
HAL Id: hal-01378628
https://hal.science/hal-01378628v1

Submitted on 31 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Management of Pervasive Context
Colin Aygalinc, Gerbert-Gaillard Eva, German Vega, Philippe Lalanda

To cite this version:
Colin Aygalinc, Gerbert-Gaillard Eva, German Vega, Philippe Lalanda. Autonomic Management of
Pervasive Context. 13th IEEE International Conference on Autonomic Computing (ICAC 2016), Jul
2016, Würzbourg, Germany. �10.1109/ICAC.2016.64�. �hal-01378628�

https://hal.science/hal-01378628v1
https://hal.archives-ouvertes.fr

Autonomic management of pervasive context
Colin Aygalinc, Eva Gerbert-Gaillard, German Vega and Philippe Lalanda

Grenoble University
220 rue de la Chimie, Grenoble

France
firstname.lastname@imag.fr

Abstract— Pervasive computing promotes environments
where smart, communication-enabled devices cooperate to
provide services to people. Due to their inherent complexity,
many pervasive applications are built on top of service-oriented
platforms, providing a set of facilities simplifying their
development and execution. In this demo, we present such a
platform, iCasa, extended with an autonomic, service-oriented
context module. It is validated on diverse applications developed
with the Orange Labs in the health domain.

Keywords—autonomic management; pervasive context; service-
oriented computing; health.

I. PROPOSED APPROACH
A growing number of smart, communication-enabled devices
are integrated in our living environments. This is essentially
due to major advances in hardware and networking
technologies, which make sensors more powerful, cheaper and
smaller in size. Such digitalized environments, said to be
pervasive or smart, are increasingly accepted in all places
where social or professional activities take place. They
support the creation of new added-value services that are
delivered anytime and in a non-obstructive way. This new
form of computing is raising huge economical and societal
expectations in domains like manufacturing, buildings and
homes, energy, commerce and even healthcare. From this last
point of view, advances in pervasive computing are very
promising and could, for instance, provide new services
enhancing the potential of the elderly and patients to live and
cope at home.

Applications integrated in such smart, pervasive environments
are context-aware by essence. It means that they are able to
adapt their behaviors and the provided services according to
environmental conditions [1]. The notion of environment
should be taken in its broad sense here. It includes any
information that can be of interest for an application like, for
instance, physical quantities, locations and expectations of
human beings (implied or not in the functions provided by the
application), the software itself, and even remote digital
resources. Applications are also able to act on their context
and, say, change physical quantities to meet their objectives.
We readily acknowledge that building a context module is a
complex task. Multiple design trade-off decisions have to be

made and implemented regarding data access, synchronization
mechanisms, knowledge representation, reasoning, and
presentation. A common solution to alleviate these difficulties
is to use a context management framework. The purpose of
such framework is to deal with a number of generic features
like information synchronization or publication. As will see
here after, most existing frameworks suffer from major flaws
with regard to our use case. In particular, many impose an
unwanted overhead in terms of representation and also
execution time.

In our work, we concentrate on the fog level, which means
that we focus on the context-aware part of the code that is
executed as close as possible to the devices. This corresponds,
for instance, to short-term supervision in pervasive
environments. At that level, reactivity is an essential aspect.
The supporting framework has to deal with dynamic
environments where resources can appear and disappear
without notice.

We have integrated an autonomic, service-oriented context
module in our pervasive platform, named iCasa [2]. This
platform was ideally suited for such extension since it is based
itself on service orientation. Precisely, it is builds upon the
Apache service-oriented component model, iPOJO [3].

Context appears as a dynamic set of services. Depending on
the sources availability and the platform needs, different
services are published in and withdrawn from the platform
service registry. They are then opportunistically used by the
pervasive applications, coded in iPOJO. As illustrated, the
context module receives goals (that can be of different levels
of abstraction) from the platform that are used for context self-
adaptation. Another major point is that the context module
tracks any contextual modifications and sends an event to alert
applications using it. The overall approach is illustrated by
Fig. 1.

Fig. 1. Overall approach.

II. PROPOSED DEMONSTRATION
The proposed demonstration is based on the iCasa environment, which is made of three tools:
 An IDE based on an eclipse plug-in. It supports the

development of iPOJO-based application. An execution platform, based on OSGi, running on a
home gateway, which hosts several applications and
offers dynamic deployment facilities. A smart home simulator (see Fig. 2) that supports the
execution of predefined scenario, in order to quickly
test pervasive applications.
 In this environment, several applications have been developed

in various domains, including safety, comfort and healthcare
at home. These applications differ in terms of technical
requirements and needed context. In our demo, we will
consider two different applications. Actimetrics is a home care
application measuring through the execution platform, and
analyzing, through a cloud infrastructure, the motor activity of
elderly. It tracks behavioral changes to early diagnose
degenerative diseases like Alzheimer. We also designed a
LightFollowMe application: for each room of a house, it
controls the light depending on the presence of a user, and
adjusts intensity according to the current moment of the day.

For these applications, we will present how the context is
defined, deployed and run on the pervasive platform. Context
at runtime will be presented in a graphical form. Let us focus
on the LightFollowMe application. The context needs for this
application can be decomposed as it follows. First, the
application relies on an appropriate abstraction of lightning
devices, spatial zones and time (modeling). Such abstraction
must be synchronized with the physical devices (gathering).
Then, the application requires knowing which device is in
which zone (enrichment). The application computes physical
parameters: presence and illumination per zone (processing).
Finally, the application necessitates retrieving all this
information (disseminating) and applying its business logic to
affect the environment.

Fig. 2. Light Follow Me application – iCasa simulator overview.

Our framework gives an understandable representation of
the global context. The bottom right corner of Fig. 2 presents
the graph of the model displayed on the iCasa simulator:
devices are gathered by location, each room is enhanced with
a physical parameter aggregating and synthesizing presence
status, and an independent entity provides the moment of the
day. In addition of the graph view, the simulator can display
state properties and state extensions of an entity. This
functionality is shown on Fig. 3 with light_A.

Fig. 3. Light Follow Me application – zoom on the kitchen.

Our framework gives significant results from application development perspective. Inevitably, building the context adds an additional development task and the resulting architecture is more complicated. However, it’s easier to implement applications on the top of it. The context is shared among them, is extensible and can be adjusted to fit needs of an update. The whole software is more consistent, testable and maintainable.
REFERENCES

[1] M. Baldauf, S. Dustdar and F. Rosenberg, “A survey on context-aware systems,” in International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no 4, pp. 263-277, 2007.
[2] C. Escoffier, S. Chollet and P. Lalanda, “Lessons learned in building pervasive platforms”, in the 11th IEEE Consumer Communications and Networking Conference (CCNC), pp. 7-12, 2014.
[3] C. Escoffier, R. S. Hall and P. Lalanda, “iPOJO: an extensible service-oriented component framework,” in Service Computing, pp. 474-481, 2007.

