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Abstract

In this study, a robust method is developed for frequency-specific electroencephalogram (EEG) phase extraction using the analytic
representation of the EEG. Using recent theoretical findings in this area, it is shown that some of the phase variations— previously
associated to the brain response— are systematic side-effects of the methods used for EEG phase calculation, especially during low
analytical amplitude segments of the EEG.

With this insight, the proposed method generates randomized ensembles of the EEG phase using minor perturbations in pole-zero
loci of narrow-band zero-phase IIR filters, followed by phase estimation using the signal’s analytical form and ensemble averaging
to obtain a robust EEG phase. This Monte Carlo method is shown to be very robust to noise and minor changes of the filter
parameters and reduces the effect of fake EEG phase jumps (without a cerebral source).

As proof of concept, the proposed method is used for extracting EEG phase features in brain computer interface (BCI) classifi-
cation. The results show significant improvement in classification rates using rather simple phase-related features over a standard
BCI dataset.

The proposed method for EEG phase calculation is very generic and may be applied for all EEG phase-related studies.

Keywords: Electroencephalogram Phase; Narrow-Band Electroencephalography; Phase Extraction; Analytic Signals;
Brain-computer Interface.

1. Introduction

The phase analysis of electroencephalogram (EEG) signals
has found great interest in the past decades. It has been shown
to be a considerable (and in cases more informative) compli-
ment for the EEG spectral amplitude. In [1], various meth-
ods were presented for extracting the instantaneous EEG phase
and amplitude of real EEG signals. The relationship between
the different methods were studied using the theory of analytic
signals. In [2], the relation between phase synchronization in
EEG signals and brain activity in patients with temporal lobe
epilepsy was investigated. The authors reported a strong corre-
lation between shifts in phase synchrony and pathological ac-
tivity. In [3], the concept of Frequency Flows Analysis (FFA)
was introduced, as a new approach for studying the dynamics of
phase synchrony in brain signals. The application of EEG phase
and phase synchrony in brain recordings for brain-computer in-
terface (BCI) systems was studied in [4]. It was reported that
additional information could be available by utilizing phase-
related quantities for measuring brain synchrony. Other studies
such as [5] and [6] studied two other important phase related
quantities, namely phase shift and phase resetting and their re-
lations to components of event related potentials. In [7], an
empirical mode decomposition (EMD) based method was pro-
posed along with phase synchronization and evaluated in BCI
systems. The phase-locking value (PLV) has been previously

utilized to associate the EEG phase information in BCI systems
[8]. Various methods such as wavelet transforms and analytic
signal representation of signals have been used for EEG phase
extraction and PLV measurement [9, 10].

In a recent study [11], the authors presented a statistical
framework for EEG phase analysis. Using an additive data
model between the so called background (spontaneous) and
foreground EEG, probability density functions and other statis-
tical properties of the instantaneous EEG envelope, phase and
frequency were derived. It was analytically and numerically
shown that in low analytical signal envelopes, the EEG phase
is highly noisy and susceptible to the background EEG activ-
ity. It was shown that although EEG phase variations convey
important information regarding the EEG, some instantaneous
phase jumps are systematic side effects of the processing stages
used for EEG phase extraction in low analytical envelopes and
are not related to the brain. A Monte Carlo approach was pro-
posed in [11] to detect and smooth the time instants in which
the estimated EEG phase is unreliable.

In this contribution, using our recent findings reported in
[11], a new EEG phase extraction procedure is presented, for
extracting reliable phase sequences from the EEG for BCI ap-
plications. It is shown that the discrimination between true and
fake EEG phase variations can significantly improve classifica-
tion rates in BCI applications, even using rather basic features
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and conventional classifiers.
In the following section, some preliminary backgrounds and

the limitations of classical stages of EEG phase extraction are
reviewed. In Section 3, some modifications are proposed for the
conventional procedure of instantaneous EEG phase extraction.
For proof of concept, the proposed method is used for feature
extraction in a BCI application, showing significant improve-
ment in the classification rates.

2. Background

2.1. Conventional Phase Estimation Procedure

The conventional procedure for extracting the instantaneous
phase sequence of a signal contains two main stages: 1) narrow-
band filtering and 2) estimating the phase of the narrow-band
signal [12, 13].

For a unique and canonical definition, the instantaneous
phase is extracted from very narrow frequency band signals
[14]. Moreover, the input signal’s phase contents should not
be affected by the filtering procedure. For the first stage, almost
all previous studies on EEG phase extraction have used finite
impulse response (FIR) filters to make the signal narrow-band
in its frequency spectrum [2, 15, 16, 8, 9, 17]. However, in order
to have a reliable phase sequence, there are important consid-
erations regarding this procedure, including: the filter’s band-
width, its phase response and the convolution process. The un-
derlying theories and practical issues in this regard are reviewed
in the next section.

The second stage requires choosing a phase estimation
method to extract the phase sequence from the narrow-band
signal. Apparently, accurate methods that do not violate the-
oretical conditions essential for having a reliable instantaneous
phase should be used at this stage. The most common method
for phase estimation is through using the analytic signal repre-
sentation of the narrow-band signal [14]. As shown in [11], the
calculation of the instantaneous phase from the analytical repre-
sentations becomes challenging and highly susceptible to noise
in low analytical signal amplitudes; resulting in fake jumps and
spikes in the extracted phase signal. In the following sections,
this issue is further studied and partially solved by applying per-
turbations in the phase extraction procedure as proposed in [11].

2.2. Unambiguous Phase Estimation Conditions

The most common definition of the instantaneous phase is
based on the analytic representation of a signal [14]. Accord-
ingly, for the signal x(t), its analytical form is defined as follows
[13]:

zx(t) = x(t) + jH{x(t)} (1)

where H{x(t)} is the Hilbert transform of x(t). Using the analyt-
ical form of a narrow band signal, the instantaneous envelope
and phase pair are uniquely defined as follows:

ax(t) = |zx(t)| =
√

x(t)2 + H{x(t)}2 (2)

φx(t) = arctan
(

H{x(t)}
x(t)

)
(3)

Unless the signal has a narrow-band spectral support, the
pair (ax(t), φx(t)) do not convey significant information regard-
ing the instantaneous phase [12]. This mainly raises from the
fact that for narrow-band signals, the relative variations of the
amplitude ax(t) are rather slow as compared with the variations
of the phase φx(t) [13], i.e.,∣∣∣∣∣dφ(t)

dt

∣∣∣∣∣ � ∣∣∣∣∣ 1
a(t)

da(t)
dt

∣∣∣∣∣ (4)

This condition is well-satisfied if the signal is narrow-band in
its spectral support.

For cerebral signals, it is known that the EEG has a wide fre-
quency range (0 Hz-150 Hz in the extreme case) which makes
narrow-bandpass filtering an essential prerequisite for extract-
ing a meaningful instantaneous phase sequence.

2.3. Linear-phase Filtering

Previous studies on EEG phase extraction have commonly
employed linear-phase filters to make the signal narrow-band
in its frequency spectrum [2, 15, 16, 8, 9, 17]. The advantage of
linear phase filters is their constant group delay, which avoids
phase distortions of the filtered signal. Nevertheless, in most
FIR filter design techniques, the order of the filter proportion-
ally increases with the inverse of their transition bandwidth,
which means that narrow-band FIR filters have very long im-
pulse responses and input-output delays. Moreover, highly nar-
row band filters are difficult to design and susceptible to design
parameters.

To avoid these issues, previous studies have kept a trade-off

between the order of the FIR filter and its band-width (BW).
Mainly, the BW was chosen relatively large (e.g., between 4
to 12 Hz), to have a low-order and practically realizable filter
[2, 18, 17]. However, as discussed before, using a bandwidth in
this range, the envelope-phase pair {a(t), φ(t)} obtained from the
Hilbert transform fails to correctly/uniquely define the instan-
taneous envelope and phase and the extracted phase will not be
reliable. Therefore, very narrow band filters with reasonably
low orders are required in practice to be less sensitive to noise
and variations in its parameters and is indispensable.

2.4. Low-amplitude Analytical Signal

The instantaneous phase sequence derived from the ana-
lytic representation of signal is prone to contain fake (with-
out cerebral source) jumps in Low Amplitude Analytical Sig-
nal (LAAS) time instants [13, 14, 17]. As depicted in Fig. 1,
the instantaneous frequency tends to have big jumps at LAAS
epochs.

The problem was rigorously studied in [11]. The main reason
underlying this phenomenon could be linked to the arctan(·) op-
erator for phase calculation. According to (3), LAAS causes the
denominator to be very low. Consequently, any minor change in
the real or imaginary parts of the analytic form (due to noise or
background EEG fluctuations), leads to a significant change in
the estimated phase. This is illustrated in Fig. 2. It is seen that
phase values corresponding to lower amplitudes tend to have
bigger alterations due to a small additive noise. It was shown
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Figure 1: A raw 60 s EEG signal used for phase extraction (top panel), the
analytical signal envelope derived from analytic form of signal (middle panel),
and the corresponding instantaneous frequency centered at 7 Hz obtained from
the phase sequence extracted through the analytic signal (bottom panel).

in [11] that during LASS epochs the instantaneous phase tends
to a uniform distribution over [−π, π] and the instantaneous fre-
quency becomes uniform over the entire Nyquist band.

The findings of [11] is in accordance with [17], which re-
ported that LAAS occurs more frequently in low power time-
frequency regions (especially high frequency bands of the
EEG); since the EEG power decays more rapidly with increas-
ing frequency. To illustrate this point, in Fig. 3 the instanta-
neous phase differences of frequency components in the range
of DC to 50 Hz have been extracted alongside with their cor-
responding instantaneous envelopes. Accordingly, the first 5 s
of the results are due to the FIR filter’s transient response; re-
sulting in very low-magnitude instantaneous amplitude signals
during this period. As it can be seen, the corresponding regions
of the phase difference plot contains many phase jumps and
spikes. For the rest of the signal, in lower frequencies, where
the analytic form has higher amplitudes, the phase sequences
are less contaminated with jumps and spikes. However, as the
frequency increases and the power in EEG signal decays (the
analytical signal envelope decreases), the rate of phase jumps
increases once more.

Based on these findings, in the next section a robust method
is proposed for the estimation of the instantaneous phase using
perturbation of filter parameters and Monte Carlo simulation.

3. Method

The proposed method for robust EEG phase extraction con-
sists of successive steps, which are separately detailed in the
following sections. The overall scheme is summarized in Algo-
rithm 1.

3.1. Step (1): Narrow-band zero-phase smoothing
To overcome the issues associated with FIR filters, we pro-

pose using forward-backward zero-phase IIR filters. Although
the filter is performed offline in a non-causal manner, the major

Figure 2: A 14 s segment of a raw EEG signal used for extracting instantaneous
phase sequence (top panel), the analytical signal envelope derived from the
clean signal (middle panel, solid black line), and contaminated with additive
white noise (middle panel dashed line), and the estimated phase during two
segments with low and high analytic signal enveloped (bottom panel). The solid
and dashed arrows show the results for the analytical signal envelope obtained
from clean and noisy EEG signals, respectively.

advantage is that the order of a narrow band IIR filters is much
lower than its FIR counterpart and by applying it in a forward-
backward manner, the nonlinear phase response of the filter is
compensated and zero-phase distortion— which is necessary
for EEG phase analysis— is guaranteed.

Various types of IIR filters such as Chebyshev types 1, 2,
Butterworth and Elliptic were studied to determine the best fil-
ter for this application and the Elliptic filter was chosen due
to its steeper roll-off characteristics (as compared with Butter-
worth or Chebyshev filters) and its equi-ripple feature in both
the passband and stopband. In general, by allowing ripples in
both passband and stopbands, Elliptic filters meet given perfor-
mance specifications with the lowest order as compared with
their counterparts [19]. In order to preserve the filter’s fre-
quency response over all frequency bands, instead of designing
various bandpass filters in each band, a fixed narrow band low-
pass filter prototype was designed and shifted in the frequency
domain in a mixer-like manner. The prototype Elliptic IIR low-
pass filter used in this study has the characteristics of 0.3 Hz
pass-band, 0.5 Hz stop-band, 0.1 dB maximum pass-band rip-
ple and 70 dB minimum stop-band attenuation, at a sampling
frequency of 160 Hz. The order of this prototype filter was 6,
which is far more effective than any FIR filter with the same
specifications. This filter was performed in a forward backward
manner, which doubles its pass-band ripple and stop band at-
tenuation in dB.

The procedure of zero-phase forward-backward smoothing
(FBS) is as shown in Fig. 4. Accordingly, FBS sses the time-
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Figure 3: Phase difference of the frequency components from DC to 50 Hz
(left panel), the corresponding instantaneous analytical signal envelope (right
panel).

Algorithm 1 Robust Instantaneous EEG Phase Extraction
Require: Discrete-time EEG signal x(t)
Require: Bandpass filter prototype hBP(t) with design param-

eters {BW,T B, PR, S R} and pole-zero sets P and Z, respec-
tively.

Require: Number of perturbation iterations (N)
1: for all i = 1 · · ·N do
2: Perturb the poles and zeros with minor random devi-

ations δp
i and δz

i , while keeping the pole-zeros conjugate
symmetric and preserving the poles inside the unit circle:
Pi ← P ± δp

i , Zi ← Z ± δz
i

3: Construct the new bandpass filter with the perturbed
pole zero pairs Pi and Zi

4: Zero-phase forward-backward filter1 the input signal
xi(t) = ZPFi{x(t)}

5: Form the analytic representation of filtered signal
zi(t) = Re{xi(t)} + jIm{xi(t)}

6: Calculate the instantaneous phase using the analytic
form φi(t) = arctan( Im{zi(t)}

Re{zi(t)}
)

7: end for
8: Unwrap the estimated phase sequences Φi(t) ←

unwrap{φi(t)}
9: Ensemble average over all i: Φ(t)← 1

N
∑N

i=1 Φi(t)

reversal property of the Fourier transform to perform zero-
phase smoothing by processing the input signal in both the for-
ward and reverse directions [20]. Considering H(e jω) as the
frequency response of the forward path digital filter, the effec-
tive response of FBS is

He f f (e jω) = |H(e jω)|2 (5)

which is the real-valued. Therefore, regardless of the nonlin-
ear phase-response of the IIR filter, FBS has a zero-phase (and
zero-group delay) frequency response, which preserves the in-
put signal’s phase.

3.2. Step (2): Phase Calculation
The next step is to compute the phase sequence. For this,

we use the analytic representation of the filtered signal. In or-
der to reduce the processing complexity and avoid the direct

Filter        

𝐻(𝑒𝑗𝑤)
Time Reverse

Filter        

𝐻(𝑒𝑗𝑤)
Time Reverse

𝑥(𝑛)

z(𝑛)

w(𝑛)

v(𝑛)

y(𝑛)

Figure 4: Block-diagram of the forward-backward filtering process.

calculation of the Hilbert transform, this stage can be merged
with the bandpass filtering as follows: as noted before, the pro-
posed bandpass filtering scheme uses a lowpass filter prototype.
To filter the signal x(t) around the center frequency ω0, x(t) is
shifted in the frequency by multiplying the pure phase signal
exp(− jω0t), to obtain a complex valued signal x f (t). Next, the
real and imaginary parts of x f (t) are given to the lowpass proto-
type to obtain the narrow-band analytical signal y f (t). Finally,
y f (t) is shifted back to the center frequency ω0, by multiply-
ing the phase signal exp( jω0t). This procedure provides xa(t),
which is the narrow band analytical form of the original signal
x(t) around the center frequency ω0.

After computing the analytic form of the filtered EEG signal,
here presented as x(t), its phase sequence can be measured as
follow:

φ(t) = arctan
(

Im(xa(t))
Re(xa(t))

)
(6)

For discrete-time signals, the instantaneous frequency can be
approximated by the first order difference of the instantaneous
phase:

f (t) = fs
φ(t) − φ(t − ∆)

2π
(7)

where ∆ is the sampling time and fs = 1/∆ is the sampling
frequency.

3.3. Step (3): Zero-pole Perturbation of the Filter

The previous two stages (narrow band filtering and phase
calculation) are applied several times with very minor changes
in the filter design parameters, as proposed in [11]. Here, the
idea is to generate random ensembles of the signal’s analytical
form and EEG phase, using infinitesimal perturbations param-
eter variations. Apparently, clinically relevant EEG phase in-
formation should not be susceptible to minor filter design vari-
ations at the order of, e.g., 0.01 Hz. However, at during LAAS
epochs, even minor deviations in the filter parameters can sig-
nificantly change the phase estimates, resulting into fake phase
jumps. For this, we apply very small random perturbations to
filter design parameters, which move the zeros and poles of its
transfer function.

The zero-pole plot of the utilized prototype IIR filter (see
Section 3.1) and the region span by its perturbed zeros and poles
are illustrated in Fig. 5(c). It is known that all Elliptic IIR filter
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Figure 5: (a) and (b) The frequency responses (magnitude and phase respec-
tively) of 100 lowpass prototype filters obtained by pole-zero perturbation. (c)
Zero-pole plot of the prototype Elliptic IIR filter. The contours specify the areas
of random movements of zeros and poles.

zeros are located on the unit-circle. Thus, to prevent any major
changes in the filter’s characteristics, these zeros are perturbed
randomly only on the unit-circle. For this, the filter’s zeros are
taken into polar coordinates (ρ, θ), and the random perturba-
tions are applied only to θ. Another important consideration
is that any perturbation in the pole locations should not take
the poles out of the unit-circle (to keep it stable). Hence, the
poles were randomly perturbed inside the unit circle, as speci-
fied in Fig. 5(c). Finally, the conjugate symmetry of the zeros
and poles should be preserved to guarantee the realness of the
impulse response. The magnitude and phase response of 100
lowpass prototype filters obtained by the proposed pole-zero
perturbation procedure are shown in Fig. 5(a) and Fig. 5(b),
where we can see that the filter pole-zero perturbations have
had rather minor impact on the filters’ response (irrelevant to
most cerebral studies). However, it is later shown that even
these minor changes can significantly change the EEG phase,
especially during LAAS.

After applying the first three steps of the proposed method on
a raw EEG segment, we obtain a number of frequency-specific
instantaneous phase sequence ensembles. The next remaining
steps are applied to obtain a robust estimate of the phase esti-
mates.

3.4. Step (4): Phase Unwrapping

Calculating the phase by the four quadrant arc-tangent causes
phase-wrapping [21]. The amplitude of this phase sequence can
take any value and typically exceeds the range [−π, π], which is
returned by the arc-tangent function. In cases where the phase
exceeds this range, it is wrapped so that it stays within the
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Figure 6: (top panel) The gray shades show ensembles of the estimated instan-
taneous frequency using 100 filters with minor pole-zero perturbations, and the
final averaged instantaneous frequency in solid black line; (bottom panel) the
standard deviation of the instantaneous frequency for 100 ensembles at each
time instant.

normal range [21, 22]. In such cases, the wrapped phase se-
quence will contain some phase-jumps equal to ±π. Therefore,
for EEG phase analysis (either from the phase itself or from its
dime difference), an unwrapping procedure is required to ob-
tain the phase sequence in its original form. An unwrapped
phase sequence linearly diverges in time. For better illustration
of the phase fluctuations, one may either subtract the constant
linear phase signal ω0t from the instantaneous phase to obtain
its temporal fluctuations, or alternatively the time difference of
the phase signal may be shown, which is proportional to its in-
stantaneous frequency.

3.5. Step (5): Ensemble Averaging

The final step of the algorithm is to average over the random-
ized ensembles of phase sequences obtained from the different
filter responses, to obtain an average phase estimate.

For illustration, Fig. 6 shows 100 ensembles of the instan-
taneous frequency of a sample EEG segment obtained by the
aforementioned randomization scheme (zero-pole perturbation)
for a center frequency of 7 Hz, and the average of the random-
ized ensembles. This figure illustrates the importance of the
proposed scheme and the significance of the zero-pole pertur-
bation. Accordingly, without this procedure (by simply cal-
culating the phase from a single filtered signal, as in conven-
tional methods), the obtained phase sequence is unreliable (not
robust), since each set of filter parameters (even with minor
differences) would lead to significantly different results, espe-
cially during the low analytical signal envelope epochs in which
the standard deviation of the instantaneous frequency is signif-
icantly high (Fig. 6).

3.6. Example

In this section the robustness and reliability of the proposed
method is verified versus conventional methods for a sample
signal. The phase sequence of an EEG signal has been extracted
using the proposed method and the conventional method (with-
out parameter perturbation). The sample signal, represented in
Fig. 7, is about 24 s of an ongoing EEG with the sampling fre-
quency of fs=173.61 Hz, recorded during a BCI study. The
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Figure 7: Utilized ongoing EEG signal to assess the robustness of the proposed
phase estimation method.

complete description of the data is presented in [23].In the fol-
lowing subsections, the phase robustness of this sample data is
studied from three aspects: (1) effect of filter parameter vari-
ations, (2) robustness to noise and (3) low-amplitude analytic
signal and phase jumps.

3.6.1. Filter Parameter Variations
For assessing the sensitivity of the proposed method to

changes in filter parameters, the following three scenarios are
tested using a lowpass Elliptic IIR filter design scheme:

1. f0 = 7 Hz, BW=0.5 Hz (pass-band bandwidth),
T B=0.5 Hz (transient-band from either side),
f s=173.61 Hz, 0.1 dB maximum pass-band ripple
and 70 dB minimum stop-band attenuation

2. f0 = 7 Hz, BW=0.2 Hz, T B=0.2 Hz f s=173.61 Hz, 0.1 dB
maximum pass-band ripple and 70 dB minimum stop-band
attenuation

3. f0 = 7 Hz, BW=1.0 Hz, T B=1.0 Hz f s=173.61 Hz, 0.1 dB
maximum pass-band ripple and 70 dB minimum stop-band
attenuation

where T B represents the transition band. The instantaneous
frequency obtained from (7) for these three cases are shown in
Fig. 8 using both the conventional and proposed methods. It
can be seen that the conventional method is very sensitive to
variations in filter’s parameters and with minor changes in the
bandpass filter design parameters, the results have significantly
changed. Nevertheless, the presented method shows more sta-
ble results to changes in filter’s parameters, since the filter pa-
rameter effects are almost removed through perturbing the fil-
ter’s frequency response and averaging between the perturbed
ensembles.

3.6.2. Noise Susceptibility
To investigate the robustness of the proposed method to

noise, once again the instantaneous frequency is estimated from
the previous EEG signal using a bandpass filter f0 = 7 Hz,
BW=0.5 Hz, and T B=0.5 Hz, in three levels of additive white
Gaussian noise (AWGN):

1. No noise (pure EEG)

2. Contaminated by AWGN with SNR= 10 dB

3. Contaminated by AWGN with SNR= 0 dB
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Figure 8: Instantaneous frequency around f0=7 Hz calculated by the conven-
tional (gray) and proposed method (black) for three filter parameter sets de-
scribed in Section 3.6.1 (from top to bottom)
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Figure 9: Instantaneous frequency calculated through the conventional (light
gray) and proposed method (black) for 1) noiseless, 2) AWGN with SNR=

10 dB, and 3) AWGN with SNR= 0 dB (from top to bottom).

The corresponding results are shown in Fig. 9 for both the con-
ventional and presented methods. It can be seen that the con-
ventional method, regardless of the large spikes at the beginning
(due to transient effects), has significant variations and spikes
under AWGN. Clearly, the conventional phase estimation pro-
cedure is unreliable during noisy epochs. Nevertheless, the pro-
posed method has been rather robust to background noise. A
rigorous discussion on the effect of noise and SNR level on the
probability of correct and false phase detections was presented
in [11].

3.6.3. Low-amplitude Analytic Signal and Phase Jumps
Fig. 10 shows the instantaneous frequency and the instanta-

neous analytical signal envelope calculated for the sample EEG
in Fig. 7 using conventional methods, for frequency compo-
nents in the range of DC to 30 Hz, using the three filtering
schemes stated in Section 3.6.1. The same procedure is per-
formed using the proposed method and the results are depicted
in 11 for comparison. The comparison of Fig. 10 and Fig. 11,
clearly shows the effects of LAAS on the EEG phase jumps
using the classical and proposed methods. It is seen that the
phase sequences estimated by conventional methods are prone
to fake jumps at points where the corresponding analytic signal
have lower amplitudes; while this issue has been significantly
improved using the proposed method.

Figure 12 shows the instantaneous frequency and the instan-
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Figure 10: The instantaneous frequency (top row) and the corresponding instantaneous amplitudes (bottom row), calculated from the EEG signal shown in Fig. 7
through the conventional phase extraction procedure, for frequency components in the range of DC to 30 Hz and using three different sets of filter parameters 1)
BW=0.5 Hz, T B=0.5 Hz, 2) BW=0.2 Hz, T B=0.2 Hz and 3) BW=1.0 Hz, T B=1.0 Hz from left to right, respectively.

taneous analytical signal envelope calculated for the sample
EEG in Fig. 7 using conventional methods, for frequency com-
ponents in the range of DC to 30 Hz, using three different noise
levels stated in Section 3.6.2. The same procedure is repeated
using the proposed method and the results are depicted in 13
for comparison, where we can see that the proposed method
has been considerably less susceptible to additive noise.

4. Case Study: Phase and Frequency Features for a Brain
Computer Interface Application

4.1. Problem Definition

In order to show the significance of the proposed method, its
performance is evaluated in a visual evoked potential (VEP)-
based BCI system, as proof of concept. The state-of-the-art
classification procedure used in previous VEP-based BCI stud-
ies is employed for this purpose [16, 24, 25], and we focus on
the impact of EEG phase feature using conventional versus the
proposed scheme. The details of the studied case study are de-
scribed below. It should be noted that this case study is only
presented as a typical application for extracting reliable EEG
phase sequences and not for improving the classification rates
in state-of-the-art BCI systems.

4.1.1. Dataset
The dataset used for this study is adopted from the Neuro-

electric and Myoelectric Databases, which is online available
on Physionet [26]. This dataset includes one- and two-minute
recordings of 109 volunteers performing a series of motor and
motor-imagery tasks. Each record contains sixty four channels
of EEG recorded using the BCI2000 System, during a set of

annotated mental tasks [27]. The complete description of the
dataset is available at [26]. Each subject performed a series
of mental tasks: two one-minute baseline runs, with open and
closed eyes and three two-minute runs of four different tasks as
described below:

1. A target appears on the left or right side of a screen in
front of the subject. The subject opens and closes the cor-
responding fist until the target disappears. Then the subject
relaxes.

2. A target appears on the left or right side of the screen. The
subject imagines opening and closing the corresponding
fist until the target disappears. Then the subject relaxes.

3. A target appears on the top or bottom of the screen. The
subject opens and closes both fists (if the target is on top)
or both feet (if the target is on the bottom) until the target
disappears. Then the subject relaxes.

4. A target appears on the top or bottom of the screen. The
subject imagines opening and closing both fists (if the tar-
get is on top) or both feet (if the target is on the bottom)
until the target disappears. Then the subject relaxes.

Fig. 14 shows the placement of the electrodes used to record
EEG signals in this dataset. Since the primary cortical regions
involved in the task of motor imagery are the supplementary
motor area (SMA) and the primary motor cortex (M1) area,
electrodes FCz, C3, and C4 are chosen for this study [16, 28,
29].

The annotations provided by the providers of the dataset
consist of three classes, for identifying rest, versus left/up or
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Figure 11: The instantaneous frequency (top row) and the corresponding instantaneous amplitudes (bottom row), calculated from the EEG signal shown in Fig. 7
through the proposed phase extraction procedure, for frequency components in the range of DC to 30 Hz and using three different sets of filter parameters 1)
BW=0.5 Hz, T B=0.5 Hz, 2) BW=0.2 Hz, T B=0.2 Hz and 3) BW=1.0 Hz, T B=1.0 Hz from left to right, respectively.

c

b
a

Figure 14: The location of the three (out of sixty four) leads used for the BCI
classification case study. (a), (b) and (c) represent C4, C3 and FCz, respectively.

right/down side activities: 1) T0 corresponding to rest condi-
tion, 2) T1 corresponding to motion (real or imagined) onset of
either the left fist or both fists, and 3) T2 corresponding to mo-
tion (real or imagined) onset of either the right fist or both feet.
We therefore have a three-class classification problem. The tar-
gets appeared on the screen every four seconds, resulting in
thirty 4 s annotated EEG segments in each of the two minute
recordings (per subject), each corresponding to a mental task
trial.

4.1.2. Feature Extraction
A survey of previous studies on VEP-based BCI systems re-

veals that EEG phase-related features, are currently among the

most discriminative and informative features for BCI applica-
tions [16, 24, 30]. During feature extraction, a broad range of
features are commonly extracted from the frequency band of
interest and passed to the feature selection and classification
stages. However, in this study only one phase-related feature,
namely the PLV, is used to evaluate the robustness and feasibil-
ity of the proposed instantaneous phase estimation procedure.

PLV is a measure for quantifying how constant the phase dif-
ference between two signals is. In order to calculate the PLV
for two signals (or channels) x(t) and y(t), the following steps
are required [8, 10]:

• Using narrow-band filters centered at f , calculate the in-
stantaneous frequency-specific phase values φx(t, f ) and
φy(t, f ).

• Calculate the instantaneous phase-difference between x(t)
and y(t) and quantify the local stability of this phase-
difference over time:

PLV( f ) =

∣∣∣∣∣∣∣ 1
T

T∑
t=1

exp
(

j[φy(t, f ) − φx(t, f )]
)∣∣∣∣∣∣∣ (8)

where T is the signal length and the summation is over all
temporal samples of the instantaneous phases.

PLV varies between 0 and 1, corresponding to completely non-
synchronized signals and complete synchronization, respec-
tively [8, 10].

In this case study, the EEG phase and the corresponding
PLV features were extracted using both procedures (classi-
cal and proposed) from three different subjects of the intro-
duced dataset. The PLV were calculated for a single frequency

8



Figure 12: The instantaneous frequency (top row) and the corresponding instantaneous amplitudes (bottom row), calculated through the conventional phase extrac-
tion procedure for frequency components in the range of DC to 30 Hz for the sample EEG shown in Fig. 7, in three different cases: 1) no noise, 2) AWGN with
SNR=10 dB, and 3) AWGN with SNR=0 dB from left to right, respectively.

band f = 7 Hz, between all three possible combinations of se-
lected electrodes, i.e., FCz-C3, FCz-C4 and C3-C4 (as shown
in Fig. 14), resulting in feature vectors of length three. The fea-
ture vectors were computed from each of the thirty 4 s annotated
temporal windows over all two-minutes records.

4.1.3. Classification
The PLV feature vectors (calculated by both the conventional

and proposed methods) together with the described annotations
provided in the database were used for training and testing the
classifiers. The K-Nearest Neighbors (KNN) with K=10 (the
number of nearest neighbors used in the classification), and
Random Forest (RF) with number of trees equal to 10, were
used as classifiers in a leave-one-out cross-validation process,
in which, the feature-set of one subject is considered as test data
and the rest of the feature sets are used for training the classi-
fiers.

4.2. Results

The comparison has been made both with and without con-
sidering additive noise (an additive white Gaussian noise with
SNR=5 dB) to investigate the robustness of extracted features
through both conventional and proposed procedures. The re-
sults of the noiseless and noisy cases are reported in Tables 1
and 2, respectively, for three typical subjects. Accordingly, the
proposed method for extracting PLV features has significantly
improved the classification rates as compared with conventional
methods for extracting the EEG phase, both in absence and
presence of additive noise.

In order to make the results reproducible, all source codes re-
lated to this study are online available in the open-source elec-

trophysiological toolbox (OSET) [31]2.

5. Discussion

The EEG Phase is a rich source of information for various
fields of brain studies. Conventional methods for calculating
the instantaneous phase and frequency of EEG signals are un-
reliable in presence of spontaneous background EEG activity
and in low analytical signal envelopes [11]. Therefore, robust
methods for phase calculation are required.

Herein a robust phase estimation procedure was proposed to
overcome these issues. The proposed method has additional
steps as compared to conventional methods: 1) zero-pole per-
turbation of the bandpass filters, 2) zero-phase filtering, and 3)
ensemble averaging between the perturbed phase estimates for
better robustness. The zero-pole perturbation decreases the ef-
fects of LAAS and provide a more reliable instantaneous phase
sequence. However, as recently reported in [11], the phase
ambiguities due to LAAS are unavoidable and should be con-
sidered as an intrinsic limitation for phase estimation. It was
shown that the combination of the proposed methods, signif-
icantly reduces the sensitivity to noise and variations in filter
parameters, which have been commonly neglected in previous
studies.

For BCI applications, the results presented in Section 4 em-
phasize the significance and robustness of the proposed phase
extraction procedure. The results show that phase-related fea-
tures obtained through the proposed method not only outper-

2All source codes related to this paper shall be provided online after the
publication of the current study.
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Figure 13: The instantaneous frequency (top row) and the corresponding instantaneous amplitudes (bottom row), calculated through the proposed phase extraction
procedure for frequency components in the range of DC to 30 Hz for the sample EEG shown in Fig. 7, in three different cases: 1) no noise, 2) AWGN with
SNR=10 dB, and 3) AWGN with SNR=0 dB from left to right, respectively.

Table 1: Classification Accuracy Per Subject and Mean Accuracy ± Standard Deviation (%), Without Noise

KNN RF
Conventional Proposed Conventional Proposed

S1 60.82 69.69 66.91 72.93
S2 61.90 69.82 68.83 73.38
S3 61.27 69.73 67.78 73.08

mean 61.33 ± 0.54 69.75 ± 0.06 67.84 ± 0.96 73.13 ± 0.23

form conventional phase features, but also are more robust to
noise for BCI applications.

The scope of the proposed method is not limited to BCI ap-
plications. In fact, without using the hereby proposed scheme,
the effects of LAAS and filtering schemes lead to unreliable
and ambiguous phase sequences, which result in wrong inter-
pretations of phase related quantities for applications which uti-
lize EEG phase information (such as brain connectivity or BCI
problems). This highlights the necessity of the mentioned ad-
ditional steps to improve the reliability of the estimated instan-
taneous phase sequence of an EEG signal for different applica-
tions.

The theoretical findings of [11] and the hereby reported re-
sults highlight the importance of the analytical signal envelope
in EEG phase-related studies. In future studies, the combina-
tion of phase and analytical signal envelopes can be used for
improved performance in BCI and other applications.
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