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Purpose: Intraoperative imaging aims at identifying residual tumor during surgery. Positron Surface Imaging (PSI) is one of the solutions to help surgeons in a better detection of resection margins of brain tumor, leading to an improved patient outcome. This system relies on a tracked freehand beta probe, using 18 F based radiotracer. Some acquisition models have been proposed in the literature in order to enhance image quality, but no comparative validation study has been performed for PSI. Methods: In this study, we investigated the performance of different acquisition models by considering validation criteria and normalized metrics. We proposed a reference-based validation framework to perform the comparative study between acquisition models and a basic method. We estimated the performance of several acquisition models in the light of four validation criteria: efficiency, computational speed, spatial accuracy, and tumor contrast. Results: Selected acquisition models outperformed the basic method, albeit with the real-time aspect compromised. One acquisition model yielded the best performance among all according to the validation criteria: efficiency (1-Spe: 0.1, Se: 0.94), spatial accuracy (max Dice: 0.77) and tumor contrast (max T/B: 5.2). We also found out that above a minimum threshold value of the sampling rate, the reconstruction quality does not vary significantly.

Introduction

According to the World Health Organization (WHO), gliomas are the most frequent primitive brain tumor, affecting 5 persons out of a 100,000 every year. The main treatment option is surgical resection with a careful consideration of the brain eloquent areas while achieving maximal resection, resulting in better outcome for the patient [START_REF] Ius | Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. a single-institution experience in 190 patients: clinical article[END_REF]. Survival prognosis from low grade glioma (LGG) is better when the maximum tumoral tissue has been removed, slowing down evolution into high grade glioma (HGG), which is much more aggressive. The extent of resection [START_REF] Mcgirt | Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas[END_REF], correlated with the success of surgery, is assessed over postoperative MRI of the patient, to eventually detect recurrence. In the last decade, several technologies have been developed to improve the completion of resection by allowing detection of residual tumor during surgery mainly for HGG. Intra-operative MRI yields good results towards maximum resection [START_REF] Hata | Intraoperative tumor segmentation and volume measurement in mriguided glioma surgery for tumor resection rate control[END_REF], better than conventional neuronavigation-guided glioblastoma (HGG) surgery [START_REF] Kubben | Intraoperative mri-guided resection of glioblastoma multiforme: a systematic review[END_REF]. Indeed, many limitations exist by using magnetic field devices in the operating room (OR) such as cost issues. 5-aminolevulinic acid (5-ALA) fluorescence image guided surgery is a relevant alternative to improve surgical resection outcome by giving a real-time visual histology and tumor boundaries [START_REF] Behbahaninia | Intraoperative fluorescent imaging of intracranial tumors: A review[END_REF]. Good results have been achieved in HGG [START_REF] Roessler | Intraoperative tissue fluorescence using 5-aminolevolinic acid (5-ala) is more sensitive than contrast mri or amino acid positron emission tomography (18f-fet pet) in glioblastoma surgery[END_REF]. Recently, intraoperative ultrasound (iUS) systems, performing LGG delineation, have been used to help the surgeon [START_REF] Selbekk | Comparison of contrast in brightness mode and strain ultrasonography of glial brain tumours[END_REF][START_REF] Šteňo | Navigated threedimensional intraoperative ultrasound-guided awake resection of low-grade glioma partially infiltrating optic radiation[END_REF] during surgery. Poor quality of images makes the interpretation subjective without training, especially for small or superficial residuals [START_REF] Gerganov | Twodimensional high-end ultrasound imaging compared to intraoperative mri during resection of low-grade gliomas[END_REF]. In oncology, Positron Emission Tomography (PET) is a gold standard for tumor detection and grading. Considering 18 F-FET (fluoro-ethyl-tyrosine) radiotracer, uptakes in brain tissues is better for detecting LGG by comparison with usual 18 F-FDG (fluoro-desoxy-glucose) [START_REF] Pauleit | Comparison of 18f-fet and 18f-fdg pet in brain tumors[END_REF]. The definition of tumor margins is more accurate with FET than FDG, according to the enhanced tumor contrast. Despite higher sensitivity and specificity in glioma diagnosis compared to MRI or CT scan [5], 18 F-PET scan suffers from a low spatial resolution (between 4 and 7 mm) and is rarely used in the intraoperative context. Moreover, since the gamma radiation (photons) has higher penetration ability than beta particles (positrons), if a gamma sensor is used, radiations emitted from surface or deeper tissues cannot be distinguished. In our case, beta particles is preferable because of its lower penetrating ability. Therefore, all the detected positrons are certainly emitted from the surface tissue (not deeper than 2 mm below). On the contrary, freehand nuclear beta probes, which are pen-sized devices that can detect positrons emitted by radiolabeled tissues, are more suitable in the OR for the detection of residual tumor over the resection cavity. In addition, a surgery performed with such device Fig. 1: (a) Beta probe and its tracking target. will be proceeded according to a normalized protocol considering radioprotection equipment for the surgical team, in agreement with the Nuclear Safety Agency. In this context, such guided surgery will be performed for LGG only, representing less than 10 tumors per year. Freehand Positron Surface Imaging systems [START_REF] Navab | Navigated nuclear probes for intra-operative functional imaging[END_REF] have been introduced to generate functional images using a beta probe combined with a tracking system, as a neuronavigation workstation. Such a system is used to estimate the activity distribution of the radiotracer on 3D iso-surface images (mesh) to check resection margins. However, to perform good quality images from highly undersampled data, radiation detection physics must be modeled. In previous work, acquisition models have been proposed to address this problem, generating reconstruction images with improved spatial localization and tumor contrast. One of the previous studies provided a comparison between different acquisition models [START_REF] Hartl | Detection models for freehand spect reconstruction[END_REF], pointing to the dramatic variations of reconstructions in SPECT (Single Photon Emission Computed Tomography). In Positron Surface Imaging (PSI), this variation between acquisition (or detection) models can lead to bias in the detection of residual tumor during surgery. In this study, we propose a validation framework for comparing the performance of acquisition models. Section 2 presents the methodology of freehand PSI including activity reconstruction using detection models. We also introduce our validation framework and the acquisition models studied in this paper. Section 3 presents the results. Finally, section 4 discusses the implications of our results and concludes with an outlook on future work.

Materials and methods

Freehand PSI System

The proposed system consists of a freehand tracked beta probe [START_REF] Daghighian | Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery[END_REF]. After a scan of a radiolabeled surface of interest (SOI) with our system (see figure 2), each accumulated probe reading is synchronized with its mean corresponding pose in the reference coordinate system, giving one measurement during a time window (6D + 1D data). A sampling of the SOI is performed by generating a surface mesh with isotropic suxels 1 , based on the probe positions and orientations. Thus, Fig. 2: A Positron Surface Imaging system: an optical tracking system (blue arrow), a beta probe (red arrow) and its workstation (green arrow). measurements are used to determine an estimate of the surface activity distribution of the SOI (i.e. retrieve the activity value in each suxel of the surface: Positron Surface Imaging).

Surface Activity Reconstruction

Radiation detection models (or acquisition models) that allow for iterative reconstruction have been introduced and shown to substantially improve image quality in terms of spatial resolution and tumor-to-background (T/B) signal contrast [START_REF] Shakir | Acquisition model for iterative reconstruction of navigated beta-probe surface images[END_REF][START_REF] Shakir | Evaluation of an ad hoc model of detection physics for navigated beta-probe surface imaging[END_REF]. By taking conventions introduced in [START_REF] Hartl | Detection models for freehand spect reconstruction[END_REF], the sampled SOI suxels x = (x j ) and the measurement vector m = (m i ) are considered here. Each stored measurement m i can be written as a linear combination of the (unknown) activity values of the suxels x j within its intersection with the FOV of the probe as follows:

m i = N j=1 a ij .x j (1) 
where coefficients a ij are computed through an acquisition model, corresponding to the probability that the sensor at pose i has detected positron emissions from suxel x j . The unknown reconstruction vector x (i.e. the surface activity reconstructed, composed of N suxels) may be found by solving the system m = A.x, with A = (a ij ) the system matrix (size M * N with M the length of the measurement vector m). Solutions of this system may be approximated using the Maximum Likelihood Expectation Maximization (MLEM) algorithm introduced by [START_REF] Shepp | Maximum likelihood reconstruction for emission tomography[END_REF], to compute the pseudo inverse of the system matrix A. 

Reference-based assessment of reconstruction

In this section, we present our validation scheme for reconstructions generated from Positron Surface Imaging System. The need for a dedicated assessment scheme in this novel imaging approach drives us to develop a specific framework, according to the methodology proposed in [START_REF] Jannin | Assessment of image-guided interventions[END_REF]. Our focus is to propose a comparative study allowing the performance characterization of acquisition models and the identification of parameters which influence reconstruction outputs, for intraoperative use in neurosurgery. We focused on assessment levels 1 and 2, dedicated to technical parameters and clinical reliability setting respectively. Biological phantom datasets acquired in simulated OR conditions with a minimal setup are considered, where the clinical realism is close to a real surgery with very few controlled phantom parameters. Based on this methodology, assessed features concern the reconstruction efficiency, computation speed and tumoral characterization accuracy. Our validation protocol is based on [START_REF] Jannin | Model for defining and reporting reference-based validation protocols in medical image processing[END_REF], where a scheme for medical image processing validation procedure is described via a structured framework. It relies on the comparison between the results of a method and a reference, assumed to be close or equal to the correct solution. This scheme has been successfully used for designing and reporting medical image processing validation studies, such as in [START_REF] Maier-Hein | Comparative validation of single-shot optical techniques for laparoscopic 3-d surface reconstruction[END_REF]. The main components of this reference-based validation scheme are presented in figure 3.

The validation objective of our study was to evaluate detection performances and clinical relevance (V C ) of reconstructed images generated with acquisition model F M , on in-vitro data sets in the context of neurosurgery, for the detection of resection margins (C). Following sections provide an instantiation of the framework, where each component is detailed in figure 4.

D I M P Ii M D I ref F Mi F ref R Mi E Mi R ref E ref F NRref R Nref E Nref F NRMi R NMi E NMi F C1 F C2 O D1i O D2i
Fig. 4: Adapted reference-based validation process according to our evaluation context.

Validation data sets D I

Our validation datasets consist of acquisitions with an in-vitro phantom as described in [START_REF] Shakir | Acquisition model for iterative reconstruction of navigated beta-probe surface images[END_REF].

Bioluminescence images D ref I

Cancer cells were supplied with luciferine (0.1 ml per dish) to perform imaging with a photographic camera of each Petri dish. We define D ref I the obtained 2D images considered as the reference to which reconstructions RM i (see below) will be compared for each configuration (shown in figure 5, lower row). Petri dish 1 (figure 5d) : two high-contrast tumors. Petri dish 2 and 3 (figures 5e and 5f) : three tumors within regular contrast.

Raw positron surface data D M I

Petri dish surfaces were scanned with a 3axis step motor setup in 1 mm steps. For each position of the step motor, probe readings were accumulated for 3 seconds. Due to the acquisition frequency of the beta probe (≈ 10 Hz), each position is associated with radioactive counts in the time window (i.e. ≈ 30 probe readings during each 3 second acquisition). A long acquisition time leads to good statistical data consistency in laboratory conditions, but this might not be feasible in intraoperative conditions. In order to observe the impact of lower acquisition times on data quality, raw data were undersampled by a selected factor (see input parameters section 2.3.5). Below, D M I is used to represent each configuration of multi-sampled raw positron surface data.
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Surface activity reconstruction method F M i

To perform reconstruction, raw data D M I were sampled into a 2D rectangular grid (50 x 50, 1 mm isotropic pixels), for a fixed scanning depth value. Also, the measurement vector m was created from D M I . Here, objective of reconstruction is to define each pixel value of the image, within the rectangular 2D grid. When the basic approach activity projection (proj) is considered, pixel values are defined using a nearest neighbor interpolation over measurement vector m for each position in the grid. By contrast, when acquisition models (presented below) are used to estimate matrix A, reconstruction is obtained through equation x = A -1 .m, with x the reconstruction vector, m the measurement vector and A -1 the pseudo inverse of the system matrix. The MLEM algorithm with a selected number of iterations (see section 2.3.5) was used to compute its pseudo inverse. RM i represents the image from the reconstruction vector x estimated with method F M i .

Solid angle model (SA)

As baseline to define each contribution of suxel x j to measurement m i , the solid angle model (SA) introduced by [START_REF] Oezguer | Phenomenological models for intraoperative positron emission surface imaging using handheld probes[END_REF] considers the geometrical attenuation based on the relative position and orientation of the probe to the source. An implementation of the SA model, used in [START_REF] Shakir | Acquisition model for iterative reconstruction of navigated beta-probe surface images[END_REF] and defined in equation 2, computes each attenuation coefficient a ij , using the following parameters: d ij the distance between the detector and the suxel x j for measurement m i (probe to source distance), r the detector radius and α ij the tilt angle between the detector axis and the detector to source axis (see figure 6).

a ij = f (d ij , α ij ) = 1 2 .   1 - 1 (r 2 /d 2 ij ) + 1   . cos α ij (2) 
Look-up-table model (LUT) In the previous analytical model, each coefficient of the system matrix A is directly computed from the measurement vector m i . An alternative solution consists in selecting precomputed a ij coefficients stored in a look-up table (LUT). As proposed in [START_REF] Shakir | Two new ad-hoc models of detection physics and their evaluation for navigated beta probe surface imaging[END_REF], attenuation coefficients a ij are defined by equation 3 for respective LUT positions in the FOV.

a ij = L(i, j) (3) 
Here, L refers to the LUT stored in memory and the position in the FOV is represented by the pair (i, j), shown in figure 7a. Implicitly, a mapping function is used to relate the source-to-detector distance d ij and the tilt angle α ij to the LUT coefficients. This model is based on coefficients stored in memory. Partition model (PM) Although the LUT model yields good results in defining structures better than the SA model when comparing with a groundtruth [START_REF] Shakir | Two new ad-hoc models of detection physics and their evaluation for navigated beta probe surface imaging[END_REF], looking up the a ij in the LUT for each (i, j) pairs involves additional computational time for defining the whole system matrix A; possibly using nine neighbor averaging interpolation. A partition model (PM) is proposed to overcome this constraint, based on the division of the FOV into sectors where particular homogeneous coefficients a k are assigned for each partition k [START_REF] Monge | Partition-based acquisition model for speed up navigated beta-probe surface imaging[END_REF]. PM model is analytically defined in equation 4 and example of a partitioning scheme is shown in figure 7b. Here, a k factors are defined through a k-means algorithm performed over the LUT, where the number of cluster k corresponds to the wanted number of partition k. Thereby, values of the LUT defined within each cluster k are averaged to obtain a k attenuation coefficients. In the same way as the LUT model, a k coefficients are assigned according to respective (i, j) positions in the FOV.

a ij = a k source within partition k, 0 source not within any partition.

(4)

Error ÊM i of reconstructions

The reconstruction process involves estimating the pseudo-inverse of the matrix A (computed via acquisition model F M i ) by the MLEM iterative method. Thus, reconstruction error ÊM i , correlated with iteration number, was defined as the norm of residual given ÊM = ‖A.ĉ -g‖with ĉ the final estimated reconstruction vector, A the coefficient matrix and g the probe reading vector.

Reference method F ref and associated error Êref

In oncology, presence of residual tumor is generally observed with the radiotracer uptake on functional PET images, combined with a CT scan or an MRI when available (high performance) for better localization using co-registered images (CT in this case is primarily needed for attenuation correction). However, this modality requires long acquisition time (30 min. for a PET scan). In this study, we used bioluminescence imaging as a reference for determining the tumor location in Petri dishes [START_REF] O'neill | Bioluminescent imaging: a critical tool in pre-clinical oncology research[END_REF], without affecting initial cell growth behavior [START_REF] Tiffen | Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo[END_REF]. This method gives high resolution functional images, where accuracy is assumed better than reconstruction with methods F M i . Reference images were obtained by cropping bioluminescence images D ref I following a square (size 180 x 180 pixels), fitted and tangential to the Petri dish edges. The symbol RRref is used to represent reference bioluminescence images for each configuration. In addition, the associated error Êref is related to the loss of background signal in bioluminescence image (absence of peri-tumoral contrast, see figure 5), which cannot be quantified.

Input parameters P I

In this section, parameters that can possibly influence the performance of reconstruction are elaborated. According to the model of reference-based validation [START_REF] Jannin | Model for defining and reporting reference-based validation protocols in medical image processing[END_REF], parameters related to data acquisition and the reconstruction method are considered.

Sampling raw data D M I

The variation of this data-related parameter allows the observation of data quality over different simulated acquisition times. The range [0.1; 3] seconds has been selected for simulating scans between a quick scan (0.1 sec per position) and a more detailed one (3 sec per position), corresponding to 3% and 100% of probe readings considered per position, respectively. In figure 5, row 3 and row 4 show reconstructed images generated with the projection method using 3 sec. and 1 sec. acquisitions, respectively.

MLEM iteration number

According to [START_REF] Hartl | Detection models for freehand spect reconstruction[END_REF], reconstruction performed with large number of iteration (e.g. 100) increases artifact formation, in SPECT imaging systems. The variation of the number iteration in the range [1; 50] allows us to observe the influence of this method-related parameter on reconstruction.

Number of clusters in PM Finally, in the partition model PM proposed to reduced computational power by dividing the LUT FOV, according to a k-means algorithm. The variation of the number of clusters k in the range [2; 6], allows us to observe influence of this method-related parameter on the computation time in comparison with other reconstruction methods. In the following, we use the symbol PM-k (PM-2, PM-3, ..., PM-6).

Normalization function of reconstruction F N RM i

In order to compare reconstructions with their respective reference RRef , RM i images are resized to fit reference image spatially (180 x 180 pixels) and amplitudes are normalized within the range [0; 1]. Thus RNM i represents RM i images normalized through F N RM i function and ÊNM i represents visual blurring errors due to the interpolation method used in the resizing step.

Normalization function of reference F N Rref

Due to the different modalities used for generating the validation datasets D ref I and D M I , a scale shift exists between bioluminescence reference images RRef and reconstructions RM i , respectively acquired with a camera and the PSI system. For each Petri dish configuration, the reconstructed image RM i generated through the projection method F M i , parametrized with the minimum sampling rate (3 sec per position, no undersampling) is considered. The visual scaling shift was evaluated by overlapping reference Rref with its respective considered reconstruction. Experimentally, a scale of 1.1 is observed for reconstructed image by comparison with bioluminescence images, in each case (see figure 8, upper row). Then, a 2D affine spatial transformation (with 1.1 scaling parameter) was applied to cropped bioluminescence images (figure 8 lower row). A binarization step was performed by thresholding images with a determined level. Heuristically, a 0.3 level value gives the global size-position (see figure 9). Finally, remaining Petri dish edges were removed with a morphological opening operation. RNref represents segmented bioluminescence images in the SOI coordinate system obtained with both level values, and ÊNref represents the qualitative error corresponding to the possible mismatch between Petri dish edges (shown in figure 8, lower row).

Validation criterion and comparison function F C

From normalized outputs RNref and RNM i , we estimated the following validation criterion: reconstruction efficiency, computation speed, spatial accuracy and tumor characteristics (contrast and size). Efficiency For each reconstructed image, compared to reference image, we calculated the number of false negative (FN), false positive (FP), true positive (TP) and true negative (TN) pixels. Then, sensitivity-specificity curves were computed using these metrics. Sensitivity has been defined as the true positive rate (T P/(T P + F N )), which represents the ability of our system to detect tumor when a tumor is present in the reference. Specificity has been defined as the true negative rate (T N/(T N + F P )), which represents the ability of our system to detect a tumor when a tumor is not present in the reference. Efficiency of reconstruction O D = F C ( RNref , RNM i ) can be quantified with the optimal point observed on sensitivity-specificity curves (i.e. optimal point obtained by maximizing sensitivity and specificity).

Computation speed

The computation time of each reconstruction performed with acquisition model was determined. The speed performance is a relevant criterion for an efficient intraoperative use.

Spatial accuracy

Correlation of reconstructions RNM i to respective reference RNref were estimated. Due to the nature of RNM i and RNref outputs, the Dice coefficient (DSC) was used as comparison function F C , shown in equation 5.

DSC(A, B) = 2 | A ∩ B | | A | + | B | (5)
Tumor contrast Similarly with PET scan images, the functional information over reconstructions is provided by the tumor to background ratio (T/B). From normalized reconstructed images RNM i , mean T/B was computed over normalized reconstruction RNM i using normalized reference RNref as binary mask. Based on the boolean values in the mask definition, each pixel with a 'true' value was considered part of the tumor region of interest (tROI) and each 'false' value part of the background region of interest (bROI). Each ROI was averaged by its number of pixels and thus T/B ratio was computed, defined as result O D .

Quality index O QI and hypothesis testing F H

From comparison functions F C defined above according to the validation criteria, a quality index can be deduced for characterizing the overall performance of acquisition models. In each sensitivity-specificity curve, Area Under the Curve (AUC) was computed for each acquisition model using the trapezoidal numerical integration method (F QI ), representing the quality index O QI . In addition, no statistical evaluation F H was performed in this scheme, due to insufficient amount of data.

Visual comparisons have been done between reconstruction and related reference.

Results

Two independent studies were performed using comparison function F C along two input parameters P I . The first comparison was made by varying the sampling rate while fixing the number of MLEM iteration at 25, an empirical value used in previous work on PSI systems [START_REF] Shakir | Evaluation of an ad hoc model of detection physics for navigated beta-probe surface imaging[END_REF][START_REF] Shakir | Two new ad-hoc models of detection physics and their evaluation for navigated beta probe surface imaging[END_REF]. The second one was made by varying configuration. Visually, performance of acquisition models can be observed over sensitivity-specificity curves derived from reconstructions. In figure 12, mean ROC (Receiver Operating Characteristic) curves over Petri dish configurations were defined by considering optimal sampling and MLEM input parameters P I (MLEM = 25 iterations and sampling = 3 seconds). In ROC representation, the best curve is found by minimizing the 1-specificity term while maximizing the sensitivity.

Values of optimal points are presented in table 1. Here, two acquisition models outperformed the projection method: SA and LUT models.

In figures 13a and 13b, AUC values are shown for ROC curves varying the sampling rate and MLEM iterations respectively. We observed that the projection method results are nearly constant along the sampling rate (AUC around 0.74) and invariant along the number of MLEM iterations. From 1-sec sampling onwards, each acquisition model tends to 0.77 mean AUC value, except for method PM-2 (mean AUC = 0.67). Moreover, mean AUC values tend to decrease linearly along MLEM iterations, with a steeper decrease when using the PM-2 model: from a 0.86 starting AUC value for one MLEM iteration down to 0.79 around for 50 MLEM iterations. Globally, both AUC curves emphasize three efficient and stable acquisition models by comparison with the projection method: SA, LUT and PM-5 models. Considering computation time required by the projection method (3 ms independently of sampling rate), the reconstruction process was hardly time consuming. This computation time of reconstruction methods is linearly dependent on the sampling rate of data, as shown in figure 14. The LUT was the most time consuming method with a maximum of 31 minutes observed. Other methods reached a maximum around 28 minutes of computation required to perform reconstructions. The quantification of spatial accuracy of each reconstruction method is given by the Dice score metric. In figure 15a, the projection method yields the most stable Dice score, around 0.6, overtaking the PM-2 model. Starting with the 0.5 sec sampling value, all other reconstruction models outperformed the projection method, where higher Dice values are obtained with the LUT model. The mean Dice score variation along MLEM number of iterations is shown in figure 15b. Results show a slight variation of the behavior of the Dice value for each reconstruction method starting with 5 MLEM iterations. Two methods are emphasized here: LUT and SA models.

Finally, variations of the tumor contrast along the sampling rate and number of MLEM iterations are shown in figure 16a and 16b respectively. The projection method yields constant mean T/B contrast rate over varying sampling rates or number of MLEM iterations. For reconstruction methods, T/B values outperformed the projection method, increasing slightly with the sampling, starting at 0.5 (figure 16a). On the contrary, mean T/B value decreases with increasing MLEM number of iterations (figure 16b), but remains better than the projection method. LUT and SA models yields the highest T/B values for a sampling rate of 3 combined with 5 MLEM iterations.

Discussion and conclusion

Discussion

We have compared detection models by assessing respective reconstructed images from a chosen dataset, relying on a validation framework. We have outlined benefits and drawbacks of each acquisition model according to selected input parameters P I (i.e. section 2.3.5) and validation criteria (i.e. section 2.3.8). Images reconstructed using acquisition models yield global detection improvement along chosen comparison functions and quality index (i.e. section 2.3.9) with respect to the basic projection method. According to the clinical applicability involved here in the selection of an adequate acquisition model, the trade-off between reconstruction quality and reconstruction time has been outlined and influences this selection. The quality of reconstruction has impact on decision making of the surgeon on the detection of residual tumor. Reconstruction time is important for respect of the surgical workflow. Additional time for PSI acquisition needs be as short as possible in order to avoid potential complications or infections [START_REF] Daley | How slow is too slow? correlation of operative time to complications: an analysis from the tennessee surgical quality collaborative[END_REF]. Our previous work [START_REF] Shakir | Acquisition model for iterative reconstruction of navigated beta-probe surface images[END_REF], involved long acquisition times. Although long acquisitions provide statistically good data, it is not realistic to expect such data in clinical conditions. In addition, acquisition time and scan quality depend on the operator (i.e. neurosurgeon). In this work, we simulated the acquisition time variations based on the sampling rate input parameter. Results show that this variation slightly affects data quality. However, transient states can be observed in figures 13a, 15a and 16a in the range of [0.1; 0.7] seconds before reaching a stable value. This, suggests a threshold value of 0.7 second per location that should be considered as a measure of the data acquisition speed. A sampling rate above this value does not improve the data quality significantly, but still increases acquisition times. Empirically, 25 iterations for the MLEM reconstruction algorithm were fixed to perform reconstructions with freehand PSI systems [START_REF] Shakir | Evaluation of an ad hoc model of detection physics for navigated beta-probe surface imaging[END_REF][START_REF] Shakir | Two new ad-hoc models of detection physics and their evaluation for navigated beta probe surface imaging[END_REF], close to values used in freehand SPECT systems [START_REF] Matthies | Mini gamma cameras for intra-operative nuclear tomographic reconstruction[END_REF][START_REF] Wendler | Towards intra-operative 3d nuclear imaging: reconstruction of 3d radioactive distributions using tracked gamma probes[END_REF] (i.e. 20 iterations). We investigated this value by varying it as an input parameter and looking at the respectively generated reconstructions. Increasing the MLEM number of iterations has slightly digressive effects on validation criteria. Peaks were observed at five iterations in figures 13b, 15b and 16b. Based on our experiments, we propose to use this value in future experiments for optimal validation criteria values. Intraoperative use involves high performance in terms of computational speed. One factor that affects it is the sampling rate, which is directly correlated with the amount of data acquired per location. In figure 14, the linearity between the computational speed and sampling rate can be observed. Another factor that affects computational speed is the choice of the acquisition model. In this context, the partition model was introduced as a faster LUT model. In this work, we have proposed using a range of k clusters in the validation of the partition model ( where similar reconstruction results as the off-the-shelf LUT have been expected). In figure 14, each generated PM-k model falls under the LUT experimental curve, i.e. is better in terms of computational speed. Results given by each PM-k were slightly faster than other methods, especially with the PM-2 method.

According to our experiments, one acquisition model outperformed others: the LUT model. This model offers the best result in terms of efficiency (1-Spe: 0.1; Se: 0.94), spatial accuracy (max Dice: 0.77) and tumor contrast (max T/B: 5.2), but requires the highest computational speed among all models (max computation time: 31 min). However, considering the stability of data quality over the sampling time threshold (i.e. 0.7 second per location), the LUT model seems appropriate for intraoperative use. Moreover, the current LUT model developed in [START_REF] Shakir | Two new ad-hoc models of detection physics and their evaluation for navigated beta probe surface imaging[END_REF] has been generated from planar acquisition. In real cases, the SOI would represent the resection cavity as a 3D surface. A realistic model would consider the inclination of the probe to the surface axis, the tilt angle. In our validation framework, qualitative errors have been identified in the output of the reference method F Ref and the normalization functions F N RM i and F N Rref . Such errors inducing possible bias in the results of our comparison functions F C should be taken into account. According to [START_REF] Jannin | Model for defining and reporting reference-based validation protocols in medical image processing[END_REF], bias can be studied with respect to two criteria: accuracy and metric realism. Firstly, ÊRef has been identified as the loss of background signal in bioluminescence images. No difference can be observed between inner and outer contrast of the Petri Dish (background in blue, figure 5, row 2) by comparison with reconstructed images (outer background in red and inner background in blue, figure 5, row 3 and 4). Thus, bioluminescence images suffer from a low realism due to radiotracer uptake in both tumoral and healthy tissue. In terms of accuracy, this can induce a few errors in the ROC curve creation for the efficiency validation criteria, without impacting the global behavior of curves. Secondly, ÊNM i corresponds to the blurring effect of the interpolation performed on reconstructions. The smaller the size of the reconstructed images, the more the blurring effect increases, leading to a high bias in comparison functions. A possible impact of this is the overestimation of residual tumor size. And thirdly, ÊNRef gives the overall idea of the possible misalignment after the normalization method of references. In a real case, the imaging devices used for the different modalities that give the actual acquisition and the groundtruth reference, do not have the same coordinate system. Here, since edges of Petri dish are visible in both images (reconstruction and bioluminescence), it is possible to perform circle fitting to estimate the difference between the radius of the actual and reference images, which could subsequently be used as an estimate of the misalignment error ÊNRef . While a Petri dish radius larger in reference than in reconstruction will lead to an underestimation of the real tumor size, a larger radius in reconstruction than in reference will lead to an overestimation. We have introduced several validation criteria for selecting an optimal acquisition model. They are strongly dependent to the nature of the reference dataset. The Dice score metric is adapted for validating the global localization of tumor spots with a reference extracted for an imaging modality of a different nature than the one used (i.e. bioluminescence imaging). In contrast, for a reference from an emission-based imaging modality (PET, SPECT, etc..), the normalized cross correlation metric (NCC) would give more information in checking resection margins. In addition, the tumor size over reconstruction (in cm 2 ) would provide information on the under/over estimation of the real tumor size in reference.

Conclusion

For the first time, we have compared acquisition models, dedicated to Positron Surface Imaging based on a dedicated reference-based validation scheme. Associated to our input parameters, new validation criteria can be integrated, considering the nature of reference datasets. Combined with AUC values, quality criteria such as Youden index can also be used for the characterization of ROC curves in terms of detection. In future work, the validation protocol will be extended to 3D realistic reference datasets (e.g. realistic neurosurgical phantom), as a necessary validation step involving realistic conditions for clinical use in neurosurgery.

Fig. 3 :

 3 Fig. 3: Main steps of the reference-based validation protocol for medical image processing (figure reproduced from [10]): from a defined validation objective related to a clinical context C, results of the method to be assessed F M applied on validation data sets D I with parameters of the method P I are compared with a reference through a comparison function F C . Then, the final result is obtained by testing the output of F C against the validation objective.

Fig. 5 :

 5 Fig. 5: Row 1: Brightfield images of the three Petri dish configurations, where right oriented red arrows show BCC grown locations (tumor) and left oriented green arrow show grown HFF locations (spot or homogeneous background), (a) Petri dish 1, (b) Petri dish 2 and (c) Petri dish 3. Row 2: Reference bioluminescence images D ref I of (d) Petri dish 1, (e) Petri dish 2 and (f) Petri dish 3. Row 3: reconstructed images with projection method for 3 second sampling rate (no undersampling). Raw 4: reconstructed images with projection method for 1 second sampling rate.

Fig. 6 :

 6 Fig. 6: Plot of the solid angle model function a ij = f (d, α ij ) with d the probe to source distance and α ij the tilt angle.

Fig. 7 :

 7 Fig. 7: (a) Representation of the LUT proposed in [24], where a ij are represented by a color-map, according to their position in the FOV. Here, distance from center of the source (X axis) and depth from the source to the detector (Y axis) are defined through d ij and α ij , (b) Partition model generated from k = 4 clusters with a p coefficients represented along distance from center of the source (X axis) and depth from the source to the detector (Y axis): a 1 in dark red, a 2 in green, a 3 in blue and a 4 in dark blue.

Fig. 8 :

 8 Fig. 8: Upper row: Difference of cropped bioluminescence and raw images, (a) Petri dish 1, (b) Petri dish 2 and (c) Petri dish 3. Lower row: bioluminescence images in the SOI coordinate system Rref (d) Petri dish 1, (e) Petri dish 2 and (f) Petri dish 3.

Fig. 9 :

 9 Fig. 9: Normalized reference, giving global size and position of tumors. (a) Petri dish 1, (b) Petri dish 2, (c) Petri dish 3.

Fig. 10 :

 10 Fig. 10: Reconstructed images varying MLEM iteration number with SA model for sampling time fixed at 3 seconds, in Petri dish 2. (a) 10 iterations, (b) 30 iterations, (c) 50 iterations.

Fig. 11 :Fig. 12 :

 1112 Fig. 11: Blurring effect of normalization function F N RM i , example with projection method, optimal input parameters P I on Petri dish 2 (a) Reconstructed image RM i (50 x 50 pixels), (b) Normalized reconstructed image RNM i (180 x 180 pixels).

Fig. 13 :

 13 Fig. 13: Mean AUC values along input parameters P I : (a) Varying sampling rate and MLEM = 25 iterations, (b) Varying MLEM iterations, sampling = 3 seconds.

Fig. 14 :

 14 Fig. 14: Mean computation time observed for reconstruction methods varying sampling rate.

Fig. 15 :

 15 Fig. 15: Mean Dice values along input parameters P I : (a) Varying sampling rate and MLEM = 25 iterations, (b) Varying MLEM iterations, sampling = 3 seconds.

Fig. 16 :

 16 Fig. 16: Mean T/B values along input parameters P I : (a) Varying sampling rate and MLEM = 25 iterations, (b) Varying MLEM iterations, sampling = 3 seconds.

Table 1 :

 1 Optimal points extracted from mean ROC curves, computed for the different Petri dish configurations.

	PM-k 3

1 

Specificity.

2 

Sensitivity.

3 

Partition model witk k ∈ [2; 6] clusters selected.

A suxel is defined as the smallest element of the SOI.
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