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ON THE DEGREE OF SECOND-ORDER NON-CIRCULARITY OF COMPLEX RANDOM
VARIABLES

Jean-Pierre Delmas and Habti Abeida

GET/INT, Département CITI, UMR-CNRS 5157

ABSTRACT

This paper addresses the degree of second-order non-circularity
or impropriety of complex random variables and its purpose is
to complement previously available theoretical results. New
properties of the non-circularity rate (also called circularity
spectrum) are given for scalar and multidimensional complex
random variables with a particular attention paid to rectilinear
random variables, i.e., with maximum circularity spectrum.
Finally, the maximum likelihood estimate of the circularity
spectrum in the Gaussian case and asymptotic distribution of
this estimate for arbitrary distributions are given.

Index Terms— circular/noncircular, proper/improper, rec-
tilinear signal, coherence matrix, canonical correlations, cir-
cularity spectrum

1. INTRODUCTION

Recently, there has been an increased awareness that signifi-
cant performance gains can be achieved by taking the infor-
mation contained in the complementary covariance [1] ma-
trix R′

z = E(zzT ) (termed as relation matrix in [2], pseudo
covariance matrix in [3] and second covariance in [4]) into
account in second-order algorithms previously based on the
standard covariance matrixRz = E(zzH) only (see, e.g.,
[5]). In the past, it was often assumed thatR′

z = 0, a case
that is referred to as either proper, second-order circular or cir-
cularly symmetric. However in digital communications, mod-
ulated signals may be improper or second-order non-circular
but not necessarily with a maximum non-circularity rate, i.e.,
rectilinear as it has been often considered in the literature
(e.g., in direction of arrival estimation, [6, 7]). For example,
binary phase shift keying (BPSK) modulation is rectilinear in
contrast to Gaussian minimum shift keying (GMSK) modula-
tion which is improper but not rectilinear after derotation.

This paper addresses the measure of the degree of second-
order non-circularity or impropriety of complex random vari-
ables which can be used to come up with appropriate algo-
rithms or to assess detection or estimation performances of
algorithms adapted to improper signals. Its purpose is to com-
plement previously available theoretical results [1, 2, 3, 8,
9]. New properties of the canonical correlation betweenz
and z∗ (also called non-circularity rate in [4] and circular-

ity spectrum in [3]) and of the augmented covariance matrice

Rz̃ = E(z̃z̃H) with z̃ def= (zT , zH)T are given for scalar and
multidimensional complex random variables with a particu-
lar attention paid to rectilinear random variables, i.e., with
maximum circularity spectrum. Finally, maximum likelihood
(ML) estimate of the circularity spectrum in the Gaussian case
and asymptotic distribution of this estimate for arbitrary dis-
tributions are given.

The paper is organized as follows. Section 2 is dedicated
to scalar complex random variables, while, Section 3 extends
these results to multidimensional complex random variables.

2. SCALAR COMPLEX RANDOM VARIABLE

Let z = x + iy denote a zero-mean second-order scalar com-

plex random variable with varianceσ2
z

def= E|z2| and comple-
mentary varianceE(z2). The non-circularity rateρ ∈ [0, 1]
and the non-circularity phaseφ ∈ [0, π[ of z are defined by

ρe2iφ def=
E(z2)
E|z2| . (1)

If ρ = 0, z is called proper [1] or circular to the second-order
[2] and if ρ = 1, z is called rectilinear [10] because in this

casez = |z|eiφ andz lies in one line ofC. If ρco
def= E(xy)

σxσy

with σx
def=

√
E(x2) andσy

def=
√

E(y2), denotes the corre-
lation coefficient between the realx and imaginaryy parts of
z, we prove the following relations betweenρ andρco

Result 1 The non-circularity rateρ of a scalar complex ran-
dom variablez and the correlation coefficientρco between
its real x and imaginaryy parts are related by the following
relations

• ρ = 1 ⇔ ρco = 1,

• ρ = 0 ⇒ ρco = 0, the converse is false becauseρco =
0 does not implyσx = σy,

• ρ ≤ ρco andρ = ρco whenσx = σy.

Proof These relations are straightforwardly deduced from the
following expression of the non-circularity rate:

ρ =
√

( σx
σy
− σy

σx
)2

( σx
σy

+
σy
σx

)2
+ 4ρ2

co
1

( σx
σy

+
σy
σx

)2
.



To interpret the non-circularity phaseφ of z, we prove the
following result

Result 2 For a non-circular scalar complex random variable
z, the orthogonal regression line of the couple(x, y) has a
direction given by the non-circularity phaseφ and the mean
square orthogonal distance to this line is given1 by E(d2) =
σ2

z

2 (1− ρ).

Proof The orthogonal regression line (see e.g., [11]) of the
couple(x, y) is given by the line orthogonal to the eigenvec-
tor u associated with the minimum eigenvalueλ of the co-

variance matrixRw of w def=
(

x
y

)
and the mean square

orthogonal distanceE(d2) to this line is given byλ.
To solve easily this problem, it is convenient to work with

the augmented vector̃z def=
(

z
z∗

)
whose covariance ma-

trix Rz̃ is related toRw by Rw = 1
2T

HRz̃T using z̃ =
√

2Tw, whereT is the unitary matrix 1√
2

(
1 i
1 −i

)
. Be-

cause the minimum eigenvalue and the associated unit eigen-

vector of Rz̃ = σ2
z

(
1 ρe2iφ

ρe−2iφ 1

)
are λ = σ2

z(1 −

ρ) andu = i√
2

(
eiφ

−e−iφ

)
, the minimum eigenvalue and

the associated unit eigenvector ofRw are 1
2λ andTHu =( − sin φ

cos φ

)
⊥

(
cos φ
sin φ

)
.

Consequently, the larger isρ, the smaller is the mean square
distance of(x, y) to the orthogonal regression line and this
distance is zero if and only ifz is rectilinear along this or-
thogonal regression line whose direction is given by the non-
circularity phaseφ.

Now, let us consider the estimation of the non-circularity
rateρ from T independent identically distributed realizations
(zt)t=1,..,T for which the following result is proved in Appen-
dix A.

Result 3 Whenzt is Gaussian distributed, the maximum like-

lihood (ML) estimate(ρT , φT ) of (ρ, φ) is given by
( |PT

t=1 z2
t |PT

t=1 |z2
t |

,

1
2Arg(

PT
t=1 z2

tPT
t=1 |z2

t |
)
)

. Furthermore, whenzt is arbitrarily dis-

tributed, the sequence
√

T (ρT − ρ) converges in distribution
to the zero-mean Gaussian distribution of variance

cρ = 1− 2ρ2 + ρ4 + ρ2κ +
κ

2
+

ρ2<(κ′)
2

− 2ρ2<(κ′′)

whereκ, κ′ andκ′′ are the normalized-like cumulants
Cum(z,z,z∗,z∗)

(E(|z|2))2 , Cum(z,z,z,z)
(E(z2))2 and Cum(z,z,z,z∗)

E(|z|2)E(z2) respectively.

1Note that the expression
(σ2

x+σ2
y)−

q
(σ2

x+σ2
y)2−4σ2

xσ2
y(1−ρ2

co)

2
of this

distance as a function of the correlation coefficientρco given by the minimum
eigenvalue ofRw is much involved.

Note that the covariance of the asymptotic distribution ofρT

is a decreasing function ofρ whenzt is Gaussian distributed
(κ = κ′ = κ′′ = 0) and vanishes for rectilinear random vari-
ables. Furthermore, using a derotation made by the normali-
zed-like cumulants, the covariance of this empirical estimate
does not depend of the non-circularity phaseφ for arbitrary
distributions.

3. MULTIDIMENSIONAL COMPLEX RANDOM
VARIABLE

Consider now a fullK-dimensional zero-mean second-order
complex random variablez. The canonical correlations be-
tweenz and z∗ i.e., the circularity spectrum ofz, are de-
noted by(ρk)k=1,...,K and are arranged in decreasing order
1 = ρ1 = ... = ρr > ρr+1 ≥ ... ≥ ρK ≥ 0. Let

Rz̃
def= E(z̃z̃H) =

(
Rz R

′
z

R
′∗
z R∗

z

)
denote the covariance ma-

trix of the augmented vector̃z def=
(

z
z∗

)
whereRz is non-

singular, andRw
def= E(wwT ) =

(
Rx Rx,y

Ry,x Ry

)
, those

of w =
(

x
y

)
. Regarding the rank of these covariance ma-

trices, the following result is proved

Result 4 For a full K-dimensional random variablez, the
rank of the covariance matricesRz̃ and Rw are equal to
2K − r with r ∈ {0, ..,K}.

Proof As for the scalar case,Rz̃ andRw are related byRw =
1
2T

HRz̃T whereT is the unitary matrix 1√
2

(
I iI
I −iI

)
,

consequentlyrank(Rz̃) = rank(Rw). Now considerRz̃.
From the definition of the coherence matrix2

M = R−1/2
z R′

zR
−T/2
z

associated withz andz̃, Rz̃ may be factored (see e.g., [8]) as

Rz̃ =

(
R1/2

z O
O R∗/2

z

)(
I M

M∗ I

) (
RH/2

z O
O RT/2

z

)
.

SinceM is complex symmetric, there exists a specular singu-
lar value decomposition (SVD), called Takagi’s factorization,
which isM = U∆UT , where∆ = Diag(ρ1, ..., ρK) andU
is a unitary matrix. Combining this decomposition ofM in

2Note that the coherence matrixM depends on the specific square root

R
1/2
z of Rz , unique only if it is imposed to be positive definite Hermitian,

in contrast to the circularity spectrum(ρ1, ..., ρK) which is always unique
[3, th.2].



the previous expression ofRz̃, we obtain

Rz̃ =

(
R1/2

z O
O R∗/2

z

) (
U O
O U∗

)(
I ∆
∆ I

)

(
UH O
O UT

) (
RH/2

z O
O RT/2

z

)
(2)

Consequentlyrank(Rz̃) = rank
(

I ∆
∆ I

)
= rank(I) +

rank(I−∆I−1∆) using [12, th.8.5.10] that gives the rank of
a partitioned matrix. Sorank(Rz̃) = K + rank(I −∆2) =
K + (K − r).

Regarding the maximum of the circularity spectrum, the
following equivalence is proved

Result 5 The circularity spectrum is maximum, i.e.,ρ1 =
ρ2 = ... = ρK = 1 if and only if (i) rank(Rz̃) = K
(i.e., z̃ belongs to aK-dimensional subspace ofC2K), (ii)
rank(Rw) = K (i.e., w belongs to aK-dimensional sub-

space ofR2K), (iii) there exists a square rootR1/2
z of Rz

such thatR′
z = R1/2

z R∗/2
z , (iv) there exists square roots

R1/2
x andR1/2

y of Rx andRy respectively, such thatRx,y =
R1/2

x R1/2
y .

Proof The equivalences (i) and (ii) are a direct consequence
of rank(Rz̃) = rank(Rw) = K + rank(I − ∆2). If the
circularity spectrum is maximum,∆ = I and (iii) follows
because (2) impliesR′

z = R1/2
z UUT RT/2

z whereR1/2
z U is

a square root ofRz. Conversely, (iii) implies that

Rz̃ =

(
R1/2

z

R∗/2
z

) (
R1/2

z R∗/2
z

)

which involves thatrank(Rz̃) = K and the circularity spec-
trum is maximum. Equivalence (iv) follows the same lines
that equivalence (iii) by considering the canonical correla-
tions associated withx andy and equivalence (ii).

By analogy with the scalar case, we propose to callrec-
tilinear such complex multidimensional random variablesz
whose circularity spectrum is maximum. Note that if the com-
ponents(z1, ...., zK) of z are all rectilinear, there areK linear
relationsyk = tan(φzk

)xk, (k = 1, ..,K) between the com-
ponents ofw, consequentlyrank(Rw) = K andz is rectilin-
ear3. But the converse is not true: ifz is rectilinear, its compo-
nents(zk)k=1,..,K need not have maximum non-circular rates
ρzk

. For example, letz = (z1, z2)T wherez1 is circular and
z2 = x2 + iy2 with x2 = ax1 andy2 = ay1. z is recti-
linear becausew belongs to a 2-dimensional subspace ofR4

but the non-circularity rates ofz1 and z2 areρz1 = 0 and

ρz2 = |a2−1|
a2+1 with ρz2 = 0 for a = 1.

3Note that the components(zk)k=1,..,K of z do not need to be uncorre-
lated as it is usually assumed in DOA estimation of non-circular sources (see
e.g. [6, 7]).

To extend to the multidimensional case, the non-circularity
phaseφ defined in the scalar case by (1), we propose a defin-
ition based on theK-dimensional orthogonal regression sub-
space of(x1, ..., xK , y1, ..., yK) which is the support ofw
for a maximum circularity spectrum. The canonical angles
(φ1, φ2, .., φK2) between this subspace and each of theK hy-
perspaces(yk = 0)k=1,...,K of R2K satisfy this aim. How-
ever, two questions remain open. First, does one extend the
expression of the mean square orthogonal distance to thisK-
dimensional orthogonal regression subspace given in Result
2? Second, does one prove that the parameter (ρ, φ,Rz) with

φ
def= (φ1, φ2, .., φK2)T makes up a one to one parametriza-

tion of (Rz,R′
z)?

Now, let us consider the estimation of the circularity spec-
trum ρ = (ρ1, ρ2, ..., ρK)T from T independent identically
distributed realizations(zt)t=1,..,T for which the following
result is proved in [14] using the same steps that for Result 3.

Result 6 Whenzt is Gaussian distributed, the ML estimate
ρT of ρ is given by the vector containing theK singular val-
ues of the empirical coherence matrix

MT = R−1/2
z,T R′

z,T R−T/2
z,T

whereRz,T
def= 1

T

∑T
t=1 ztzH

t andR′
z,T

def= 1
T

∑T
t=1 ztzT

t .
Furthermore, whenzt is arbitrarily distributed and when the
circularity spectrumρ has distinct elements, the sequence√

T (ρT−ρ) converges in distribution to a zero-mean Gaussian
distribution that extends Result 3, whose covariance is speci-
fied in [14].

A. APPENDIX: PROOF OF RESULT 3

Whenzt is Gaussian distributed, the log-likelihood function
associated with(zt)t=1,..,T can be classically written after
dropping the constants as

L(ρ, φ, σ2
z) = −T

2
(
ln[Det(Rz̃)] + Tr(R−1

z̃ Rz̃,T )
)

(3)

with Rz̃,T
def= 1

T

∑T
t=1 z̃tz̃H

t where the parameter(ρ, φ, σ2
z)

is embedded in the covariance matrixRz̃. Due to the structure[
(×) (¦)
(¦)∗ (×)∗

]
of Rz̃ the ML estimation ofRz̃ becomes a

constrained optimization problem which is not standard. But
maximizing the log-likelihood (3) without any constraint on
the Hermitian matrixRz̃ reduces to a standard maximization
problem, whose solution isRz̃,T . Because

Rz̃,T =

[
1
T

∑T
t=1 |z2

t | 1
T

∑T
t=1 z2

t
1
T

∑T
t=1 z∗t

2 1
T

∑T
t=1 |z2

t |

]

is also structured as

[
(×) (¦)
(¦)∗ (×)∗

]
, Rz̃,T is the ML esti-

mate ofRz̃. Using the invariance property of the ML estimate



implies that the ML estimate of(ρ, φ) is given by
(
|∑T

t=1 z2
t |∑T

t=1 |z2
t |

,
1
2
Arg(

∑T
t=1 z2

t∑T
t=1 |z2

t |
)

)
.

Deriving the asymptotic distribution of the empirical esti-
mateρT whenzt is arbitrarily distributed, relies on the stan-
dard central limit theorem4 applied to the independent iden-
tically distributed bidimensional complex random variables(

rz,T

r′z,T

)
with rz,T = 1

T

∑T
t=1 |z2

t | andr′z,T = 1
T

∑T
t=1 z2

t :

√
T

(
rz,T − rz

r′z,T − r′z

)

L→ NC

((
0
0

)
,

(
cr cr,r′

cr′,r cr′

)
,

(
c′r c′r,r′

c′r′,r c′r′

))
,

whererz = E|z2
t | = σ2

z andr′z = E(z2
t ) = ρσ2

zei2φ. Using
the identity

E(z1z2z3z4) = Cum(z1, z2, z3, z4)
+ E(z1z2)E(z3z4) + E(z1z3)E(z2z4) + E(z1z4)E(z2z3),

we obtain
(

cr cr,r′

cr′,r cr′

)
= σ4

z

(
1 + ρ2 + κ ρe−i2φ(2 + κ′′∗)

ρei2φ(2 + κ′′) 2 + κ

)

(
c′r c′r,r′

c′r′,r c′r′

)
= σ4

z

(
1 + ρ2 + κ ρei2φ(2 + κ′′)

ρei2φ(2 + κ′′) ρ2ei4φ(2 + κ′)

)
.

Then, considering the following mappings

(rz,T , r′z,T ) 7−→ mT =
r′z,T

rz,T
7−→ ρT =

√
mT m∗

T ,

with their associated differentials

dm = − r′

r2
dr+

1
r

dr′ and dρ =
1
2ρ

(m∗dm + mdm∗) ,

the standard theorem of continuity (see e.g., [13, p. 122])
on regular functions of asymptotically Gaussian statistics ap-

plies. Consequently, we have withm = r′z
rz

= ρei2φ

√
T (mT −m) L→ NC(0, cm, c′m),

where

cm =
(
− r′z

r2
z

1
rz

) (
cr cr,r′

cr′,r cr′

) (
− r′∗z

r2
z

1
rz

)
,

c′m =
(
− r′z

r2
z

1
rz

) (
c′r c′r,r′

c′r′,r c′r′

) (
− r′z

r2
z

1
rz

)

4NR(m,C) andNC(m,C,C′) denote Gaussian real and complex dis-
tribution with mean, covariance and complementary covariance arem, C
andC′ respectively.

and √
T (ρT − ρ) L→ NR(0, cρ),

wherecρ = 1
4ρ2

(
m∗ m

) (
cm c′m
c′m

∗
cm

∗

)(
m
m∗

)
=

1
2 (cm + <(c′me−4iφ)). Result 3 follows thanks to simple
algebraic manipulations ofcρ.
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