
HAL Id: hal-01378643
https://hal.science/hal-01378643v1

Submitted on 3 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service-Oriented Autonomic Pervasive Context
Colin Aygalinc, Eva Gerbert-Gaillard, German Vega, Philippe Lalanda

To cite this version:
Colin Aygalinc, Eva Gerbert-Gaillard, German Vega, Philippe Lalanda. Service-Oriented Autonomic
Pervasive Context. 14th International Conference on Service Oriented Computing, Oct 2016, Banff,
Canada. pp.795-809, �10.1007/978-3-319-46295-0_56�. �hal-01378643�

https://hal.science/hal-01378643v1
https://hal.archives-ouvertes.fr


Service-oriented autonomic pervasive context

Colin Aygalinc, Eva Gerbert-Gaillard, German Vega, and Philippe Lalanda

Grenoble Alpes University
first-name.name@imag.fr

Abstract. Pervasive computing promotes environments where smart,
communication-enabled devices cooperate to provide services to people.
Due to their inherent complexity, many pervasive applications are built
on top of service-oriented platforms, providing a set of facilities simpli-
fying their development and execution. In this paper, we present such a
platform, iCasa, extended with an autonomic, service-oriented context
module. This module is programmed with a domain-specific service-
oriented language built on top of iPOJO, the Apache service-oriented
component model. It is validated on smart home applications developed
with the Orange Labs.

Keywords: pervasive computing, context, service-oriented components

1 Introduction

A growing number of smart, communication-enabled devices are integrated in
our living environments. This is essentially due to major advances in hardware
and networking technologies, which make sensors more powerful, cheaper and
smaller in size. Such digitalized environments, said to be pervasive or smart,
are increasingly accepted in all places where social or professional activities take
place. They support the creation of new added-value services that are delivered
anytime and in a non-obstructive way. This new form of computing is raising
huge economical and societal expectations in domains like manufacturing, build-
ings and homes, energy, commerce, and even healthcare. Applications integrated
in such smart, pervasive environments are context-aware by essence. They are
able to adapt their behaviors and the provided services according to environ-
mental conditions [1]. The notion of environment should be taken in its broad
sense here. It includes any information that can be of interest for an applica-
tion like, for instance, physical quantities, locations and expectations of human
beings (implied or not in the functions provided by the application), the soft-
ware itself, and even remote digital resources. Initially, context was essentially
limited to location-awareness [2] and to information collection. Since then, it
has evolved towards more elaborated models. As a consequence, developing and
evolving context information for pervasive applications is still very challenging.
This explains why research into context-awareness is a firmly grounded activity
in computer science and will continue to expand with the recent emergence of
Internet of Things, IoT [3].



2 Colin Aygalinc et al.

Context evolutions, in terms of models and supporting technologies, actually
follow architectural evolutions of pervasive applications. Indeed, these applica-
tions are today very distributed from devices to cloud facilities, going through
multiple gateways [4]. Contextual information is used at every level but with
different requirements. For instance, at the cloud level, focus is on large scale
and completeness whereas, at the fog level [4], concerns are more about reac-
tivity and security. This leads to different ways to represent, query, build, and
update contextual information. In our work, we focus on the fog level where con-
textual information is usually manipulated for two different purposes. First, it
is used to implement local actions with stringent real-time requirements. Then,
part or all of the gathered information is aggregated, synthesized and sent to
the cloud level for longer-term analysis. In this paper, we propose a novel ap-
proach based on service-oriented and autonomic computing in order to better
manage context at the fog level. Our solution relies on an architecture where
context is a programming module, connected to the physical environment and
publishing information as a dynamic set of services. Context is dynamic in or-
der to reflect the changing nature of the execution environment but also to deal
with applications evolving needs. Context also includes event-based facilities to
make consumer applications aware of contextual evolutions. Finally, context is
autonomic in the sense that it can self-adapt to those evolutions. Our solution
is seamlessly integrated in a pervasive platform, called iCasa, used by our in-
dustrial partners (Orange and Schneider Electric). It heavily uses the facilities
of the iPOJO service-oriented component model [5]. In order to ease context
development, we have also developed a Domain-Specific service-oriented Lan-
guage (DSL) allowing the straightforward definition of a context module and of
its autonomic capabilities.

The structure of this paper is the following. The coming section provides
background about our application domain and about the notion of context in
pervasive computing. Section 3 presents the overall approach defended in this
paper. Then, the following section gives details about the way it is implemented
in iCasa. Section 5 is about the evaluation of the proposed approach. It has been
experimented on smart home use cases, defined with the Orange Labs. Finally,
related work is developed in section 6, and section 7 concludes this paper.

2 Background

Our research deals with pervasive applications in intelligent environments like
smart homes, smart buildings or smart manufacturing (industry 4.0). These ap-
plications are now widely distributed, from the sensors up to cloud facilities.
Some code is executed at the edge of the network, in an Internet gateway for
instance, while other code is run in computing farms. More and more, code is
also executed in intermediary machines in order to prune the volume of data
to be transmitted in the cloud, and perform mediation operations. Depending
on the code location, various forms of context are needed. They are based on
different formalisms, different real-time constraints, and different interaction pat-



Service-oriented autonomic pervasive context 3

terns between context providers and context consumers. Current architectures
are illustrated here after by Fig. 1.

Fig. 1. Pervasive applications architecture.

To make these various needs more concrete; let us focus on an actimetrics
application that we have been investigating for years with the Orange Labs.
Two major functions can be distinguished for actimetrics: the first one is about
early diagnosis of degenerative diseases like Alzheimer whereas the second one
is concerned with real-time supervision of people at home. The first function,
concerned with identification of degenerative diseases, deals with long-term evo-
lutions spanning several months. It requires complex time-series and event cor-
relation analysis, and is based on a rich, slowly evolving context that is explicitly
accessed and browsed by the analysis algorithms. The second function is about
real-time supervision. It deals, for instance, with fall detections or automated
alerting in case of unusual events like prolonged inactivity or irregular sleep
hours. This second function may use the same environmental data as the first
one, but it is has to deal with stringent real-time constraints: new information
should be made available very rapidly to the application. This is made particu-
larly difficult by the inherent dynamicity of pervasive environments.

Let us now define more precisely what we mean by context. Context is tra-
ditionally presented as a synchronized description of concepts and relationships
between them pertaining to the execution environment. Precisely, contextual
information comes from computing environment (memory, network, etc.), user
environment (location, needs, preference, etc.) and physical environment (tem-
perature, noise, etc.). It can be the description of a fact, a physical object, a
physical value, or an event.

There are several architectural approaches to build context-aware applica-
tions. A popular solution is to separate context and applications into different
programming modules (see Fig. 2). Context-specific tasks like information gath-
ering (context acquisition), information processing through inferences or explicit
code-based operations, information storing, and information presentation lie out-
side the application boundaries. This pattern where context and applications are
clearly separated improves code readability, debugging and evolution. It also al-
lows context sharing between pervasive applications.



4 Colin Aygalinc et al.

Fig. 2. Separation of context and applications.

We subscribe to this architectural approach but we readily acknowledge that
building a context module is complex. Multiple design trade-off decisions have to
be made and implemented regarding data access, synchronization mechanisms,
knowledge representation, reasoning, and presentation. A common solution to
alleviate these difficulties is to use a context management framework. Its purpose
is to deal with a number of generic features like information synchronization or
publication. In our work, we concentrate on the fog level, where reactivity is
essential. The supporting framework has to deal with dynamic environments,
where resources can appear and disappear without notice, and dynamic ap-
plications that can be launched or de-activated anytime. Specifically, we have
identified the following requirements:

– Coupling between applications and context middleware must be as loose as
possible. Applications should not be aware of information sources. They have
to be aware of the availability (or not) of the information and its quality.

– The context middleware must present the information in a format under-
standable by the application and in the expected quality (level of security
or preciseness for instance) that can change overtime.

– The context middleware must be able to adapt dynamically in order to
provide the best contextual information depending on the application needs
without interruption of service.

– The context middleware must adapt autonomically since, in pervasive set-
tings, no administrator is available or skilled enough to perform management
operation. For instance, the middleware must be able to adjust synchroniza-
tion frequencies depending on the application needs.

– The context middleware must be able to activate or deactivate the sources
of information, in particular to save energy. Sensors that are not connected
to the mains power source should be activated only when necessary.

– The context middleware must be able to alert running applications when
contextual information of interest has changed since physical environment
can change anytime without notice.

We believe that service-orientation coupled with autonomic features is well
suited to meet these requirements. Our interest in services is twofold. We aim to
present context as a service to pervasive applications. We also aim to implement
the context module with service-oriented components to enhance self-adaptation
of the context.



Service-oriented autonomic pervasive context 5

3 Overall approach

We have integrated an autonomic, service-oriented context module in our perva-
sive platform, named iCasa [6][7]. This platform builds upon the Apache service-
oriented component model, iPOJO. Context appears as a dynamic set of services.
Depending on the sources availability and the platform needs, different services
are published in and withdrawn from the platform service registry. They are
then opportunistically used by the pervasive applications, coded in iPOJO. As
illustrated, the context module receives goals from the platform that are used
for context self-adaptation. The context module tracks any contextual modifica-
tions and sends an event to alert consumer applications. The overall approach is
illustrated by Fig. 3. In our solution, services are made available in the iPOJO
registry.

Fig. 3. Overall approach.

A major driver of our approach is not to go beyond what is necessary in
order to achieve the applications expectations. This is the whole purpose of the
autonomic management. It should only create and keep up to date the services
of interest for the current applications, depending on the available sources. Our
approach also enforces application development through dynamic composition
of context services. An application specifies its required context services and, at
run time, it is bounded to an appropriate service and kept informed of every
evolution.

Regarding implementation, the context module is also based on the iPOJO
service-oriented component model. Context is modeled as components repre-
senting concepts and relationships. Some of them can publish services. Others
are used to compute information and are not proposed as external services.
IPOJO containers include some autonomic features in the dynamic selection of
services. Also, iPOJO includes touchpoints in the containers that can be used
by more global autonomic manager. There are then several autonomic loops in
the context module. It appears however that implementing the context and the
associated autonomic manager is still rather complex, especially regarding the



6 Colin Aygalinc et al.

timing aspects. We have then developed a Domain Specific Language (DSL) to
cope with identified context specific concerns.

4 Context Management Domain Specific Language

The purpose of the proposed DSL is to enforce the architectural pattern de-
scribed in the previous section, and to help developers with the most common
tasks found in context management. The DSL is an extension of the iPOJO
Component Model.

4.1 Service Oriented Component

An iPOJO component is implemented as a plain Java class decorated with spe-
cific annotations to specify non-functional concerns. The set of Java annotations
can be regarded as the concrete syntax of the DSL. The base iPOJO annota-
tions support the dynamic service interaction pattern. To illustrate iPOJO core,
the following code shows a simplified Light-follow-me using two context services:
lights and presence.

An application component is implemented by a Java class decorated with
the annotation @Component. Component dependencies are specified using the
@Requires annotation. A dependency is specified in terms of a service specifi-
cation defined by a Java interface (BinaryLight and PresenceService in the
example). Each dependency is associated with a field of the class (binaryLights
and presenceServices), which will be bound at runtime to the selected service.
The field can then be used to transparently access the required service. Depen-
dencies can specify filters to match the available service providers.

Java code for service-oriented components

@Component(name="LightFollowMeApplication")
@Instantiate
public class LightFollowMeApplication {

@Requires(id="lights", optional = true,specification = BinaryLight.class,
filter = "(!(locatedobject.object.zone=LOCATION_UNKNOWN))")
private List<BinaryLight> binaryLights;

@Requires(id="presence", optional = false,specification = PresenceService.class)
private List<PresenceService> presenceServices; }

4.2 Context Service Description

Application development relies only on service descriptions to reduce coupling
with the context. The example here after illustrates a simplified presence de-
tection service. The service is specified as a Java interface, annotated with the
@ContextService marker. In this case, the interface proposes a single method
(presenceInZone) to get the current detection status, in a zone associated with
the context provider.

Java code for context service description



Service-oriented autonomic pervasive context 7

public @ContextService interface PresenceService {

public @State static final String PRESENCE_SENSED = "presence.sensed";
public @State static final String ATTACHED_ZONE = "zone.attached";

public PresenceSensing presenceInZone();
public enum PresenceSensing {YES,NO,NOT_MEASURED}}

As mentioned earlier, context management services also require event noti-
fications. To do so, we have extended service specification with declaration of
context service states. Changes in states are notified to consumers with events.
In the example, we have declared (using the annotation @State) two states as-
sociated with the presence service: the presence status (PRESENCE SENSED) and
the detection zone (ATTACHED ZONE). Note that the context service specification
is a contract between the context provider and the requiring component. It is
the responsibility of the context provider to generate appropriate events when
state changes.

4.3 Context Service Usage

Applications use iPOJO facilities to react to context evolution. Two kinds of
context events are of interest to applications: availability/unavailability of con-
text providers, and changes in context service state. The following code example
shows how the Light Follow Me application is programmed to react to changes
in the context.

Java code for dynamic context service usage

@Component(name="LightFollowMeApplication")
public class LightFollowMeApplication {

@Bind(id="presence")
public void bindPresence(PresenceService presenceService){
managelight(presenceService);}

@Unbind(id="presence")
public void unbindPresence(PresenceService presenceService){
Set<BinaryLight> lightInZone = getLight-InZone(presenceService);
lightInZone.stream().forEach((light) ->light.turnOff());

}

@Modified(id="presence")
public void modifiedPresence(PresenceService presenceService){
managelight(presenceService); }

private void managelight(PresenceService presenceService){
Set<BinaryLight> lightInZone = getLight-InZone(presenceService);
if (presenceService.presenceInZone().equals(YES)){
lightInZone.stream().forEach((light) ->light.turnOn());

}else {
lightInZone.stream().forEach((light) ->light.turnOff());

}}}



8 Colin Aygalinc et al.

Notification of providers availability is declared using the @Bind and @Unbind

annotations. The annotated bind method is invoked each time a new matching
provider is registered in the service registry (respectively, unbind methods are in-
voked when the provider is unregistered). In the simplified scenario for instance,
when a new presence service provider is added to the context, the application
simply turns on/off lights in the zone according to the current sensed presence
status. Interest in changes of the state of the context service is declared us-
ing the @Modified annotation. The annotated method is invoked each time a
state change event is triggered by the provider. The specified callback receives a
reference to the source of the event and, optionally, the state that was modified.

Note again that the developer only declares interest in a given context event.
All the code concerning callback registration and invocation is handled by the
iCasa platform runtime. Notice also how, inside the event callbacks, the devel-
oper can directly use the injected dependency fields to transparently access the
context services. The declarative nature of the DSL greatly reduces common er-
rors and simplifies the programing model, as discussed in the evaluation section.

4.4 Context Entity

Developers implementing a context service must meet specific requirements. In
general, they need to interact with physical devices; this interaction requires
error-prone code for synchronization and event handling. We have developed
specific DSL extensions to cope with this need. To illustrate this, the code of
a component implementing the BinaryLight context service using the ZigBee
protocol is presented. We assume that the code dealing with ZigBee is encap-
sulated a ZigbeeDriver component. As previously said, a context provider is
implemented as an iPOJO component, using the @ContextEntity annotation to
declare the provided context services (a single component may implement sev-
eral context services). The component has to implement all methods and states
declared in the context service declaration.

Java code for context entity implementation

@ContextEntity(services = {BinaryLight.class})
public class ZigbeeBinaryLight implements BinaryLight, ZigbeeDeviceTracker {

@ContextEntity.State.Field(service = BinaryLight.class,
state = BinaryLight.POWER_STATUS, value = "false")
private boolean powerStatus;

@Requires
private ZigbeeDriver driver;

@Override
public boolean getPowerStatus() {return powerStatus;}

@Override
public void turnOn() { powerStatus = true;}

@Override
public void turnOff() { powerStatus = false;}



Service-oriented autonomic pervasive context 9

@ContextEntity.State.Apply(service = BinaryLight.class,state = POWER_STATUS)
Consumer<Boolean> setPowerStatus = newPowerStatus -> {
if (newPowerStatus) {
driver.setData(moduleAddress, "1");

} else {
driver.setData(moduleAddress, "0");

}
};

public void deviceDataChanged(String address,Data oldData, Data newData) {
if(address.compareTo(this.moduleAddress) == 0){
pushPowerStatus(newData.getData());

}
}

@ContextEntity.State.Push(service = BinaryLight.class,state = POWER_STATUS)
public boolean pushPowerStatus(String data){
return data.compareTo("1")==0? true : false;

}

@ContextEntity.Relation.Field(owner = LocatedObject.class)
@Requires(id="zone", specification=Zone.class, optional=true)
private Zone zoneAttached;}

A common implementation pattern is to maintain within the component an
in-memory representation of the current state of the environment, and keep this
representation synchronized. Our DSL supports this pattern using state fields.
In the code example, the component implementation class ZigbeeBinaryLight

declares powerStatus to keep the current lamp state (on/off). State fields are
marked with the @ContextEntity.State.Field annotation, but otherwise be-
have as normal Java fields. For instance, the service method getPowerStatus

simply returns the current field value, and methods turnOn and turnOff di-
rectly modify it. Any modification to the in-memory field must be reflected on
the environment, using the corresponding ZigBee actuator. The code performing
synchronization is specified with the @ContextEntity.State.Apply annotation
that provides a function which is invoked each time the associated field is modi-
fied. In the example, every time powerStatus is modified (using the turnOn and
turnOff methods) the setPowerStatus function is invoked, which will in turn
delegate to the ZigBee driver to do the actual action.

In general, environment synchronization is bi-directional. So, sensed changes
in the environment must equally be reflected in the in-memory state representa-
tion. In our example, lights can be physically turned on/off using a mechanical
button; this is detected by a ZigBee sensor associated with the lamp. Depending
on the capabilities of the sensor and device protocol, environment information
can be gathered synchronously or asynchronously.

The example shows an asynchronous update. Here, the protocol driver no-
tifies the context entity (by invoking method deviceDataChanged) of changes
in the status of the lamp, and from the raw data the component calculates
the new state value by using the method pushPowerStatus. This method is
declared using the annotation @ContextEntity.State.Push that associates it
with a corresponding context state field. Each time the method is invoked, the



10 Colin Aygalinc et al.

return value is used to update the in-memory state representation. Synchronous
updates declared with @ContextEntity.State.Pull are similar, except that the
declaration specifies the periodicity used to calculate the new state value.

Using this declarative approach has two main advantages: it reduces the
programming complexity and it allows autonomic adaptations at runtime. For
instance, if a context entity is not used by any application at a given moment, the
iCasa autonomic context manager can decide that updating the in-memory fields
is not needed, avoiding unnecessary polling. A context entity can be related to
other context entities. This is naturally supported in iPOJO as a service require-
ment. In the code example, the ZigbeeBinaryLight entity is related to a Zone

context service, using the zoneAttached dependency field. This field is marked
with @ContextEntity.Relation.Field to express that it can be handled by
the context autonomic manager.

4.5 Context service provisioning

Context service provisioning is the process of deploying, instantiating, and relat-
ing context entities. This process is guided by external events: a device joining
the network, a new application deployed in the platform, or an explicit demand
by the platform administrator.

Part of this process can be automated using approaches like RoSE [8] and
MUSIC [9] which provide a pattern to modularize and maintain the discovery
of external events at runtime, but no specific support is provided for dynamic
instantiation of context service providers. iPOJO runtime supports this behavior,
but its establishment remains highly technical, tightly coupled to the iPOJO
model and de facto become less feasible for developers.

Our middleware provides autonomic facilities regarding this issue, without
cluttering the discovery code. As shown here after, discovery code emits now
instantiation requests (previously it was direct instantiation) and the middleware
choose to process or stock the requests according to the application contextual
service requirements.

Java code for a context service dynamic provisionning

private @Creator.Field Creator.Entity<ZigbeeBinaryLight>
binaryLightFactory;

public void zigbeeDiscoveryEvent(Map<Parameter> param){
String id = ...;

...
binaryLightFactory.create(id,param);

}

5 Runtime support

In this work, we have extended the iPOJO runtime. Precisely, we implemented
two additional handlers (see Fig. 4):



Service-oriented autonomic pervasive context 11

– A Synchronization Handler deals with state synchronization of entity com-
ponents. It keeps the states up-to-date by managing the synchronization
functions. Different strategies can be specified to do so. For example, the
handler can periodically call pull functions or just wait for push callbacks
to keep the state up-to-date. Additionally, the handler is in charge of pub-
lishing states as service properties. This publication has two main interests:
it allows the processing of more advanced filters and state updates can be
reported to the application without the burden of an Observer pattern, by
relying on iPOJO notification mechanism.

– A Relation Handler is in charge of the dynamic service binding of relations.

Fig. 4. Service-oriented component view of context model.

To cope with changing runtime condition, we implemented autonomic be-
havior at two levels. First, local autonomic loops are executed in the component
container. Their goal is to locally modify the topology of the context graph by
using service substitutability and late binding. This behavior is interesting for
abstract context entities. It can help to increase measurement relevance by corre-
lating new low level context sources. The global autonomic loop is implemented
in the context manager. Its goal is to dynamically adapt the global topology
of the context graph and the configuration parameter exposed by our DSL in
order to satisfy, in a best effort way, the application provisioning. To do so, we
assume that applications are developed following the iPOJO model. It involves
that applications specify their needs in terms of context service dependency. The
context manager can adapt the running context graph to fit applications needs.
Currently, it is possible to dynamically realize the following changes:

– Enable or disable context entity provisioning;
– Modify specific synchronization parameters;
– Replace context providers.

All of this adaption logic is hard coded in our context manager. We are
currently investigating integration with dynamic deployment to provide finer
grained context management.



12 Colin Aygalinc et al.

6 Validation

For evaluation purposes, we defined two scenarios that have been implemented
with traditional SOCM and with our DSL. The evaluation focused on design
time activities. Specifically, we used the following metrics: number of lines of
code, cyclomatic complexity, and technical debt (evaluation of the effort needed
to fix all issues). These metrics are computed and provided by the SonarQube
[10] management tool. The first scenario deals with the iCasa platform and its
associated simulator. Precisely, the following functionalities are provided:

– A set of abstraction for devices, location, user, and their implementations;
– A web interface acting as a dashboard;
– A script language allowing to dynamically instantiate simulated device, lo-

cation, and user.

In the reference development, contextual information was computed in an ad
hoc way. It was coded without any specific strategy in a non-modular way (to
be fair, we reused an existing implementation). It turned out to be difficult to
extend and evolve. We then redesigned the code, using our DSL, and compared
the two versions (see figure see Fig. 5).

Fig. 5. Evaluation on iCasa platform and simulator.

Thanks to annotations, the number of lines of code decreased. By clearly iden-
tifying synchronization functions and limiting their number, cyclomatic complex-
ity has been reduced too. We also noticed that the restructured implementation
presents a high percentage of duplicated lines (approach 7%, reference 3%) due
to iPOJO technical limitations: it doesnt support inheritance. The number of
lines could therefore be reduced more. Our approach notably lightens the con-
text layer development. It offers non-functional technical facilities. The context is
modularized, extensible, and autonomic. The whole software is more consistent,
testable, and maintainable.

The second evaluation compares two versions of the Light Follow Me appli-
cation build upon the reference and the new platform (Fig. 6). This application
is simple, yet it encompasses all requirements presented before. It is a typical
home pervasive application that does not need complex reasoning algorithm but
has to face the dynamism of the environment and directly influences the user



Service-oriented autonomic pervasive context 13

environment. In the reference implementation, the application processes infor-
mation like the presence per zone by directly reasoning over the sensors and
their location. In the new implementation, we decided to externalize this pro-
cessing with a dedicated presence per zone context service (blue part on Fig. 6).
This presence-per-zone service can be shared between applications and evolves
independently of the business code of applications.

Fig. 6. Evaluation on Light Follow Me application.

Modularizing the presence service brings an overhead in terms of lines of
code and complexity. This is due to the fact that service provisioning must
be implemented in our solution. However, this overhead can be shared between
several applications. So, if we analyze only the application business code (orange
part on Fig. 6), it is approximately divided by 2 and de facto becomes easy to
test, maintain, and evolve.

As a conclusion, externalizing context requires an additional development
task and the resulting architecture is more complicated, but this cost can be
mutualized and shared among several applications. Moreover, new applications
can be develop on top of more abstract services, which facilitates their imple-
mentation.

7 Related Work

Many surveys [1][3][11][12][13] about context middleware have been proposed.
We compare our approach to those whose architecture can be adapted to a fog
computing environment and its specific constraints.

The Context Toolkit [14] promotes code-reuse through the composition of
distinct artifact called widgets to build the context. These widgets are used to
hide the complexity of sensors and abstract context information. These reusable
blocks are explicitly linked at design time, each block deciding which blocks to
use. Our approach is similar in the sense that we divide the context in individual
small pieces. However, we delegate composition at runtime with more variabil-
ity expressed at design time. Moreover, Entity-Relation-like model offers more
flexibility to design complex contexts.

COSMOS, COntext entitieS coMpositiOn and Sharing [15], is a component
based context middleware. Each pieces of context is reified as a component called



14 Colin Aygalinc et al.

Context Node organized in a hierarchical structure. This approach provides sep-
aration of concerns by offering several built-in mechanisms like push/pull notifi-
cations. However, the strictly hierarchical approach of COSMOS context makes
it difficult to model horizontal relations. Moreover, component specifications are
strictly defined at design time, so runtime extensibility is hard to achieve.

DiaSuite [16] is a component based tool suite using a DSL, DiaSpec. DiaSuite,
following the Sense/Compute/Control pattern, defines three primitive types of
component: resource, context, and controller. DiaSpec is used to describe the
structure of each component, and through an additional build time step, to
generate the component skeleton. DiaSuite is similar to our approach in the
sense that its main goal is to help developers. However, many things remain on
developer side like programming of runtime component binding, and there is
no support for synchronization. We believe that this behavior must be specified
and not programmed in order to ease runtime reconfiguration. Also, java based
annotations seem to be better accepted by developers.

ACoMS, Autonomic Context Management System [17] promotes a work deal-
ing with fault-tolerance as regards to the dynamism of context provisioning by
using autonomic behavior. Applications describe their needs in terms of context
fact, and ACoMS can autonomously configure and reconfigure its context acqui-
sition and pre-processing functionality. ACoMS promotes autonomous behavior,
but context sources are at a sensor level and no clear guidelines are provided
to construct more abstract concepts. Moreover, we think that by infusing au-
tonomic touch points at a finer granularity, more advanced autonomic behavior
can be brought to context management.

[18] work deals with proactive adaptation and context management based
on a SOCM architecture. It underlines the fact that context interactivity is not
just about providing the most powerful modeling and reasoning engine. Indeed,
applications also can deal with context in a proactive manner, with the ability
to change the context through actuators. Our approach, in this sense, is very
similar. To do so, a specific query language is provided, with the issue of a steep
learning curve.

8 Conclusion

In this paper, we have presented a service-based architecture to design context-
aware applications. We have also described a Domain-Specific Language facili-
tating the development of a context module in iPOJO. These facilities are seam-
lessly integrated in the iCasa platform and tested on real-size applications with
the Orange Labs.

We are now working in two complementary directions. First, we are trying to
model more complex contextual entities. In particular, we believe it will be soon
necessary to include IoT and other pervasive platforms in the context since these
artifacts will be more and more present in smart environments. Second, we are
seeking to better formalize the application possible adaptations as a function of
the available contextual information and associated quality.



Service-oriented autonomic pervasive context 15

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems.
IJAHUC 2(4) (2007) 263–277

2. Bauer, M., Becker, C., Rothermel, K.: Location models from the perspective of
context-aware applications and mobile ad hoc networks. Personal and Ubiquitous
Computing 6(5/6) (2002) 322–328

3. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things
from industrial market perspective. IEEE Access 2 (2014) 1660–1679

4. Bonomi, F., Milito, R.A., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In Gerla, M., Huang, D., eds.: Proceedings of the first edition
of the MCC workshop on Mobile cloud computing, MCC@SIGCOMM,, Helsinki,
Finland, ACM (August 2012) 13–16

5. Escoffier, C., Hall, R.S., Lalanda, P.: ipojo: an extensible service-oriented compo-
nent framework. In: 2007 IEEE International Conference on Services Computing,
Salt Lake City, IEEE Computer Society (2007) 474–481

6. Escoffier, C., Chollet, S., Lalanda, P.: Lessons learned in building pervasive plat-
forms. In: 11th IEEE Consumer Communications and Networking Conference,
CCNC 2014,, Las Vegas (January 2014) 7–12

7. iCasa: platform and simulator releases
8. Bardin, J., Lalanda, P., Escoffier, C.: Towards an automatic integration of het-

erogeneous services and devices. In: 5th IEEE Asia-Pacific Services Computing
Conference, APSCC 2010,, Hangzhou, IEEE Computer Society (2010) 171–178

9. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S.O., Lorenzo, J.,
Mamelli, A., Scholz, U.: MUSIC: middleware support for self-adaptation in ubiq-
uitous and service-oriented environments. In Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J., eds.: Software Engineering for Self-Adaptive Systems.
Volume 5525 of Lecture Notes in Computer Science., Springer (2009) 164–182

10. SonarQube: an open platform to manage code quality
11. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,

A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
and Mobile Computing 6(2) (2010) 161–180

12. Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A survey of context data
distribution for mobile ubiquitous systems. ACM Comput. Surv. 44(4) (2012) 24

13. Ibarra, U.A., Augusto, J.C., Clark, T.: Engineering context-aware systems and
applications: A survey. Journal of Systems and Software 117 (2016) 55–83

14. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing
5(1) (2001) 4–7

15. Conan, D., Rouvoy, R., Seinturier, L.: Scalable processing of context information
with COSMOS. In: Distributed Applications and Interoperable Systems, 7th IFIP
WG 6.1 International Conference, DAIS 2007, Paphos (June 2007) 210–224

16. Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., Consel, C.: Diasuite:
A tool suite to develop sense/compute/control applications. Sci. Comput. Program.
79 (2014) 39–51

17. Hu, P., Indulska, J., Robinson, R.: An autonomic context management system for
pervasive computing. In: Sixth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom). (2008) 213–223

18. VanSyckel, S., Schiele, G., Becker, C.: Extending context management for proactive
adaptation in pervasive environments. In: Ubiquitous Information Technologies
and Applications. Springer Netherlands (2013) 823–831


