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Abstract Purpose: Intraoperative imaging aims at identifying residual tumor
during surgery. Positron Surface Imaging (PSI) is one of the solutions to help
surgeons in a better detection of resection margins of brain tumor, leading to an
improved patient outcome. This system relies on a tracked freehand beta probe,
using 18F based radiotracer. Some acquisition models have been proposed in the
literature in order to enhance image quality, but no comparative validation study
has been performed for PSI.
Methods: In this study, we investigated the performance of different acquisition
models by considering validation criteria and normalized metrics. We proposed a
reference-based validation framework to perform the comparative study between
acquisition models and a basic method. We estimated the performance of several
acquisition models in the light of four validation criteria: efficiency, computational
speed, spatial accuracy, and tumor contrast.
Results: Selected acquisition models outperformed the basic method, albeit with
the real-time aspect compromised. One acquisition model yielded the best per-
formance among all according to the validation criteria: efficiency (1-Spe: 0.1, Se:
0.94), spatial accuracy (max Dice: 0.77) and tumor contrast (max T/B: 5.2). We
also found out that above a minimum threshold value of the sampling rate, the
reconstruction quality does not vary significantly.
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Conclusion: Our method allowed the comparison of different acquisition models
and highlighted one of them according to our validation criteria. This novel ap-
proach can be extended to 3D datasets, for validation of future acquisition models
dedicated to intraoperative guidance of brain surgery.

Keywords freehand beta probe · functional imaging · intraoperative imaging ·
neuronavigation · radiation detection physics · reconstruction · validation
assessment

1 Introduction

According to the World Health Organization (WHO), gliomas are the most fre-
quent primitive brain tumor, affecting 5 persons out of a 100,000 every year. The
main treatment option is surgical resection with a careful consideration of the brain
eloquent areas while achieving maximal resection, resulting in better outcome for
the patient [8]. Survival prognosis from low grade glioma (LGG) is better when
the maximum tumoral tissue has been removed, slowing down evolution into high
grade glioma (HGG), which is much more aggressive. The extent of resection [14],
correlated with the success of surgery, is assessed over postoperative MRI of the
patient, to eventually detect recurrence.
In the last decade, several technologies have been developed to improve the com-
pletion of resection by allowing detection of residual tumor during surgery mainly
for HGG. Intra-operative MRI yields good results towards maximum resection
[7], better than conventional neuronavigation-guided glioblastoma (HGG) surgery
[11]. Indeed, many limitations exist by using magnetic field devices in the operating
room (OR) such as cost issues. 5-aminolevulinic acid (5-ALA) fluorescence image
guided surgery is a relevant alternative to improve surgical resection outcome by
giving a real-time visual histology and tumor boundaries [1]. Good results have
been achieved in HGG [20]. Recently, intraoperative ultrasound (iUS) systems,
performing LGG delineation, have been used to help the surgeon [21, 26] during
surgery. Poor quality of images makes the interpretation subjective without train-
ing, especially for small or superficial residuals [4].
In oncology, Positron Emission Tomography (PET) is a gold standard for tumor
detection and grading. Considering 18F-FET (fluoro-ethyl-tyrosine) radiotracer,
uptakes in brain tissues is better for detecting LGG by comparison with usual
18F-FDG (fluoro-desoxy-glucose) [19]. The definition of tumor margins is more
accurate with FET than FDG, according to the enhanced tumor contrast. Despite
higher sensitivity and specificity in glioma diagnosis compared to MRI or CT scan
[5], 18F-PET scan suffers from a low spatial resolution (between 4 and 7 mm)
and is rarely used in the intraoperative context. Moreover, since the gamma radi-
ation (photons) has higher penetration ability than beta particles (positrons), if
a gamma sensor is used, radiations emitted from surface or deeper tissues cannot
be distinguished. In our case, beta particles is preferable because of its lower pen-
etrating ability. Therefore, all the detected positrons are certainly emitted from
the surface tissue (not deeper than 2 mm below). On the contrary, freehand nu-
clear beta probes, which are pen-sized devices that can detect positrons emitted
by radiolabeled tissues, are more suitable in the OR for the detection of residual
tumor over the resection cavity. In addition, a surgery performed with such device
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Fig. 1: (a) Beta probe and its tracking target.

will be proceeded according to a normalized protocol considering radioprotection
equipment for the surgical team, in agreement with the Nuclear Safety Agency.
In this context, such guided surgery will be performed for LGG only, representing
less than 10 tumors per year.
Freehand Positron Surface Imaging systems [16] have been introduced to gener-
ate functional images using a beta probe combined with a tracking system, as
a neuronavigation workstation. Such a system is used to estimate the activity
distribution of the radiotracer on 3D iso-surface images (mesh) to check resection
margins. However, to perform good quality images from highly undersampled data,
radiation detection physics must be modeled. In previous work, acquisition mod-
els have been proposed to address this problem, generating reconstruction images
with improved spatial localization and tumor contrast. One of the previous stud-
ies provided a comparison between different acquisition models [6], pointing to the
dramatic variations of reconstructions in SPECT (Single Photon Emission Com-
puted Tomography). In Positron Surface Imaging (PSI), this variation between
acquisition (or detection) models can lead to bias in the detection of residual tu-
mor during surgery.
In this study, we propose a validation framework for comparing the performance of
acquisition models. Section 2 presents the methodology of freehand PSI including
activity reconstruction using detection models. We also introduce our validation
framework and the acquisition models studied in this paper. Section 3 presents the
results. Finally, section 4 discusses the implications of our results and concludes
with an outlook on future work.

2 Materials and methods

2.1 Freehand PSI System

The proposed system consists of a freehand tracked beta probe [2]. After a scan
of a radiolabeled surface of interest (SOI) with our system (see figure 2), each
accumulated probe reading is synchronized with its mean corresponding pose in
the reference coordinate system, giving one measurement during a time window
(6D + 1D data). A sampling of the SOI is performed by generating a surface
mesh with isotropic suxels1, based on the probe positions and orientations. Thus,

1 A suxel is defined as the smallest element of the SOI.
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Fig. 2: A Positron Surface Imaging system: an optical tracking system (blue arrow),
a beta probe (red arrow) and its workstation (green arrow).

measurements are used to determine an estimate of the surface activity distribution
of the SOI (i.e. retrieve the activity value in each suxel of the surface: Positron
Surface Imaging).

2.2 Surface Activity Reconstruction

Radiation detection models (or acquisition models) that allow for iterative recon-
struction have been introduced and shown to substantially improve image qual-
ity in terms of spatial resolution and tumor-to-background (T/B) signal contrast
[22, 23]. By taking conventions introduced in [6], the sampled SOI suxels x = (xj)
and the measurement vector m = (mi) are considered here. Each stored measure-
ment mi can be written as a linear combination of the (unknown) activity values
of the suxels xj within its intersection with the FOV of the probe as follows:

mi =
N∑

j=1

aij .xj (1)

where coefficients aij are computed through an acquisition model, corresponding to
the probability that the sensor at pose i has detected positron emissions from suxel
xj . The unknown reconstruction vector x (i.e. the surface activity reconstructed,
composed of N suxels) may be found by solving the system m = A.x, with
A = (aij) the system matrix (size M ∗N with M the length of the measurement
vector m). Solutions of this system may be approximated using the Maximum
Likelihood Expectation Maximization (MLEM) algorithm introduced by [25], to
compute the pseudo inverse of the system matrix A.
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Fig. 3: Main steps of the reference-based validation protocol for medical image
processing (figure reproduced from [10]): from a defined validation objective re-
lated to a clinical context C, results of the method to be assessed FM applied on
validation data sets DI with parameters of the method PI are compared with a
reference through a comparison function FC . Then, the final result is obtained by
testing the output of FC against the validation objective.

2.3 Reference-based assessment of reconstruction

In this section, we present our validation scheme for reconstructions generated from
Positron Surface Imaging System. The need for a dedicated assessment scheme in
this novel imaging approach drives us to develop a specific framework, according
to the methodology proposed in [9]. Our focus is to propose a comparative study
allowing the performance characterization of acquisition models and the identifica-
tion of parameters which influence reconstruction outputs, for intraoperative use in
neurosurgery. We focused on assessment levels 1 and 2, dedicated to technical pa-
rameters and clinical reliability setting respectively. Biological phantom˝datasets
acquired in simulated OR conditions with a minimal setup are considered, where
the clinical realism is close to a real surgery with very few controlled phantom pa-
rameters. Based on this methodology, assessed features concern the reconstruction
efficiency, computation speed and tumoral characterization accuracy. Our valida-
tion protocol is based on [10], where a scheme for medical image processing valida-
tion procedure is described via a structured framework. It relies on the comparison
between the results of a method and a reference, assumed to be close or equal to
the correct solution. This scheme has been successfully used for designing and
reporting medical image processing validation studies, such as in [12]. The main
components of this reference-based validation scheme are presented in figure 3.
The validation objective of our study was to evaluate detection performances and
clinical relevance (VC) of reconstructed images generated with acquisition model
FM , on in-vitro data sets in the context of neurosurgery, for the detection of re-
section margins (C). Following sections provide an instantiation of the framework,
where each component is detailed in figure 4.
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Fig. 4: Adapted reference-based validation process according to our evaluation
context.

2.3.1 Validation data sets DI

Our validation datasets consist of acquisitions with an in-vitro phantom as de-
scribed in [22].

Bioluminescence images Dref
I Cancer cells were supplied with luciferine (0.1

ml per dish) to perform imaging with a photographic camera of each Petri dish.

We define Dref
I the obtained 2D images considered as the reference to which

reconstructions R̂Mi
(see below) will be compared for each configuration (shown

in figure 5, lower row). Petri dish 1 (figure 5d) : two high-contrast tumors. Petri
dish 2 and 3 (figures 5e and 5f) : three tumors within regular contrast.

Raw positron surface data DM
I Petri dish surfaces were scanned with a 3-

axis step motor setup in 1 mm steps. For each position of the step motor, probe
readings were accumulated for 3 seconds. Due to the acquisition frequency of the
beta probe (≈ 10 Hz), each position is associated with radioactive counts in the
time window (i.e. ≈ 30 probe readings during each 3 second acquisition). A long
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5: Row 1: Brightfield images of the three Petri dish configurations, where right
oriented red arrows show BCC grown locations (tumor) and left oriented green
arrow show grown HFF locations (spot or homogeneous background), (a) Petri dish
1, (b) Petri dish 2 and (c) Petri dish 3. Row 2: Reference bioluminescence images

Dref
I of (d) Petri dish 1, (e) Petri dish 2 and (f) Petri dish 3. Row 3: reconstructed

images with projection method for 3 second sampling rate (no undersampling).
Raw 4: reconstructed images with projection method for 1 second sampling rate.
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acquisition time leads to good statistical data consistency in laboratory conditions,
but this might not be feasible in intraoperative conditions. In order to observe the
impact of lower acquisition times on data quality, raw data were undersampled
by a selected factor (see input parameters section 2.3.5). Below, DM

I is used to
represent each configuration of multi-sampled raw positron surface data.

2.3.2 Surface activity reconstruction method FMi

To perform reconstruction, raw data DM
I were sampled into a 2D rectangular grid

(50 x 50, 1 mm isotropic pixels), for a fixed scanning depth value. Also, the mea-
surement vector m was created from DM

I . Here, objective of reconstruction is to
define each pixel value of the image, within the rectangular 2D grid. When the ba-
sic approach activity projection (proj) is considered, pixel values are defined using
a nearest neighbor interpolation over measurement vector m for each position in
the grid. By contrast, when acquisition models (presented below) are used to esti-
mate matrix A, reconstruction is obtained through equation x = A−1.m, with x
the reconstruction vector, m the measurement vector and A−1 the pseudo inverse
of the system matrix. The MLEM algorithm with a selected number of iterations
(see section 2.3.5) was used to compute its pseudo inverse. R̂Mi

represents the
image from the reconstruction vector x estimated with method FMi

.

Solid angle model (SA) As baseline to define each contribution of suxel xj to
measurement mi, the solid angle model (SA) introduced by [17] considers the ge-
ometrical attenuation based on the relative position and orientation of the probe
to the source. An implementation of the SA model, used in [22] and defined in
equation 2, computes each attenuation coefficient aij , using the following param-
eters: dij the distance between the detector and the suxel xj for measurement mi

(probe to source distance), r the detector radius and αij the tilt angle between
the detector axis and the detector to source axis (see figure 6).

aij = f(dij , αij) =
1

2
.

1− 1√
(r2/d2ij) + 1

 . cosαij (2)

Look-up-table model (LUT) In the previous analytical model, each coefficient
of the system matrix A is directly computed from the measurement vector mi. An
alternative solution consists in selecting precomputed aij coefficients stored in a
look-up table (LUT). As proposed in [24], attenuation coefficients aij are defined
by equation 3 for respective LUT positions in the FOV.

aij = L(i, j) (3)

Here, L refers to the LUT stored in memory and the position in the FOV is
represented by the pair (i, j), shown in figure 7a. Implicitly, a mapping function
is used to relate the source-to-detector distance dij and the tilt angle αij to the
LUT coefficients. This model is based on coefficients stored in memory.
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Fig. 6: Plot of the solid angle model function aij = f(d, αij) with d the probe to
source distance and αij the tilt angle.

(a) (b)

Fig. 7: (a) Representation of the LUT proposed in [24], where aij are represented
by a color-map, according to their position in the FOV. Here, distance from center
of the source (X axis) and depth from the source to the detector (Y axis) are
defined through dij and αij , (b) Partition model generated from k = 4 clusters
with ap coefficients represented along distance from center of the source (X axis)
and depth from the source to the detector (Y axis): a1 in dark red, a2 in green,
a3 in blue and a4 in dark blue.

Partition model (PM) Although the LUT model yields good results in defin-
ing structures better than the SA model when comparing with a groundtruth [24],
looking up the aij in the LUT for each (i, j) pairs involves additional computational
time for defining the whole system matrix A; possibly using nine neighbor averag-
ing interpolation. A partition model (PM) is proposed to overcome this constraint,
based on the division of the FOV into sectors where particular homogeneous coef-
ficients ak are assigned for each partition k [15]. PM model is analytically defined
in equation 4 and example of a partitioning scheme is shown in figure 7b. Here, ak
factors are defined through a k-means algorithm performed over the LUT, where
the number of cluster k corresponds to the wanted number of partition k. Thereby,
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values of the LUT defined within each cluster k are averaged to obtain ak attenu-
ation coefficients. In the same way as the LUT model, ak coefficients are assigned
according to respective (i, j) positions in the FOV.

aij =

{
ak source within partition k,

0 source not within any partition.
(4)

2.3.3 Error ÊMi
of reconstructions

The reconstruction process involves estimating the pseudo-inverse of the matrix
A (computed via acquisition model FMi

) by the MLEM iterative method. Thus,
reconstruction error ÊMi

, correlated with iteration number, was defined as the
norm of residual given ÊM = ‖A.ĉ − g‖with ĉ the final estimated reconstruction
vector, A the coefficient matrix and g the probe reading vector.

2.3.4 Reference method Fref and associated error Êref

In oncology, presence of residual tumor is generally observed with the radiotracer
uptake on functional PET images, combined with a CT scan or an MRI when avail-
able (high performance) for better localization using co-registered images (CT in
this case is primarily needed for attenuation correction). However, this modal-
ity requires long acquisition time (30 min. for a PET scan). In this study, we
used bioluminescence imaging as a reference for determining the tumor location in
Petri dishes [18], without affecting initial cell growth behavior [27]. This method
gives high resolution functional images, where accuracy is assumed better than
reconstruction with methods FMi

. Reference images were obtained by cropping

bioluminescence images Dref
I following a square (size 180 x 180 pixels), fitted and

tangential to the Petri dish edges. The symbol R̂Rref is used to represent reference
bioluminescence images for each configuration. In addition, the associated error
Êref is related to the loss of background signal in bioluminescence image (absence
of peri-tumoral contrast, see figure 5), which cannot be quantified.

2.3.5 Input parameters PI

In this section, parameters that can possibly influence the performance of recon-
struction are elaborated. According to the model of reference-based validation
[10], parameters related to data acquisition and the reconstruction method are
considered.

Sampling raw data DM
I The variation of this data-related parameter allows the

observation of data quality over different simulated acquisition times. The range
[0.1; 3] seconds has been selected for simulating scans between a quick scan (0.1
sec per position) and a more detailed one (3 sec per position), corresponding to
3% and 100% of probe readings considered per position, respectively. In figure 5,
row 3 and row 4 show reconstructed images generated with the projection method
using 3 sec. and 1 sec. acquisitions, respectively.
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MLEM iteration number According to [6], reconstruction performed with large
number of iteration (e.g. 100) increases artifact formation, in SPECT imaging
systems. The variation of the number iteration in the range [1; 50] allows us to
observe the influence of this method-related parameter on reconstruction.

Number of clusters in PM Finally, in the partition model PM proposed to
reduced computational power by dividing the LUT FOV, according to a k-means
algorithm. The variation of the number of clusters k in the range [2; 6], allows us
to observe influence of this method-related parameter on the computation time
in comparison with other reconstruction methods. In the following, we use the
symbol PM-k (PM-2, PM-3, ..., PM-6).

2.3.6 Normalization function of reconstruction FNRMi

In order to compare reconstructions with their respective reference R̂Ref , R̂Mi

images are resized to fit reference image spatially (180 x 180 pixels) and ampli-
tudes are normalized within the range [0; 1]. Thus R̂NMi

represents R̂Mi
images

normalized through FNRMi
function and ÊNMi

represents visual blurring errors
due to the interpolation method used in the resizing step.

2.3.7 Normalization function of reference FNRref

Due to the different modalities used for generating the validation datasets Dref
I

and DM
I , a scale shift exists between bioluminescence reference images R̂Ref and

reconstructions R̂Mi
, respectively acquired with a camera and the PSI system.

For each Petri dish configuration, the reconstructed image R̂Mi
generated through

the projection method FMi
, parametrized with the minimum sampling rate (3 sec

per position, no undersampling) is considered. The visual scaling shift was evalu-
ated by overlapping reference R̂ref with its respective considered reconstruction.
Experimentally, a scale of 1.1 is observed for reconstructed image by comparison
with bioluminescence images, in each case (see figure 8, upper row). Then, a 2D
affine spatial transformation (with 1.1 scaling parameter) was applied to cropped
bioluminescence images (figure 8 lower row). A binarization step was performed by
thresholding images with a determined level. Heuristically, a 0.3 level value gives
the global size-position (see figure 9). Finally, remaining Petri dish edges were
removed with a morphological opening operation. R̂Nref represents segmented
bioluminescence images in the SOI coordinate system obtained with both level
values, and ÊNref represents the qualitative error corresponding to the possible
mismatch between Petri dish edges (shown in figure 8, lower row).

2.3.8 Validation criterion and comparison function FC

From normalized outputs R̂Nref and R̂NMi
, we estimated the following validation

criterion: reconstruction efficiency, computation speed, spatial accuracy and tumor
characteristics (contrast and size).
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(a) (b) (c)

(d) (e) (f)

Fig. 8: Upper row: Difference of cropped bioluminescence and raw images, (a) Petri
dish 1, (b) Petri dish 2 and (c) Petri dish 3. Lower row: bioluminescence images
in the SOI coordinate system R̂ref (d) Petri dish 1, (e) Petri dish 2 and (f) Petri
dish 3.

(a) (b) (c)

Fig. 9: Normalized reference, giving global size and position of tumors. (a) Petri
dish 1, (b) Petri dish 2, (c) Petri dish 3.



Acquisition Models in Intraoperative Positron Surface Imaging 13

Efficiency For each reconstructed image, compared to reference image, we calcu-
lated the number of false negative (FN), false positive (FP), true positive (TP) and
true negative (TN) pixels. Then, sensitivity-specificity curves were computed using
these metrics. Sensitivity has been defined as the true positive rate (TP/(TP +
FN)), which represents the ability of our system to detect tumor when a tu-
mor is present in the reference. Specificity has been defined as the true negative
rate (TN/(TN + FP )), which represents the ability of our system to detect a
tumor when a tumor is not present in the reference. Efficiency of reconstruction
OD = FC(R̂Nref , R̂NMi

) can be quantified with the optimal point observed on
sensitivity-specificity curves (i.e. optimal point obtained by maximizing sensitivity
and specificity).

Computation speed The computation time of each reconstruction performed
with acquisition model was determined. The speed performance is a relevant cri-
terion for an efficient intraoperative use.

Spatial accuracy Correlation of reconstructions R̂NMi
to respective reference

R̂Nref were estimated. Due to the nature of R̂NMi
and R̂Nref outputs, the Dice

coefficient (DSC) was used as comparison function FC , shown in equation 5.

DSC(A,B) =
2 | A ∩B |
| A | + | B | (5)

Tumor contrast Similarly with PET scan images, the functional information
over reconstructions is provided by the tumor to background ratio (T/B). From
normalized reconstructed images R̂NMi

, mean T/B was computed over normalized
reconstruction R̂NMi

using normalized reference R̂Nref as binary mask. Based
on the boolean values in the mask definition, each pixel with a ’true’ value was
considered part of the tumor region of interest (tROI) and each ’false’ value part of
the background region of interest (bROI). Each ROI was averaged by its number
of pixels and thus T/B ratio was computed, defined as result OD.

2.3.9 Quality index OQI and hypothesis testing FH

From comparison functions FC defined above according to the validation criteria,
a quality index can be deduced for characterizing the overall performance of acqui-
sition models. In each sensitivity-specificity curve, Area Under the Curve (AUC)
was computed for each acquisition model using the trapezoidal numerical integra-
tion method (FQI), representing the quality index OQI . In addition, no statistical
evaluation FH was performed in this scheme, due to insufficient amount of data.
Visual comparisons have been done between reconstruction and related reference.

3 Results

Two independent studies were performed using comparison function FC along two
input parameters PI . The first comparison was made by varying the sampling
rate while fixing the number of MLEM iteration at 25, an empirical value used
in previous work on PSI systems [23, 24]. The second one was made by varying



14 Frédéric Monge et al.

(a) (b) (c)

Fig. 10: Reconstructed images varying MLEM iteration number with SA model
for sampling time fixed at 3 seconds, in Petri dish 2. (a) 10 iterations, (b) 30
iterations, (c) 50 iterations.

(a) (b)

Fig. 11: Blurring effect of normalization function FNRMi
, example with projection

method, optimal input parameters PI on Petri dish 2 (a) Reconstructed image R̂Mi

(50 x 50 pixels), (b) Normalized reconstructed image R̂NMi
(180 x 180 pixels).

number of iterations of the MLEM algorithm against a constant sampling time
of 3 seconds, corresponding to the initial acquisition time of data. In figure 10,
exemplary reconstructed images with the SA model are shown for Petri dish 2, for
various numbers of MLEM iterations.
Reconstruction errors, described in section 2.3.3, were obtained using the MLEM

method for each acquisition model. Error values reached a range of
[
10−7; 10−6

]
by varying the sampling rate and the number of MLEM iterations respectively.
The loss of peri-tumoral tissue signal in bioluminescence images, represented by
error ÊRef , is observed in figure 5 lower row. This total lack of background signal
was due to the bioluminescence process, which shows tumoral tissues only. Error
ÊNMi

represents the blurring effect of the normalization function FNRMi
applied

on reconstructions. An example is shown in figure 11 for the projection method in
the Petri dish 2.
Misalignment error ÊNRef generated by the normalization function of reference
FNRref is observed over figure 8 lower row. Results show a satisfying match be-

tween Petri dish edges from reconstruction R̂Mi
and from reference R̂Ref , in each



Acquisition Models in Intraoperative Positron Surface Imaging 15

0 0.1 0.2 0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity

S
en

si
tiv

ity

 

 

Proj
SA
LUT
PM−2
PM−3
PM−4
PM−5
PM−6

(a)

Fig. 12: Mean ROC curves of reconstruction methods for optimal sampling and
MLEM iteration number parameters.

Table 1: Optimal points extracted from mean ROC curves, computed for the dif-
ferent Petri dish configurations.

PM-k3

Method Proj SA LUT 2 3 4 5 6

1-Spe1 0.16 0.10 0.10 0.25 0.13 0.13 0.11 0.11

Se2 0.9 0.93 0.94 0.95 0.93 0.94 0.93 0.93

1Specificity. 2Sensitivity. 3Partition model witk k ∈ [2; 6] clusters selected.

configuration. Visually, performance of acquisition models can be observed over
sensitivity-specificity curves derived from reconstructions. In figure 12, mean ROC
(Receiver Operating Characteristic) curves over Petri dish configurations were de-
fined by considering optimal sampling and MLEM input parameters PI (MLEM
= 25 iterations and sampling = 3 seconds). In ROC representation, the best curve
is found by minimizing the 1−specificity term while maximizing the sensitivity.
Values of optimal points are presented in table 1. Here, two acquisition models
outperformed the projection method: SA and LUT models.
In figures 13a and 13b, AUC values are shown for ROC curves varying the sam-

pling rate and MLEM iterations respectively. We observed that the projection
method results are nearly constant along the sampling rate (AUC around 0.74)
and invariant along the number of MLEM iterations. From 1-sec sampling on-
wards, each acquisition model tends to 0.77 mean AUC value, except for method
PM-2 (mean AUC = 0.67). Moreover, mean AUC values tend to decrease linearly
along MLEM iterations, with a steeper decrease when using the PM-2 model: from
a 0.86 starting AUC value for one MLEM iteration down to 0.79 around for 50
MLEM iterations. Globally, both AUC curves emphasize three efficient and sta-
ble acquisition models by comparison with the projection method: SA, LUT and
PM-5 models.
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Fig. 13: Mean AUC values along input parameters PI : (a) Varying sampling rate
and MLEM = 25 iterations, (b) Varying MLEM iterations, sampling = 3 seconds.
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Fig. 14: Mean computation time observed for reconstruction methods varying sam-
pling rate.

Considering computation time required by the projection method (3 ms indepen-
dently of sampling rate), the reconstruction process was hardly time consuming.
This computation time of reconstruction methods is linearly dependent on the
sampling rate of data, as shown in figure 14. The LUT was the most time con-
suming method with a maximum of 31 minutes observed. Other methods reached
a maximum around 28 minutes of computation required to perform reconstruc-
tions.
The quantification of spatial accuracy of each reconstruction method is given by

the Dice score metric. In figure 15a, the projection method yields the most stable
Dice score, around 0.6, overtaking the PM-2 model. Starting with the 0.5 sec sam-
pling value, all other reconstruction models outperformed the projection method,
where higher Dice values are obtained with the LUT model. The mean Dice score
variation along MLEM number of iterations is shown in figure 15b. Results show
a slight variation of the behavior of the Dice value for each reconstruction method
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starting with 5 MLEM iterations. Two methods are emphasized here: LUT and
SA models.
Finally, variations of the tumor contrast along the sampling rate and number
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Fig. 15: Mean Dice values along input parameters PI : (a) Varying sampling rate
and MLEM = 25 iterations, (b) Varying MLEM iterations, sampling = 3 seconds.

of MLEM iterations are shown in figure 16a and 16b respectively. The projec-
tion method yields constant mean T/B contrast rate over varying sampling rates
or number of MLEM iterations. For reconstruction methods, T/B values out-
performed the projection method, increasing slightly with the sampling, starting
at 0.5 (figure 16a). On the contrary, mean T/B value decreases with increasing
MLEM number of iterations (figure 16b), but remains better than the projection
method. LUT and SA models yields the highest T/B values for a sampling rate
of 3 combined with 5 MLEM iterations.

4 Discussion and conclusion

4.1 Discussion

We have compared detection models by assessing respective reconstructed im-
ages from a chosen dataset, relying on a validation framework. We have outlined
benefits and drawbacks of each acquisition model according to selected input pa-
rameters PI (i.e. section 2.3.5) and validation criteria (i.e. section 2.3.8). Images
reconstructed using acquisition models yield global detection improvement along
chosen comparison functions and quality index (i.e. section 2.3.9) with respect to
the basic projection method.
According to the clinical applicability involved here in the selection of an adequate
acquisition model, the trade-off between reconstruction quality and reconstruction
time has been outlined and influences this selection. The quality of reconstruction
has impact on decision making of the surgeon on the detection of residual tumor.
Reconstruction time is important for respect of the surgical workflow. Additional
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Fig. 16: Mean T/B values along input parameters PI : (a) Varying sampling rate
and MLEM = 25 iterations, (b) Varying MLEM iterations, sampling = 3 seconds.

time for PSI acquisition needs be as short as possible in order to avoid potential
complications or infections [3].
Our previous work [22], involved long acquisition times. Although long acquisitions
provide statistically good data, it is not realistic to expect such data in clinical con-
ditions. In addition, acquisition time and scan quality depend on the operator (i.e.
neurosurgeon). In this work, we simulated the acquisition time variations based on
the sampling rate input parameter. Results show that this variation slightly affects
data quality. However, transient states can be observed in figures 13a, 15a and 16a
in the range of [0.1; 0.7] seconds before reaching a stable value. This, suggests a
threshold value of 0.7 second per location that should be considered as a measure
of the data acquisition speed. A sampling rate above this value does not improve
the data quality significantly, but still increases acquisition times.
Empirically, 25 iterations for the MLEM reconstruction algorithm were fixed to
perform reconstructions with freehand PSI systems [23, 24], close to values used
in freehand SPECT systems [13, 28] (i.e. 20 iterations). We investigated this value
by varying it as an input parameter and looking at the respectively generated
reconstructions. Increasing the MLEM number of iterations has slightly digressive
effects on validation criteria. Peaks were observed at five iterations in figures 13b,
15b and 16b. Based on our experiments, we propose to use this value in future
experiments for optimal validation criteria values.
Intraoperative use involves high performance in terms of computational speed.
One factor that affects it is the sampling rate, which is directly correlated with
the amount of data acquired per location. In figure 14, the linearity between the
computational speed and sampling rate can be observed. Another factor that af-
fects computational speed is the choice of the acquisition model. In this context,
the partition model was introduced as a faster LUT model. In this work, we have
proposed using a range of k clusters in the validation of the partition model (
where similar reconstruction results as the off-the-shelf LUT have been expected).
In figure 14, each generated PM-k model falls under the LUT experimental curve,
i.e. is better in terms of computational speed. Results given by each PM-k were
slightly faster than other methods, especially with the PM-2 method.
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According to our experiments, one acquisition model outperformed others: the
LUT model. This model offers the best result in terms of efficiency (1-Spe: 0.1;
Se: 0.94), spatial accuracy (max Dice: 0.77) and tumor contrast (max T/B: 5.2),
but requires the highest computational speed among all models (max computation
time: 31 min). However, considering the stability of data quality over the sampling
time threshold (i.e. 0.7 second per location), the LUT model seems appropriate
for intraoperative use. Moreover, the current LUT model developed in [24] has
been generated from planar acquisition. In real cases, the SOI would represent the
resection cavity as a 3D surface. A realistic model would consider the inclination
of the probe to the surface axis, the tilt angle.
In our validation framework, qualitative errors have been identified in the output of
the reference method FRef and the normalization functions FNRMi

and FNRref .
Such errors inducing possible bias in the results of our comparison functions FC

should be taken into account. According to [10], bias can be studied with respect to
two criteria: accuracy and metric realism. Firstly, ÊRef has been identified as the
loss of background signal in bioluminescence images. No difference can be observed
between inner and outer contrast of the Petri Dish (background in blue, figure 5,
row 2) by comparison with reconstructed images (outer background in red and in-
ner background in blue, figure 5, row 3 and 4). Thus, bioluminescence images suffer
from a low realism due to radiotracer uptake in both tumoral and healthy tissue.
In terms of accuracy, this can induce a few errors in the ROC curve creation for
the efficiency validation criteria, without impacting the global behavior of curves.
Secondly, ÊNMi

corresponds to the blurring effect of the interpolation performed
on reconstructions. The smaller the size of the reconstructed images, the more the
blurring effect increases, leading to a high bias in comparison functions. A possible
impact of this is the overestimation of residual tumor size. And thirdly, ÊNRef

gives the overall idea of the possible misalignment after the normalization method
of references. In a real case, the imaging devices used for the different modalities
that give the actual acquisition and the groundtruth reference, do not have the
same coordinate system. Here, since edges of Petri dish are visible in both im-
ages (reconstruction and bioluminescence), it is possible to perform circle fitting
to estimate the difference between the radius of the actual and reference images,
which could subsequently be used as an estimate of the misalignment error ÊNRef .
While a Petri dish radius larger in reference than in reconstruction will lead to an
underestimation of the real tumor size, a larger radius in reconstruction than in
reference will lead to an overestimation.
We have introduced several validation criteria for selecting an optimal acquisi-
tion model. They are strongly dependent to the nature of the reference dataset.
The Dice score metric is adapted for validating the global localization of tumor
spots with a reference extracted for an imaging modality of a different nature than
the one used (i.e. bioluminescence imaging). In contrast, for a reference from an
emission-based imaging modality (PET, SPECT, etc..), the normalized cross cor-
relation metric (NCC) would give more information in checking resection margins.
In addition, the tumor size over reconstruction (in cm2) would provide information
on the under/over estimation of the real tumor size in reference.
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4.2 Conclusion

For the first time, we have compared acquisition models, dedicated to Positron Sur-
face Imaging based on a dedicated reference-based validation scheme. Associated
to our input parameters, new validation criteria can be integrated, considering the
nature of reference datasets. Combined with AUC values, quality criteria such as
Youden index can also be used for the characterization of ROC curves in terms of
detection. In future work, the validation protocol will be extended to 3D realistic
reference datasets (e.g. realistic neurosurgical phantom), as a necessary validation
step involving realistic conditions for clinical use in neurosurgery.
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