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ON THE DEGREE OF SECOND-ORDER NON-CIRCULARITY OF COMPLEX RANDOM
VARIABLES

Jean-Pierre Delmas and Habti Abeida

GETI/INT, Département CITl, UMR-CNRS 5157

ABSTRACT ity spectrum in [3]) and of the augmented covariance matrice

o~ o~ def .
This paper addresses the degree of second-order non-circuldfity= E(zz") with 2 = (2", 2"")" are given for scalar and

or impropriety of complex random variables and its purpose ighultidimensional complex random variables with a particu-
to complement previously available theoretical results. New@ attention paid to rectilinear random variables, i.e., with
properties of the non-circularity rate (also called circularityMmaximum circularity spectrum. Finally, maximum likelihood
spectrum) are given for scalar and multidimensional comple&ML) estimate of the circularity spectrum in the Gaussian case
random variables with a particular attention paid to rectilinea@nd asymptotic distribution of this estimate for arbitrary dis-
random variables, i.e., with maximum circularity spectrum tributions are given. o _
Finally, the maximum likelihood estimate of the circularity ~ 1h€ paper is organized as follows. Section 2 is dedicated

spectrum in the Gaussian case and asymptotic distribution & Scalar complex random variables, while, Section 3 extends
this estimate for arbitrary distributions are given. these results to multidimensional complex random variables.

Index Terms— circular/noncircular, proper/improper, rec-
tilinear signal, coherence matrix, canonical correlations, cir-
cularity spectrum

2. SCALAR COMPLEX RANDOM VARIABLE

Let z = x + iy denote a zero-mean second-order scalar com-

plex random variable with varianee def E|22%| and comple-
1. INTRODUCTION mentary varianc&(z2). The non-circularity ratg € [0, 1]

_ . and the non-circularity phasee [0, x| of z are defined by
Recently, there has been an increased awareness that signifi-

cant performance gains can be achieved by taking the infor- 2i¢ def E(22) o
mation contained in the complementary covariance [1] ma- © E|z2|"

trix R, = E(zz!) (termed as relation matrix in [2], pseudo

covariance matrix in [3] and second covariance in [4]) into i ! e e
account in second-order algorithms previously based on tHé] @d if p = 1, z is called rectilinear [10] beczlgfsi(gly)thls

standard covariance matrR, = E(zz!!) only (see, e.g., casez = |z|¢’” andz lies in one line ofC. If p., = oo

[5]). . In the past, it was often assumed tit = 0., acase it g, def \/m ando, def \/m denotes the corre-

thatis referred tq as either proper, .second—ordc'er C|.rcular Or Cifation coefficient between the realand imaginaryy parts of

cularly symmetnc. However in digital communications, mod—z, we prove the following relations betwegrand .,

ulated signals may be improper or second-order non-circular

but not necessarily with a maximum non-circularity rate, i.e. Result 1 The non-circularity ratep of a scalar complex ran-

rectilinear as it has been often considered in the literaturdom variablez and the correlation coefficieni., between

(e.g., in direction of arrival estimation, [6, 7]). For example, its real z and imaginaryy parts are related by the following

binary phase shift keying (BPSK) modulation is rectilinear inrelations

contrast to Gaussian minimum shift keying (GMSK) modula-

tion which is improper but not rectilinear after derotation.
This paper addresses the measure of the degree of second-e p = 0 = p., = 0, the converse is false becaysg =

order non-circularity or impropriety of complex random vari- 0 does not implyr, = oy,

ables which can be used to come up with appropriate algo-

rithms or to assess detection or estimation performances of

algorithms adapted to improper signals. Its purpose is to conProof These relations are straightforwardly deduced from the

plement previously available theoretical results [1, 2, 3, 8following expression of the non-circularity rate:
9]. New properties of the canonical correlation between \/(vm”v)z
p =

If p =0, z is called proper [1] or circular to the second-order

.p:1<:>pco:11

e p < peoandp = p., wheno, = oy,

. . . . oy ox 2o 1
andz* (also called non-circularity rate in [4] and circular- +4PCO(%+%)2' .

loy o)
(F2+32)?



To interpret the non-circularity phaseof z, we prove the Note that the covariance of the asymptotic distributioppf
following result is a decreasing function gfwhenz, is Gaussian distributed

k = k' = k" = 0) and vanishes for rectilinear random vari-
ables. Furthermore, using a derotation made by the normali-
zed-like cumulants, the covariance of this empirical estimate
does not depend of the non-circularity phaséor arbitrary
distributions.

Result 2 For a non-circular scalar complex random variable
z, the orthogonal regression line of the cougle y) has a
direction given by the non-circularity phageand the mean
square orthogonal distance to this line is givesy E(d?) =

0_2
F(1—=p).

Proof The orthogonal regression line (see e.g., [11]) of the
couple(zx, y) is given by the line orthogonal to the eigenvec-
tor u associated with the minimum eigenvaldeof the co-

. . def x
variance matrixR,, of w =

3. MULTIDIMENSIONAL COMPLEX RANDOM
VARIABLE

and the mean square Consider now a fullK-dimensional zero-mean second-order
complex random variable. The canonical correlations be-

orthogonal distanck(d”) to this line is given by\. tweenz andz* i.e., the circularity spectrum aof, are de-

To solve easily this problem, it is convenient to work with

dof - noted by(pr)r=1,...xk and are arranged in decreasing order
the augmented vectar = (z* > whose covariance ma- 1 = p; = ... = p, > pry1 > ... > px > 0. Let
trix R; is related toR,, by R, = %THRET usingz = R; def E(zz") = ( II{{/Z* ﬁj ) denote the covariance ma-
. . . 1 z z

V2Tw, whereT is the unitary matrix- ( . ) Be- . .

o _ Y v2 1 —t ~_ trix of the augmented vectar & < Z* ) whereR , is non-
cause the minimum eigenvalue and the associated unit eigen- z

1 pe?i® i def Ty _ < R: Rey >

;= o2 . — o2(1 — singular, andR,, = E(ww") = , those

vector of R; = o2 < pe-tio 1 are\ = o2(1 g (ww?) R,. R,

. i¢ X . .
p) andu = ﬁ ( —Z‘W ) the minimum eigenvalue and Of w = ( y ) Regarding the rank of these covariance ma-

the associated unit eigenvector B, are 1\ and T"u = trices, the following result is proved

—sin ¢ cos ¢ -
cos ¢ sing )’ Result 4 For a full K-dimensional random variable, the
rank of the covariance matriceR; and R, are equal to

Consequently, the larger js the smaller is the mean square 20 — rwithr € {0, ., K}.

distance of(x,y) to the orthogonal regression line and this
distance is zero if and only if is rectilinear along this or-
thogonal regression line whose direction is given by the nonProof As for the scalar cas®: andR,,, are related bR, =
circularity phasep. o _ _ LTHR.T whereT is the unitary matrix--= ( Lo )

Now, let us consider the estimation of the non-circularity va [ 1 _—ZI
ratep from 7' independent identically distributed realizations consequentlyrank(Rz) = rank(R.,). Now considerR..
(2¢)i1....7 for which the following result is proved in Appen- From the definition of the coherence matrix
dix A.

M = R—1/2R/ R—T/2

Result 3 Whenz; is Gaussian distributed, the maximum like- i =
. . . . T 22
lihood (ML) estimatépr, ¢r) of (p, ¢) is given b%% . associated wit andz, R: may be factored (see e.g., [8]) as
1 DI - ol i
2Arg(2?:11|2%|))' Furthermore, when; is arbitrarily dis 2 g [ M e
tributed, the sequencgT (pr — p) converges in distribution R; = ( * ) ( ME T ) ( i ) .

*/2 T/2
to the zero-mean Gaussian distribution of variance O R: o R:
2 / i i i i ;
B 9 4 g K p*R(K) Sens SinceM is complex symmetric, there exists a specular singu-
Cp=1=2p"+p" +ph+ 5+ = — 20" R(x") lar value decomposition (SVD), called Takagi's factorization,

whichisM = UAU7Y, whereA = Diag(py, ..., prr) andU

i 1 1 1
wherer, 1’ andr" are the normalized-like cumulants is a unitary matrix. Combining this decompositionof in

Cum(z,2,2%,2*) Cum(z,z,2,2) Cum(z,z,2,2") .
E(2N2 ' (B(z2))2 and E(22)E(22) respectively.

5. o 2Note that the coherence matiM depends on the specific square root
(o2+00)—[(02402)2—d0202(1-p2,) 1/2 . S i, ) »
INote that the expression - 5 - of this R.’” of R, unique only if it is imposed to be positive definite Hermitian,
distance as a function of the correlation coefficient given by the minimum  in contrast to the circularity spectrutps, ..., px) Which is always unique

eigenvalue oR.,, is much involved. [3,th.2].




the previous expression &, we obtain To extend to the multidimensional case, the non-circularity
phasep defined in the scalar case by (1), we propose a defin-
R/? O U O I A ition based on thés-dimensional orthogonal regression sub-
R: = 0O R/ ( o U > < A I ) space of(x1,...,xx,y1,...,yx) Which is the support ofw
for a maximum circularity spectrum. The canonical angles
( U o ) RY”? O @ (¢1, ¢a, .., b2 ) between this subspace and each ofithiy-
o u” o RI? perspacesy, = 0)x=1r Of R*K satisfy this aim. How-
ever, two questions remain open. First, does one extend the
I A expression of the mean square orthogonal distance tdsthis
Consequentlyank(R:) = rank ( A1 ) = rank(I) + dimensional orthogonal regression subspace given in Result
rank(I— AI~*A) using [12, th.8.5.10] that gives the rank of 2? Second, does one prove that the paramptef,(R..) with
a partitioned matrix. Seank(R;) = K + rank(I — A?) = 1) def (¢1, P2,..,02)T makes up a one to one parametriza-
K+ (K =) B tionof (R.,R.)?
Now, let us consider the estimation of the circularity spec-
Regarding the maximum of the circularity spectrum, thetrum p = (p1, ps, ..., px )T from T independent identically
following equivalence is proved distributed realizationgz;);—; o for which the following

. . . ) . result is proved in [14] using the same steps that for Result 3.
Result 5 The circularity spectrum is maximum, i.ey; =

p2 = .. = px = 1if and only if (i) rank(R:) = K  Result 6 Whenz, is Gaussian distributed, the ML estimate

(i-e., z belongs to aK-dimensional subspace 6F*), (i)  ,  of pis given by the vector containing th¢ singular val-
rank(R.,) = K (i.e., w belongs to aK-dimensional sub- yes of the empirical coherence matrix

space ofR2K), (iii) there exists a square rodR./? of R, My = R_lT/QR’ TR—§/2
such thatR!, = RY?R/?, (iv) there exists square roots def T g et T
RY/? andR,/? of R, andR respectively, such th&,, , = whereR. r = 7 =1 th.f a'nd R;,T, = 7w
f/z 12 v * 4 ’ ¥y —  Furthermore, whem, is arbitrarily distributed and when the
R Ry . circularity spectrump has distinct elements, the sequence

. . . . VT (p;—p) converges in distribution to a zero-mean Gaussian
Proof The equivalences (i) and (ii) are a direct CONSEQUENCR;strihution that extends Result 3, whose covariance is speci-
Of rank(Rg) = rank(Rw) = K + rank(I — AZ) If the f|ed |n [14]
circularity spectrum is maximumA = I and (iii) follows
because (2) implieR, = RY/?UUTR!/? whereRY*U is

a square root aR... Conversely, (iii) implies that A. APPENDIX: PROOF OF RESULT 3
R/’ . . o . .
R; = ( /2 ) ( Ri/z RZ/2 ) Whenz, is Gaussian distributed, the log-likelihood function
R ) : g :
z associated with(z,),—1,... can be classically written after

which involves thatank(R ;) = K and the circularity spec-
trum is maximum. Equivalence (iv) follows the same lines
that equivalence (iii) by considering the canonical correla-
tions associated witk andy and equivalence (ii). [ |

By analogy with the scalar case, we propose to it
tiinear such complex multidimensional random variables with R: ; %< L 5°7 7,z where the parametdp, ¢, 02)
whose circularity spectrum is maximum. Note that if the com-s embedded in the covariance mafx. Due to the structure
ponentsz, ...., zx ) of z are all rectilinear, there af linear (x) (o)

relationsyy, = tan(¢., )zx, (k = 1, .., K) between the com- (o) (x)*
ponents ofw, consequentlyank(R,,) = K andz is rectilin-  constrained optimization problem which is not standard. But
earf. But the converse is not true:4fis rectilinear, its compo- maximizing the log-likelihood (3) without any constraint on
nents(zx)x—1,..,x Need not have maximum non-circular ratesthe Hermitian matrixR ; reduces to a standard maximization
p-,.. For example, let = (21, 22)” wherez, is circular and  problem, whose solution R ; 7. Because

Zzo = xo + 1ys With o = axy andys = ay,. z is recti-

linear becausev belongs to a 2-dimensional subspaceérdf l * Z;";l B 2321 % ]

but the non-circularity rates of; andz, arep,, = 0 and R:r = 1T 2 1T 22|
T Et:l 2t T Zt:1 2t

_ la’-1]

Pza = g211 with Pzy = 0fora=1.

dropping the constants as

L(p.6,6%) = (mDet(R2)] + To(R: 'Rz 1)) (3)

of R; the ML estimation ofR; becomes a

. X o . .
3N0te_ t_hat the componen(s_k)k:LAA,K_ of z do not neeq to be uncorre- s also structured a ( 1 ( )* ,R:ris the ML esti-
lated as it is usually assumed in DOA estimation of non-circular sources (see ) _(0) . (X) .
e.g. [6, 7]). mate ofR ;. Using the invariance property of the ML estimate



implies that the ML estimate df, ¢) is given by and
VT (pr = p) = Nr(0,c,),
| i 2 }Ar ( Y1 7 ) 1 Cm  C m
Zz;l'ZtQ‘ i) g 2?21 |Zt2| : WheI’ECp = W( m* m ) ( C;n* Cr:L* ) ( m* ) =

Deriving the asymptotic distribution of the empirical esti-
matepr whenz, is arbitrarily distributed, relies on the stan-
dard central limit theorefnapplied to the independent iden-
tically distributed bidimensional complex random variables

r .
( rf7§ ) withr, 7 = % Zthl |27 andr, . = % Zthl 2"
Z,
wr<?f”)

TZ,T_T/Z
L 0 Cr
<xe((0)(.,

(1]

, , (2]
Cr,r! Cr c’r,r’
e )N\ Gy O '

(3]

wherer, = E|z?| = 02 andr!, = E(z?) = po2e???. Using
the identity
E(z1222324) = Cum(zy, 29, 23, 24)

[4]
+ E(leg)E(Zgz4) + E(leg)E(ZQZ4) + E(le4)E(2223),

we obtain 5]
Cr Crg 4 L+p2+K  pe 2924 K")
Crr oy Cpr = % pet?? (2 + k") 24+ K
1+p2+li p6i2¢(2—|—,‘£”)

) (6]

[7]

/ /
Cr Cr,r/ _ 4
c c =%
r’,r T’

Then, considering the following mappings

T
—— pr =/ mrmy,

T2, T [8]

pe112¢(2 + HN) p2€i4¢(2 + H/)

,’,,/

(res 1) — mp =

with their associated differentials

7,,/

dm = ——
r2

1, 1, ., . [9]
dr+-dr' and dp= 2 (m*dm + mdm™) ,
r p

the standard theorem of continuity (see e.g., [13, p. 122]}1q)
on regular functions of asymptotically Gaussian statistics ap-

plies. Consequently, we have with = =

Tz

= pei2¢

VT (mr —m) £ Ne(0,em, ),

[11]

where N
c :(_g L) Cr G — 7 [12]

-m rg Ty CT’A,’I“ C’I“’ % H

/ rl 1 C;‘ Cr ! - % [13]

Cm = 2 c c 17

z T/ﬂ‘ ’ T—

: [14]

4Ng(m, C) andN¢ (m, C, C’) denote Gaussian real and complex dis-
tribution with mean, covariance and complementary covariancexrgr&
andC’ respectively.

% (C’m + §R(C{m€74i¢))'
algebraic manipulations ef,.

Result 3 follows thanks to simple
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