the composition of representations is surjective, so that 24 = S 4 = Gal K(E[4] x )/K(i) ≤ Z 2 × D 2 = 8. If j 0 = ∞, then E would be a singular projective curve. In either of these three cases we find a contradiction, so we must have j 0 = 0, 1728, ∞.

2 = x 3 + D for some D ∈ K × . This model has 4-division polynomial ψ 4 (x) = 2 x 6 + 20 D x 3 -8 D 2 with splitting field K(E[4] x ) = K 3 √ D, √ -1, √ 3 and Galois group Gal K(E[4] x )/K ֒→ Z 2 × D 3 = {±1} × a,
We show the second statement. Let E be as above. There exists z 0 ∈ Q such that j 0 = 1728 J(z 0 ); then J(z 0 ) = 0, 1, ∞. Denote M as the splitting field of q(r) = r 4 + 32 j 0 r+ 4 j 0 as a polynomial over K, so that M(i) is the splitting field of the 4-division polynomial ψ 4 (x) over K(i). Since ρ E,4 is surjective, we see that Gal(M/K) ≃ Gal M(i)/K(i) ≃ P SL 2 (Z/4Z) ≃ S 4 .
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  the cyclic group as expressed in terms of the Möbius transformations a = 1 and b = c = σ ∞ 2 ; and • S 3 = a, b, c a 2 = b 2 = c 3 = a b c = 1 is the symmetric group as expressed in terms of the Möbius transformations a

  + e 5 + e 6 e 1 e 2 + e 2 e 3 + e 3 e 1 r 2 = +e 4 -e 5 + e 6 e 1 e 2 + e 2 e 3 + e 3 e 1 r 3 = +e 4 + e 5 -e 6 e 1 e 2 + e 2 e 3 + e 3 e 1 r 4 =

  b, c a 2 = b 3 = c 2 = a b c = But the composition of representations is surjective, so that 24= S 4 = Gal K(E[4] x )/K(i) ≤ Z 2 × D 3 = 12. If j 0 = 1728, then E would have Weierstrass model y 2 = x 3 + D x for some D ∈ K × . This model has 4-division polynomial ψ 4 (x) = 2 x 2 -D x 4 + 6 D x 2 + D 2 with splitting field K(E[4] x ) = K x )/K ֒→ Z 2 × D 2 = {±1} × a, b, c a 2 = b 2 = c 2 =a b c = 1 as generated by the Möbius transformations a(x) = -D x , b(x) = -x, and c(x) = + D x .

-3 (z 4 -6 i z 3 -6 z 2 + 6 i z + 1) -54 z (z + i) 2 (z 2 -1)