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Abstract

Background: Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining
the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for
durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide,
which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling
resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were
often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a
GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as
identify new resistance loci.

Methods: A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied
resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and
with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently
developed GenoPea Infinium® BeadChip.

Results: GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches,
using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported
main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14
consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes
in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry
pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was
broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying
resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions.

Conclusion: This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of
partial resistance to A. euteiches in pea breeding.

Keywords: Root rot, Plant disease resistance, GWAS, Pea (Pisum sativum), Quantitative trait loci, Marker haplotype,
Candidate genes
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Background
Research interest in polygenic resistance to plant dis-
eases has increased worldwide in the past ten years to
meet the challenge of sustainable agriculture. Recom-
mendations to reduce chemical inputs and the frequent
breakdown of major resistance genes in plants have en-
couraged the integration of polygenic resistance into cul-
tivars of many crops. However, breeding strategies for
polygenic resistance, which is controlled by many genes,
have not been as widely developed as for monogenic or
oligogenic resistance (controlled by one or few genes, re-
spectively) [1]. Breeding schemes for polygenic traits are
costly and time-consuming. The effects of Quantitative
Trait Loci (QTL) controlling resistance are not always
conserved in different genetic backgrounds and environ-
ments and markers tightly linked to resistance loci have
also often been lacking. Further research is needed to
validate QTL effects, reduce their confidence intervals
(CIs) and identify their underlying causal genes [2, 3], to
encourage and optimize QTL use in breeding [4].
The identification of plant resistance QTL has broadly

been explored using linkage mapping populations de-
rived from crosses between two parental genotypes [1].
With the decrease in genotyping costs and the massive
development of markers in the recent past years,
genome-wide association (GWA) studies, are becoming
common approaches to detect natural variation under-
lying complex traits, especially polygenic resistance to
major diseases, in a large range of crop species [5–7], in-
cluding legumes [8, 9]. The advantages of GWA studies
compared to bi-parental linkage mapping include access
to wider genetic diversity, higher recombination rates
due to the evolutionary history of the species, and thus
substantially refined genomic regions associated with
trait variations [5, 10]. Accurate marker density for
GWA studies depends on the rate of linkage disequilib-
rium (LD) decay and should be higher in species with a
rapid LD decay (a few kb, such as in maize) than in
those with a slow LD decay (~100 kb, such as in rice)
[5]. Segura et al. [11] recently proposed a Multi-Locus
Mixed Model (MLMM) approach, in order to improve
GWA studies precision and power of detection, and it
was successfully applied [12]. The reduction of CIs of
genomic regions associated with traits of interest,
opened the possibility of identifying haplotypes for
marker assisted selection (MAS) [8, 13] and pinpointing
interesting candidate genes underlying QTL [14, 15].
However, the GWA approach has also been reported to
have poor power to detect rare alleles associated with
the trait of interest, leading to missing heritability [5,
16], and complementarity between linkage and GWA
approaches has been underlined [7, 17]. Multi-parental
designs, including Nested Association Mapping (NAM)
[18, 19], Multi-parent Advanced Generation Inter-Cross

(MAGIC) [20, 21] and breeding line populations [22, 23]
were proven to efficiently increase power of GWA stud-
ies to detect rare variants, for which rates are increased
by selection of rare-allele-carrier parental lines [7, 16].
Dry pea (Pisum sativum) is the third most important

pulse crop worldwide [24], for which yield has been un-
stable for the past decades, mainly due to biotic and abi-
otic stresses. One of the most damaging biotic stresses
of peas is Aphanomyces root rot due to Aphanomyces
euteiches [25]. The soil-borne root pathogen, first de-
scribed in 1925 [26], has been mainly reported as a yield
limiting factor in the United States of America (USA)
and Europe for more than twenty years [27–29], and
more recently in Canada [30]. Two main pathotypes of
A. euteiches were described by Wicker and Rouxel [28],
including pathotype I predominant in France and patho-
type III detected in some regions of the USA (Onfroy et
al., personal communication). Both pathotypes cause
honey brown necrosis symptoms on pea roots and epi-
cotyls, resulting in dwarfism, foliage yellowing and then
death of plants in highly infested fields. Increasing yield
loss due to A. euteiches in dry and green pea production
has been noted in Western Europe due to short crop ro-
tations of susceptible pea varieties and the long lifespan
of oospores [27]. The development of resistant cultivars
has been considered as a major objective for the past
two decades in France, as only prophylactic and crop-
ping methods are available to manage the disease. Pea
lines partially resistant to A. euteiches were identified
from germplasm screening and breeding programs con-
ducted in the USA [31–35], and more recently, from a
French germplasm screening program of approximately
1900 Pisum lines [36]. The most resistant lines were in-
tegrated into crossing programs to develop breeding
lines [37, 38], recombinant inbred lines (RILs) [39–43]
and near-isogenic lines (NILs) [44]. Breeding lines with
increased levels of resistance to A. euteiches were se-
lected in a phenotypic recurrent selection-based breed-
ing program developed by GSP (Groupement des
Sélectionneurs de Pois Protéagineux, France) [37, 38].
RILs have also been used for discovery of Aphanomyces
resistance QTL [39–41, 43]. A total of 27 meta-QTL
were identified on a consensus genetic map from four
RIL populations [43]. Eleven of them, corresponding to
seven genomic regions, were detected on six of the
seven pea linkage groups (LGs), with high consistency
over locations, years, isolates and populations [43].
Marker assisted back-crossing was used to introgress
each of the seven consistent genomic regions into one of
the susceptible RIL parents and two main spring and
winter pea varieties. The resulting NILs were used to
validate individual or combined major resistance QTL
effects [44]. Lavaud et al. [44] considered large QTL in-
tervals for NIL creation, which brought undesirable
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morphological (coloured flowers, normal leaves) or de-
velopmental (late flowering) alleles linked to resistance
alleles at several QTL.
Massive numbers of Single-Nucleotide Polymorphism

(SNP) markers were recently developed from whole gen-
ome cDNA (coding deoxyribonucleic acid) [45–47] or
genomic sequencing of pea lines [48, 49]. A GenoPea Infi-
nium® BeadChip was developed by Tayeh et al. [49], con-
taining 13,204 SNPs, all located in gene-context
sequences. Pea diversity panels, especially the USDA
(United States Department of Agriculture) core collection
and the INRA (Institut National de la Recherche Agrono-
mique) reference collection, were used to determine asso-
ciations between low to medium density genetic markers
(137–1233) and traits of interest [9, 50–52]. However, only
a few sources of resistance to A. euteiches were identified
in these collections (Pilet-Nayel et al., unpublished data),
as was also found in larger Pisum screening programs for
Aphanomyces resistance [34, 36].
The aim of this study was to validate and refine the

CIs of previously reported Aphanomyces resistance
QTL, as well as identifying new resistance loci, using a
GWA approach. A novel panel, enriched in pea lines
partially resistant to A. euteiches from gene pools previ-
ously studied, was designed including breeding and
germplasm lines [37, 38, 43]. The recent GenoPea Infi-
nium® BeadChip was used for high-density SNP genotyp-
ing of the collection [49]. The GWA study detected
SNPs and LD blocks associated with Aphanomyces re-
sistance from data collected in nine field environments
and two strains under controlled conditions. The gen-
omic positions and CIs of resistance loci detected by
GWA study were compared to those previously identi-
fied by linkage analysis [41, 43]. The GWA study also
identified loci associated with morphological and devel-
opmental traits, in order to analyse their linkages with
Aphanomyces resistance loci. The GWA study allowed
marker haplotypes and putative candidate genes to be
identified, for future pyramiding of resistance alleles in
breeding and to investigate the molecular basis of poly-
genic resistance.

Methods
Plant material
A collection of 175 Pisum sativum lines, referred to as
the “pea-Aphanomyces collection", was used for associ-
ation mapping. It includes cultivars, breeding lines and
germplasm lines, supplied by public and private pro-
grams in legume genetics research and breeding
(Additional file 1):

(i) One hundred and one breeding lines, partially
resistant or susceptible to A. euteiches, originating
from the Aphanomyces recurrent selection-based

breeding program conducted by GSP [37, 38]. The
breeding scheme included four crossing programs
(namely AeA95, AeB97, AeC98 and AeD99),
established from 1995 to 1999. Parental lines of the
crosses included partially resistant germplasm lines
confirmed in French field conditions (PI180693, 90–
2131 and 552) [31–34] and dry spring or winter pea
cultivars with good agronomic values but susceptible
to the pathogen [37, 38]. Simple or double crosses
between multiple parents were designed in the
AeA95, AeB97 and AeC98 programs.. The best F1
hybrids from the three programs were selected based
on resistance levels of their inbred progenies (F5-F6).
The selected F1 hybrids were then inter-crossed in
the AeD99 program which was divided into two
parts. The first part (AeD99QU) was generated from
two crosses and aimed at developing pea lines with
improved resistance levels for breeding purposes.
The second part (AeD99OSW) was generated from
three other crosses and was conducted as a diver-
gent selection program of resistant and susceptible
lines for QTL validation studies. In each of the four
crossing programs, selection for resistance was
conducted from F3 or F4 generations, alternatively in
growth chamber and in French field nurseries.
Resistance levels and agronomic values of the best
F7 and F8 lines were then assessed in infested field
trials and in healthy field conditions.

(ii)Twenty RILs from INRA and USDA research
programs selected for Aphanomyces resistance and
for morphological and developmental traits. These
RILs included: (iia) four lines from the Baccara x
PI180693 RIL population [41], (iib) eight lines from
the Baccara x 552 RIL population [41], and (iic)
eight lines from the Dark Skin Perfection (DSP) x
90-2131 RIL population [42, 43].

(iii) Eighteen parental lines of RIL populations used for
QTL analysis of Aphanomyces resistance [39–41, 43],
and/or of the Aphanomyces recurrent selection-based
breeding program conducted by the GSP. These lines
included the six pea differential genotypes defined by
Wicker et al. [29] to verify disease severity and strain
pathotypes in pathogenicity tests.

(iv) Twenty lines representing new sources of resistance,
selected from the INRA screening program of
Aphanomyces resistance sources previously
conducted [36]. The new sources of resistance
selected included pea breeding and germplasm lines
from Aphanomyces resistance screening programs in
the USA and from collections of genetic resource
centers in France, the Netherlands, Russia and the
USA (Pilet-Nayel et al., unpublished).

(v)Sixteen spring or winter pea varieties currently or
formerly grown in Europe.
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The pea-Aphanomyces collection thus combined dif-
ferent genetic sources of resistance, especially originating
from three major resistant pea lines effective in France
(90–2131, 552 and PI180693) and analysed in previous
QTL studies [43]. The collection included plant material
described both for different end-uses (food, feed or fod-
der peas) and for different sowing times (spring and win-
ter peas). Morphological descriptions (seed type, foliage
type and flower colour) and available pedigree informa-
tion of the lines are presented in Additional file 1.

Phenotyping
The collection was evaluated for Aphanomyces resist-
ance in inoculated controlled conditions (CC) and
infested fields. In CC, resistance tests were performed in
2009 on all the lines but the 20 RILs with two pure-
culture reference strains of A. euteiches described in
[41], i.e., the French RB84 strain from pathotype I and
the American Ae109 strain from pathotype III. CC re-
sistance tests were also conducted in 2013 on all the
lines with the RB84 strain only. The experiments used a
modified version of the standardized test developed by
Moussart et al. [54], as described in [41]. The pea lines
were evaluated for resistance to each strain, using a ran-
domised complete block design with four and three
blocks in 2009 and 2013 tests, respectively, and five
seeds per block sown in a pot. Resistance tests were con-
ducted in a growth chamber (25 °C for 16h-day, 23 °C
for 8h-night), as described in [41]. Seven-day old seed-
lings were inoculated with a solution of 103 zoospores
per plant, produced as described by Moussart et al. [54].
Disease severity was assessed on each plant seven days
after inoculation, using a 0 (no symptoms) to 5 (dead
plant) scoring scale proportional to the percentage of
browning symptoms on roots and epicotyls [41]. A CC
root rot index (CC_RRI) was calculated as the mean dis-
ease score on all plants in a pot.
In the field, the collection was evaluated for Aphano-

myces resistance in infested nurseries over four years
(from 2010 to 2013) and three locations in France (Riec-
sur-Belon, Finistère (RI); Dijon-Epoisses, Côtes d’Or (DI)
described in [41]) and in the USA (Kendrick, Idaho
(KEN)). The collection was phenotyped each year at the
two French locations and in 2012 at KEN, USA, for a
total of nine environments. Field assays were carried out
using randomised complete block designs with three
replicates and an adjacent susceptible control (Solara)
every two lines, as described in [41]. Two disease criteria
were used to assess resistance in each plot, as reported
in [41]: (i) a field root rot index (Field_RRI), using the
0–5 CC scoring scale, evaluated on ten plants per plot
for each year in French nurseries and (ii) a field aerial
decline index (Field_ADI), measuring yellowing symp-
toms on a plot, evaluated once or twice (Field_ADI1 and

Field_ADI2) in all the USA and French disease nurseries,
using a 1 (green plant) to 5 or 8 (dead plant) disease
scoring scale depending on the nursery. The RRI and
ADI scores on each plot were adjusted for local disease
variation measured by scores on the adjacent susceptible
control, as described in [41].
In the field, the collection was also phenotyped for de-

velopmental traits in a healthy nursery at Rennes-Le
Rheu (Ille-et-vilaine, France (REN)) for two years (2010
and 2012), using a randomised complete block design
with three replicates, as described in [43]. Earliness was
scored on each plot as the number of calendar days to
50 % bloom (FLO1), to 100 % bloom (FLO2) and to rip-
ening defined as 100 % of dried plants (RIPE) from the
first day of the year. Average plant height (HT) was eval-
uated on five plants per plot at 100 % bloom.

Genotyping
The collection was genotyped using three morphological
genes (Af, afila/normal leaves; R, smooth/wrinkled seeds;
A, anthocyanin production related to white/coloured
flowers), specific-PCR markers for two known-function
genes (Clpser and SugTrans, [55]), 45 simple sequence
repeat (SSR) markers from [56] and 13,204 SNP markers
from [49]. DNA was extracted from each pea line from
approximately 1 g of young leaves collected on plants
grown in a greenhouse, as described by Doyle and Doyle
[57]. Concentrations were adjusted to 10 ng/μl for SSR
genotyping and to 50 ng/μl for SNP genotyping.
SSR fragments were amplified by polymerase chain re-

action (PCR) and analysed using GeneMapper® software
v.4.0 (Applied Biosystems®, USA), as described in [44], ex-
cept for the 20 RILs of the collection which were geno-
typed for SSRs as in [41]. Out of the 45 SSRs, 28 and 17
were located within and outside the main genomic regions
previously associated to Aphanomyces resistance, respect-
ively (Additional file 2) [41, 43]. Each SSR revealed be-
tween two and 16 alleles in the collection. Each line of the
collection was coded for each SSR allele as homozygous
for the considered allele (“BB”), heterozygous (“AB”) or
homozygous for another allele (“AA”). A total of 441 SSR
coded alleles were included in the genotyping matrix.
The 13,204 SNPs were part of a large pea SNP resource

of 248,617 robust filtered SNPs discovered from whole-
genome Illumina HiSeq2000 sequencing of 16 diverse pea
genotypes [49]. These 13,204 SNPs were all located in
gene-context sequences, each originating from a separate
transcript [58], and were included in the Illumina Infinium®
BeadChip developed by Tayeh et al. [49]. Infinium genotyp-
ing and data analysis were conducted as described in Tayeh
et al. [49]. A total of 12,067 SNPs were selected for clearly
being bi-allelic in the collection. Each line was coded “AA”
or “BB” when homozygous for the first or second allele and
“AB” when heterozygous.
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Statistical analysis of phenotypic data
Phenotypic data obtained on the collection for resistance
to A. euteiches, earliness and height were analysed, for
each variable in each field environment or CC experi-
ment (individual analysis), and then for all year x loca-
tion field environments (global analysis), using the R
3.1.1 program [59]. In the individual analysis, phenotypic
variables were analysed using a linear model (LM) [R
function lm] including G (genotype) and R (replicate) as
fixed factors. In the global analyses, E (environment) and
GxE (genotype x environment) interaction were added
as fixed factors. Normality of residuals and homogeneity
of their variances were checked using Skewness, Kur-
tosis and Shapiro-Wilk statistics (P ≥ 0.05), as well as
Bartlett test (P ≥ 0.05), respectively [R functions skew-
ness and kurtosis of package agricolae, [60]; plotresid of
package RVAideMemoire, [61]; bartlett.test]. Mean-
based heritability (h2) was calculated for each variable
from variance estimates in the individual and global LM
analysis, using the formulas h2 = σG

2 /[σG
2 + (σE

2/r)] and h2

= σG
2 /[σG

2 + (σGE
2 /E) + (σE

2/rE)], respectively, where σG
2 is

the genetic variance, σGE
2 the GxE interaction variance,

σe
2 the residual variance, E the number of environments

and r the number of replicates per line. Least Square
Means (LSMeans) were calculated from each LM ana-
lysis (R function lsmeans of package lsmeans [62]). His-
tograms of LSMeans frequency distributions were drawn
using the R function hist.
Pearson correlation analysis was carried out between

LSMeans obtained from the individual and global ana-
lysis (R function corr.test of package psych, [63]). The
significance of the Pearson correlations was evaluated
with a false discovery rate correction for multiple testing
(corrected p-value < 0.05; [64]). The heatmap of the
Pearson coefficients (r) was drawn using the R function
heatmap.2 (package gplots) [65].
A Multiple factor analysis (MFA) was performed for

the different resistance variable categories (CC_RRI;
Field_RRI; Field_ADI1 and Field_ADI2), using
LSMeans from individual and global LM analysis (R
function MFA of package FactoMineR, [66]). For
MFA, LSMeans missing values were handled with the
R package missMDA [67].

Genetic analysis
The genotyping dataset of the collection, composed of
three morphological genes, two specific-PCR markers
for known-function genes, 441 SSR alleles and 12,067
SNP markers was filtered using PLINK 1.9 software [68–
70]. Six of the 175 pea lines with missing data for more
than 10 % of SNP markers were not included in the
GWA analysis. Markers with missing data that exceeded
10 % or with a minor allele frequency (MAF) that did
not exceed 5 % in the 169 remaining lines, respectively,

were also removed for the GWA analysis. A total of
9980 markers, including three morphological genes, two
specific-PCR markers of known-function genes, 189 SSR
alleles and 9786 SNP markers were thus retained in the
genetic analysis.

Missing data imputation
The raw dataset of 9786 SNP markers was imputed
using the R function knncatimputeLarge (package
scrime, [71]). This function imputed missing values,
which corresponded to 0.45 % of the total dataset, re-
garding the k nearest neighbour SNPs without missing
values. Imputation parameters were tested with 10 repli-
cates, using a subset of 5001 SNP of the dataset with no
missing values. For each replicate, 0.45 % of missing
values were randomly simulated. Parameters tested were
one to 10 nearest neighbours and four different methods
to determine distances between SNPs [72]. Distance cal-
culation methods were based on corrected Pearson’s
contingency coefficient, scaled Manhattan distance, sim-
ple matching coefficient or Cohen’s kappa. Imputed
values of simulated missing data were then compared to
real values. The lowest error rate mean (9.86 %) over the
10 replicates was found with the Cohen’s kappa distance
calculation method and six nearest neighbours. These
parameters were applied to the 9786-SNP-markers and
189-SSR-allele dataset to impute missing values.

Linkage disequilibrium analysis
Pairwise LD between markers was explored within LGs
from imputed genotypic data using PLINK 1.9 software.
Obtained square correlation coefficient (r2) values were
then plotted against genetic distances (cM) according to
the consensus map from Tayeh et al. [49], namely TMap
in this study, to estimate the LD decay. LD decay regres-
sion curves were fitted to the observed LD decay plots
(R 3.1.1 program; [59]), following Sved [73] method with
rexpected
2 = 1/(1 + 4Ne × c), Ne effective population size
and c recombination rate between two markers. A non-
linear model was fitted on the pairwise LD data, then
least-squares estimates were computed (R function nls)
and Ne was predicted from this fitted nonlinear model
(R function predict). The LD decay rate of the popula-
tion was measured as the genetic distance (cM) where
the average r2 dropped to half its maximum value (r2 =
0.5) [74].

Population structure and individual relatedness
A principal Component Analysis (PCA) and a Kinship
relatedness matrix were used to estimate the structure of
the collection from genotypic data, using the EMMA
(efficient mixed-model association) method in the
GAPIT (Genome Association and Prediction Integrated
Tool) R package ([75], see the GAPIT R script at [76]).
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PCA and Kinship matrices were calculated based on a
subset of 2937 SNP markers, among the 9980 imputed
filtered markers on the TMap, corresponding to a single
randomly-chosen marker per genetic position. Regarding
to eigenvalues, the three first principal components
(PCs) of the PCA were selected to take into account
structure population in the GWA analysis. Clustering of
individuals was considered based on their Kinship coor-
dinates and was implemented in the GAPIT package
with the UPGMA (Unweighted Pair Group Method with
Arithmetic mean) method.

Association mapping
GWA analyses were performed using a modified version
of the multi-locus mixed model (MLMM) R package
[11]. Briefly, the PCA matrix of population structure and
the Kinship matrix obtained from GAPIT were defined
as cofactors in the MLMM (see the mlmm_cof.r R script
at [77]). Significant SNP markers were also used as co-
factors in a forward/backward approach.
The initial script of mlmm_cof was modified to define

the multiple-Bonferroni (mBonf) threshold using the
formula: mBonf = [−log(α/m)], with α = 0.10, the overall
false positive threshold and m = 2937, the number of
markers selected at non-redundant genetic positions on
the TMap. Thus, the mBonf threshold was set at 4.47,
which corresponded to a p-value of 2.5E-5. GWA study
was performed from LSMeans scores of all the variables
described in the phenotypic data analyses section, as well
as from coordinates of lines on the two first PCs of MFA
resistance variables analysis namely MFA.Dim.1 and
MFA.Dim.2. In each GWA analysis, the optimal MLMM
step was determined as the largest stepwise mixed model
regression in which all cofactors have –log (p-value)
above the mBonf threshold defined. At the optimal
MLMM step, reliability of the analysis was evaluated
based on plot of mBonf criteria among forward and
backward steps, qqplot at the optimal step with mBonf
criteria, and plot of partition of variance among steps
(Additional file 3). The MLMM outputs used in this
study were the partition of variance (percentage of vari-
ance explained by PCA, Kinship, markers in cofactors,
and unexplained variance), the number and names of
markers as cofactors at the optimal step and the p-value
and allelic effect of each significant marker.
Local LD analysis was used to define the CIs around

significant associated markers detected by GWA study
using Plink 1.9 software. A LD block was determined as
the interval containing all markers in LD (r2 > 0.2) with
the significant associated marker, as described in [17].
LD blocks were named with the LG name (Roman nu-
meral) and then an Arabic numeral in genetic position
order. A LD block was considered as consistent for each
trait (resistance to A. euteiches, or earliness or height),

when it contained either one marker associated with at
least two variables of the trait, or two or more linked
markers (r2 > 0.2), each associated with at least one vari-
able of the trait.

Haplotype analysis
At each consistent LD block associated with Aphano-
myces resistance, marker haplotypes, i.e., genotypic pat-
terns at the given LD block, were identified among all
the lines of the collection based on non-imputed raw
genotyping data. Haplotypes were named with the LD
block name and an Arabic numeral. For each trait sig-
nificantly associated with marker(s) in a given consistent
LD block, mean phenotypic scores of pea line groups
comprising more than eight lines (5 % of the total num-
ber of lines) and carrying different haplotypes were com-
pared, using the Tuckey-HSD test (α = 5 %; R package
multcomp, [78]). Favourable and unfavourable haplo-
types were defined as those meeting the three following
criteria: (i) carrying favourable and unfavourable allele(s),
respectively, at the disease trait-associated marker(s), (ii)
without missing or heterozygous genotypic data at the
other markers in the LD block and (iii) showing a sig-
nificantly lower or higher disease mean score (breaking
of group means considered, P < 0.05) than the other
favourable or unfavourable haplotypes, respectively, for
the highest number of disease traits among those associ-
ated with the LD block. According to these criteria,
more than one favourable or unfavourable haplotype per
LD block could be defined. Missing haplotypes were de-
fined in lines showing missing genotypic data or hetero-
zygosity for at least one marker in the considered LD
block. Each line of the collection was described for its
number of favourable haplotypes at all the consistent LD
blocks. A Tukey-HSD test (α = 5 %) was then used to
compare the mean numbers of favourable haplotypes in
three groups of pea lines without missing haplotypes.
The three groups were defined based on their MFA.-
Dim1 scores and corresponded to lines with high (25 %
lowest scores), intermediate (50 % interquartile scores)
or low (25 % highest scores) levels of resistance,
respectively.

Comparative mapping
The consensus map from Hamon et al. [43], namely
HMap in this study, summarized individual- and meta-
QTL previously mapped for Aphanomyces resistance
and developmental traits [41, 43], while the consensus
TMap of Tayeh et al. [49] contained all the markers used
in the present study. Thus, for comparative mapping,
markers and QTL of the HMap were projected onto the
TMap, using Biomercator V4.2 software [79]. The level
of connectivity between the two maps was estimated
using the “InfoMap” tool of the software. Maps were
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compiled using the “iterative map projection” tool from
Biomercator V4.2 based on loci position data. TMap was
used as reference map and HMap was projected based
on common loci. Inversions of common loci were auto-
matically resolved. Visualization of loci detected by asso-
ciation and linkage mapping on the resulted consensus
map (namely THMap) was computed using MapChart
2.1 software [80].

Identification of putative candidate genes
Using annotation data for SNP anchored sequences from
[49], a search was carried out for the putative gene and
protein functions contained in each LD block for resist-
ance to A. euteiches, earliness and height. The annota-
tion data described predicted protein functions for each
transcript sequence. The annotation was obtained fol-
lowing Blastx searches against P. sativum, M. truncatula,
G. max and A. thaliana protein sequences. If at least
two annotations were consistent, others missing, and at
least one e-value was lower than 1E-50, the correspond-
ing putative protein function was assigned to the se-
quence underlying the SNP. The putative annotation of
the SNP-anchored sequence was scored with a ‘disagree-
ing hits’ comment when annotations disagreed, and with
a ‘not assigned’ comment when at least three annota-
tions were missing and/or all e-values were higher than
1E-50.. When possible, putative protein functions were
attributed to known mechanisms of plant development
and responses to biotic stress, based on the literature.
SNPs which were anchored to previously cloned pea
genes and were located close to LD blocks associated
with resistance or developmental variables were identi-
fied based on information provided in [49].

Results
Analysis of phenotypic data
Resistance to A. euteiches
Global statistical analysis of RRI and ADI disease scores,
obtained on the pea-Aphanomyces collection in field
infested nurseries over the nine environments studied,
showed highly significant GxE interactions (P < 0.001)
(Additional file 4). These results confirmed the relevance
of data analysis in each environment. Individual analysis
of disease scores in each field environment, as well as in
each CC experiment, revealed highly significant geno-
typic effects (P < 0.001) for all the disease variables but
for Field_RRI at RI in 2013 (P < 0.01) and Field_ADI2 at
RI in 2010 (P < 0.05) (Additional file 4). Heritability of
resistance ranged from 0.28 (Field_RRI, RI 2013) to 0.96
(Field_ADI2, DI 2012), depending on the variable, and
was high for most of the resistance variables (h2 > 0.60,
except for Field_RRI at RI in 2013 and Field_ADI at RI
in 2010, 2011, 2013 and KEN in 2012). Heritability
values were especially high for CC_RRI scorings (h2 >

0.78), especially with the Ae109 strain (h2 = 0.91). Fre-
quency distributions of LSMeans values for each individ-
ual resistance variable tended to fit normal curves
(Additional file 5), except for CC_RRI_09_Ae109 which
showed a skewed distribution with some highly resistant
lines.

Earliness and height
Global statistical analysis of earliness and height scores,
obtained on the collection in the field healthy nursery at
REN over two years (2010, 2012), showed highly signifi-
cant GxE interactions (P < 0.001) (Additional file 4). In-
dividual analysis of the scores in each year revealed a
highly significant genotypic effect (P < 0.001). Heritabil-
ities of earliness and height traits in each environment
were very high (h2 > 0.87). Frequency distributions of
LSMeans values for each individual developmental vari-
able tended to fit normal curves and were consistent be-
tween the two years (Additional file 5).

Correlations among variables
All Field_RRI and CC_RRI scoring data were signifi-
cantly and positively correlated between each other (cor-
rected P < 0.001, 0.30 < r < 0.79), as well as closely
clustered, except that obtained with the Ae109 strain
(Additional file 6). Most of the Field_ADI data were
slightly and positively correlated to CC_RRI data (cor-
rected P < 0.01, 0.25 < r < 0.57) with the RB84 strain but
not with the Ae109 strain. Most of the Field_ADI1 and
Field_ADI2 scoring data (68 %) were also significantly
and positively correlated between each other (corrected
P < 0.01, 0.22 < r < 0.79). Field_ADI scoring data were
significantly and positively correlated with Field_RRI
scoring data (corrected P < 0.03, 0.19 < r < 0.79), except
those from 2011 (RI and DI).
All earliness and height data were significantly and

positively correlated between each other (corrected P <
0.005, 0.26 < r < 0.92) (Additional file 6). Earliness data
were slightly and negatively correlated with most of the
Field_ADI data (corrected P < 0.05, −0.5 < r < −0.2).

Multiple factors analysis
The two first PCs of the MFA analysis of disease resist-
ance variables explained a total of 56 % of the inertia
(MFA.Dim.1: 44.13 % and MFA.Dim.2: 11.89 %; Fig. 1a).
Three groups of variables could be distinguished, includ-
ing CC_RRI, Field_RRI and Field_ADI. A total of 77 % of
the variables, especially the CC_RRI_RB84 variables, were
highly correlated with MFA.Dim.1 (r2 > 0.5) and well rep-
resented on the first axis (cos2 > 0.5) (Additional file 7).
Pea lines with extreme negative or positive coordinates

on MFA.Dim.1 were considered as the most resistant or
susceptible lines, respectively. MFA.Dim.2 was mainly
constructed from RB84 CC_RRI variables (r2 ≤ −0.5) in
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contrast to Field_ADI variables (r2 > 0.5). Pea lines with
extreme negative or positive coordinates on MFA.Dim.2
had low levels of aerial symptoms or root symptoms, re-
spectively. Dispersion of the pea lines on the two princi-
pal MFA components showed that the frequency of
resistant and susceptible lines was homogeneous among
the collection and within some groups of lines (Fig. 1b),
which is optimal for GWA analysis of the resistance.
The three most resistant lines were GSP breeding lines,
namely AeD99OSW −45-8-7 (A100), AeD99OSW −50-2-
5 (A104) and AeD99OSW −47-6-1 (A101). The two most
susceptible lines were Safranos (A154) and Marignan
(A153), registered as French varieties.

Genetic analyses
Linkage disequilibrium, structure, and kinship in the
pea-Aphanomyces collection
From the imputed genotypic data of the collection ob-
tained with the filtered 9980 markers, the LD decay was
estimated to range from 0.08 to 0.16 cM, depending on
the LG, and averaged 0.12 cM over all the pea LGs
(Additional file 8). Based on non-redundant marker po-
sitions on the consensus genetic map of Tayeh et al. [49]
(TMap), the average distance between two markers used
in the analysis was 0.27 cM.
From the defined subset of 2937 SNPs located at non-

redundant genetic positions on the TMap, PCA analysis
of the collection identified three first PCs that explained

a total of 20.91 % of genetic variation in the collection
(Additional file 9 D). The first PC contributed to 9.28 %
of the variation and the second and third PCs to 6.34
and 5.29 %, respectively. Pea lines were clustered slightly
on PCs 1 to 3 depending on their origin, mainly var-
ieties, distinct RIL populations, and groups of GSP
breeding lines with any, two or three partially resistant
parents in their pedigree (Additional file 9 A to C). The
first three PCs were added to the GWA model as cofac-
tors to take into account this slight population structure.
From the subset of 2937 SNPs, the Kinship matrix of
genetic similarities revealed a moderate relatedness
among lines of the collection (0.5 < r2 < 0.65 for the
major part of the lines), including sub-groups with
higher relatedness (r2 > 0.8) according to pedigree, end
use or sowing type (Additional file 10). Thus, the Kin-
ship relatedness matrix was also added to the GWA
model as a cofactor.

GWA markers and confidence intervals

Disease resistance GWA analysis identified a total of
79 markers, located on the seven LGs, associated with
33 global or individual Aphanomyces resistance vari-
ables, including (i) 28 Field_RRI or _ADI variables from
nine field environments, (ii) the three CC_RRI variables
and (iii) the two MFA variables (Table 1 and Additional
file 11). Zero to nine markers were significantly

A B

Most
susceptible
linesMost 

resistant
lines

Low RRI

Low ADI

A100
A101

A104

A154

A153

Fig. 1 Graphical representation of Multiple Factors Analysis (MFA) of the phenotypic data. Correlation circle of variables (coloured according to
groups) (a) and genotype factor map (coloured according to origin) (b), on the first two principal components of the MFA of disease variables.
Earliness and height variables are supplemental variables and thus are projected onto the dimensions but were not included in the analysis. All
the variables are abbreviated as described in Table 1. GSP0-3: lines from the GSP breeding program containing in their pedigree zero to three of
the previously described major sources of resistance (PI180693, 90–213 and 552) [43] (Additional file 1), respectively. Parents: Parental lines of GSP
breeding programs and/or RIL populations. BRILs iia, iib, iic: Selected lines from the Baccara x PI180693, Baccara x 552 and DSP x 90–2131 RIL
population, respectively; New sources: Selected accessions from the large INRA screening program; Varieties: Registered dry pea varieties. Extreme
genotypes are labelled on the two main principal components
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Table 1 Genome-wide association analysis results using the multi-locus mixed model (MLMM) method in the pea-Aphanomyces
collection

Variable (a) Number of
markers (b)

Range of
p-value (c)

Range of allelic
effect (d)

% of phenotypic variance explained by Unexplained
variance (h)PCA (e) Kinship (f) Markers (g)

Field_RRI_All 2 7.86E-11–8.10E-06 0.13–0.17 48 % 20 % 19 % 14 %

Field_RRI_10_RI 2 1.81E-05–2.37E-05 0.16–0.19 13 % 28 % 25 % 34 %

Field_RRI_11_RI 2 9.92E-08–6.58E-06 0.23–0.26 42 % 9 % 20 % 29 %

Field_RRI_12_RI 5 3.14E-07–1.50E-05 0.17–0.29 20 % 18 % 39 % 23 %

Field_RRI_13_RI 0 – – 26 % 25 % 0 % 48 %

Field_RRI_10_DI 1 5.78E-06 0.17 24 % 28 % 10 % 38 %

Field_RRI_11_DI 1 5.90E-07 0.29 54 % 25 % 9 % 12 %

Field_RRI_12_DI 3 4.76E-06–7.46E-06 0.15–0.17 36 % 14 % 23 % 28 %

Field_RRI_13_DI 3 6.00E-08–2.17E-05 0.16–0.26 28 % 13 % 23 % 37 %

CC_RRI_09_RB84 1 5.40E-12 0.28 43 % 8 % 19 % 30 %

CC_RRI_09_Ae109 2 8.82E-28–1.60E-06 0.27–0.81 8 % 10 % 68 % 13 %

CC_RRI_13_RB84 3 7.34E-11–3.89E-06 0.17–0.26 47 % 6 % 22 % 25 %

Field_ADI1_All 4 7.86E-11–2.43E-06 0.20–0.32 32 % 25 % 27 % 16 %

Field_ADI1_10_RI 4 3.12E-08–2.25E-05 0.26–0.40 10 % 4 % 39 % 48 %

Field_ADI1_11_RI 0 – – 5 % 50 % 0 % 45 %

Field_ADI1_12_RI 3 3.99E-07–8.98E-06 0.45–0.54 23 % 50 % 15 % 13 %

Field_ADI1_13_RI 5 3.85E-08–3.32E-05 0.13–0.25 31 % 0.001 % 37 % 32 %

Field_ADI1_10_DI 0 – – 37 % 45 % 0 % 18 %

Field_ADI1_11_DI 0 – – 2 % 17 % 0 % 81 %

Field_ADI1_12_DI 7 1.13E-10–2.53E-05 0.21–0.61 29 % 21 % 39 % 12 %

Field_ADI1_13_DI 2 2.53E-10–1.16E-08 0.36–0.43 35 % 15 % 26 % 23 %

Field_ADI1_12_KEN 1 2.64E-05 0.18 32 % 25 % 8 % 34 %

Field_ADI2_All 3 1.15E-07–8.27E-06 0.22–0.38 39 % 47 % 8 % 6 %

Field_ADI2_10_RI 0 – – 15 % 0.004 % 0 % 85 %

Field_ADI2_11_RI 2 7.77E-07–3.61E-06 0.33–0.43 0 % 43 % 23 % 34 %

Field_ADI2_12_RI 0 – – 39 % 47 % 0 % 14 %

Field_ADI2_13_RI 0 – – 39 % 45 % 0 % 17 %

Field_ADI2_10_DI 6 7.56E-08–1.27E-05 0.26–0.46 20 % 0.002 % 38 % 42 %

Field_ADI2_12_DI 0 – – 24 % 50 % 0 % 26 %

Field_ADI2_13_DI 9 3.25E-12–2.34E-5 0.26–0.45 36 % 5 % 45 % 14 %

Field_ADI2_12_KEN 1 2.55E-05 0.34 9 % 48 % 11 % 32 %

MFA.Dim.1 4 1.51E-08–1.26E-05 0.42–0.56 56 % 15 % 21 % 8 %

MFA.Dim.2 2 1.01E-05–1.48E-05 0.36–0.48 9 % 78 % 1 % 13 %

FLO1_10_REN 5 1.24E-17–1.97E-05 1.82–5.86 9 % 17 % 64 % 10 %

FLO1_12_REN 7 6.29E-16–3.31E-06 1.55–12.80 8 % 23 % 63 % 6 %

FLO2_10_REN 8 8.50E-12–2.21E-06 0.91–2.88 5 % 0.001 % 71 % 24 %

FLO2_12_REN 3 2.68E-15–3.69E-08 2.47–5.49 5 % 19 % 52 % 24 %

RIPE_10_REN 7 5.02E-13–7.74E-06 0.94–2.88 0 % 3 % 72 % 25 %

Desgroux et al. BMC Genomics  (2016) 17:124 Page 9 of 21



associated with each variable, with a p-value that ranged
from 8.82E-28 to 3.32E-05, depending on the marker.
Zero to nine cofactors were thus retained in the MLMM
for each disease resistance variable, explaining a total of
zero to 68 % of the phenotypic variation depending on
the variable and in accordance with the heritability of
the trait. Missing heritability (unexplained variance)
ranged from 6 to 85 % and PCA and Kinship individu-
ally captured between zero and 78 % of the variance, de-
pending on the variable. Allelic effects of markers
associated with Field_ADI variables fluctuated widely,
depending on the marker (absolute values from 0.13 to
0.61) (Table 1 and Additional file 11). Markers associ-
ated with Field_RRI had similar allelic effects as those
associated with CC_ RRI with the RB84 strain (absolute
values from 0.13 to 0.29), but lower than those associ-
ated with CC_RRI with the Ae109 strain (absolute values
from 0.27 to 0.81).
A total of 52 CIs, ranging from 0 to 5.4 cM, were de-

fined around all the significant disease-trait-associated
markers, which included markers in LD (r2 > 0.2) with
the targeted marker(s). Three kinds of LD blocks were
identified, based on their significance and consistency
(Fig. 2): (i) Fourteen LD blocks were considered as con-
sistent since these included two to six disease trait-
associated markers (double red stars on Fig. 2; 3.25E-12
< P < 2.64E-5). (ii) Four disease LD blocks included a
single highly significant disease trait-associated marker
(single red stars on Fig. 2; 8.82E-28 < P < 1.13E-10).
Three of these markers were associated with CC_RRI
variables. (iii) Most of the disease LD blocks (67 %) in-
cluded a single moderately significant disease-trait-
associated marker (3E-08 < P < 3.3E-05).
Out of the 14 consistent LD blocks, seven were Fiel-

d_ADI specific, three were Field_RRI specific and four
were common to Field_ADI and _RRI. The seven
markers associated with global Field_ADI variables were
all located in common LD blocks as individual Fiel-
d_ADI variables. Out of the two markers associated to
the global Field_RRI variable, one was located in the
same LD block as one containing individual Field_RRI
variables. Even if CC_RRI and Field_RRI data were

correlated (r2 > 0.5), no common LD block was detected.
Among the four markers associated with MFA.Dim.1,
two were included in Field_RRI specific LD blocks and
one in a LD block that contained Field_ADI associated
markers. The two markers associated with MFA.Dim.2
variable were included in Field_ADI specific LD blocks.
The THMap, which resulted from the projection of

the HMap onto the TMap, was based on 144 common
markers (13 to 29 markers per LG; Additional file 12),
most of which were located in previous QTL regions.
The projection led to a total of 41 inversions of marker
positions, which did not likely affect the QTL projection.
Comparison of linkage and association mapping re-

sults revealed that 19 of the 27 genomic regions includ-
ing individual Ae-Ps QTL and 12 of the 27 MQTL-Ae
meta-QTL previously reported [41, 43] were also de-
tected by association mapping (Fig. 2 and Additional file
11). (i) Eight out of the 14 consistent disease LD blocks
(I.5, II.1, III.3, III.4, III.6, III.9, VII.13 and VII.14) co-
localized with four of the seven main Ae-Ps QTLs previ-
ously identified and used for NILs construction by
Lavaud et al. [44], i.e., Ae-Ps1.2, Ae-Ps2.2, Ae-Ps3.1a-b
and Ae-Ps7.6a-b. Moreover, the highly consistent LD
block VII.16 was located just 0.45 cM away from Ae-
Ps7.6b. Two other consistent LD blocks co-localized
with two less consistent Ae-Ps QTL (Ae-Ps3.2 and Ae-
Ps7.3). (ii) One of the four disease LD blocks including
single highly significant disease-trait-associated markers
(IV.8) co-localized with the main previously detected
QTL Ae-Ps4.5. (iii) Among the 40 remaining disease LD
blocks identified in this study, three co-localized with
the previous main QTL Ae-Ps4.1 and 11 were located in
regions not previously reported for resistance to A.
euteiches. The main QTL Ae-Ps5.1 previously identified
on LGV was not detected in this study.

Linkage between resistance and morphological or de-
velopmental traits A total of 25 markers, distributed
over four LGs, were significantly associated (1.24E-17 <
P < 1.97E-05) with the six earliness variables scored in
the pea-Aphanomyces collection in the REN healthy

Table 1 Genome-wide association analysis results using the multi-locus mixed model (MLMM) method in the pea-Aphanomyces
collection (Continued)

RIPE_12_REN 2 2.69E-17–4.63E-06 2.15–3.39 0 % 25 % 49 % 26 %

HT_10_REN 3 3.76E-26–5.00E-06 6.42–30.65 0 % 37 % 53 % 10 %

HT_12_REN 2 1.62E-23–2.55E-05 8.10–34.61 0 % 23 % 76 % 1 %

(a) Variables are abbreviated as follows: CC Controlled conditions experiments, Field Infested field experiments, RRI Root rot index, IDA1 First aerial decline index,
IDA2 Second aerial decline index, FLO1 date of 50 % bloom, FLO2 date of 100 % bloom, RIPE date of 100 % dried plants, HT height of plants, 09 to 13 year of field
evaluation, All Global variables over field environments, RI Riec-sur-Belon, France, DI Dijon-Epoisses, France, REN Rennes-Le Rheu, France, KEN Kendrick (ID), USA,
RB84 and Ae109 two pure-cultured strains; (b) number of markers used as cofactors at the optimal step of the multi-locus mixed model (MLMM) analysis; (c) Range
of p-values of the significant markers, significance threshold is p-value < 3.4E-05 as described in Methods section; (d) Range of allelic effects of the significant
markers in absolute values; Percentage of phenotypic variance explained by: (e) the principal component analysis (PCA) matrix of the collection, (f) the Kinship
relatedness matrix among lines of the collection, (g) all cofactor markers and (h) the unexplained variance qualified as “missing heritability”
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field nursery over two years (Table 1 and Additional file
11). Twenty LD blocks were defined around earliness-
associated markers, covering 0.3 to 5.4 cM. Six were
consistent, since they were associated with two to six
variables, and had different allelic effects ranging from
one to 8.4 days (double blue stars on Fig. 2; 1.24E-17 <
P < 1.97E-05). Three LD blocks were not consistent but
included highly significant single trait-associated
markers and had high allelic effects from 2.5 to 12.8 days
(single blue stars on Fig. 2; 6.29E-16 < P < 4.30E-10).

Three of the 14 QTL previously identified in Hamon et al.
(2013) for earliness, i.e., Flo-Ps2.2, Flo-Ps2.3 and Flo-Ps3.1,
were also detected by association mapping.
A total of five markers, corresponding to three LD

blocks distributed over two LGs, were significantly asso-
ciated with the two height variables scored (3.76E-26 <
P < 2.55E-05). Two LD blocks (III.7 and VII.3) on LGIII
and LGVII, ranging from 0.5 to 2.4 cM, were consistent,
since they each included two height-associated markers.
In particular, LD block III.17 was highly significant
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Fig. 2 Comparative genetic map of genome-wide association (GWA) and previously detected linkage quantitative trait loci (QTL). The comparative
genetic map was constructed from the projection of the consensus map from Hamon et al. [43] onto the consensus map from Tayeh et al. [49].
Linkage groups (LG) are named from I to VII and their size is indicated in cM Haldane. Resistance-, earliness- and height- associated markers, LD
blocks and QTL are indicated in red, blue and black, respectively. To the right of each LG: Names of significant trait-associated markers identified
by GWA study are indicated. The shading in the LG bar represents the confidence intervals around the significant trait-associated markers, based
on linkage disequilibrium (LD) value of r2 > 0.2. Symbols shown on the right of each marker and described in the legend indicate trait(s) to which
the marker was significantly associated. Sign width is proportional to the significance level (p-value) of the marker-trait association. Names of LD
blocks are indicated to the extreme right of each LG. The brackets indicate markers that were attributed to a same LD block (r2 > 0.2). LD blocks
labelled by double and single asterisks correspond to consistent (at least two significant markers with P < 5E-10) and highly significant but not
consistent (one significant marker with P < 5E-10) blocks, respectively. Genomic positions of cloned pea genes are indicated in grey. The resistance
genes cluster identified by Tayeh et al. [49] is represented by light grey shading on the bottom of LGIII. To the left of each LG: Projected QTL and
Meta-QTL described in [41, 43] are represented with the same colour trait codes as for markers detected by GWA study. Solid bars represent
Meta-QTLs [43], while hatched bars represent initial QTL before meta-analysis [41, 43]. The main Aphanomyces resistance QTL and Meta-QTL [43]
names are in bold italic
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(3.76E-26 < P < 1.62E-23) and presented an allelic effect
which contributed to height differences of more than 30
cm. None of the three LD blocks co-localized with previ-
ous QTL detected for height in [43] (HT-Ps).
Out of the total 75 LD blocks identified for resistance

to A. euteiches, earliness and height, only five (II.1, III.2,
VII.13, VII.16 and VII.18) were detected for both resist-
ance and earliness, and one (VII.3) for both resistance
and height (Fig. 2 and Additional file 11). In the five re-
sistance and earliness common LD blocks, three SNP
markers and one SSR marker (AA387) were associated
with both resistance and earliness. Allelic effects at these
markers were opposing for resistance and earliness, i.e.,
the resistance-enhancing alleles conferred later bloom.
One LD block identified for resistance to A. euteiches

also co-localized with the Af morphological gene which
controls leaf type on LGI. No LD block co-localized with
the A morphological gene (i.e., PsbHLH gene) which
control anthocyanin production on LGII. Linkage be-
tween Aphanomyces resistance and normal leaves at the
Ae-Ps1.2 QTL reported in [41, 43] was thus confirmed,
while linkage between resistance and coloured flowers at
the Ae-Ps2.2 QTL was broken.

Marker haplotypes
At each of the 14 consistent disease LD blocks, three to
26 haplotypes were identified, depending on the LD
block (Additional file 13). Mean comparison of pheno-
typic LSMeans between marker haplotype groups of a
LD block, allowed one or two favourable haplotypes per
LD block to be selected, except at LD block IV.12 for
which four favourable haplotypes were identified. A total
of 22 favourable haplotypes were identified over the 14
consistent disease resistance LD blocks. A total of 112
haplotypes, carrying at least one favourable allele at the
disease-trait-associated marker(s) of the blocks, were
also identified among the 14 consistent disease resist-
ance LD blocks. In a subset of 84 lines without missing
haplotypes, the 25 % most resistant lines, according to
MFA.Dim.1 coordinates, showed a mean frequency of
favourable haplotypes which was significantly higher
(eight favourable haplotypes on average for the 14 LD
blocks) than that of the lines classified in the intermedi-
ate or susceptible groups (six and four favourable haplo-
types on average, respectively) (Fig. 3 and Additional file
14). Lines AeD99OSW-49-5-7 (A103), AeD99OSW-45-8-
7 (A100) and AeD99OSW-37-3-4 (A092) showed the
highest number of favourable haplotypes defined (13, 12
and 11 respectively) at the 14 consistent disease LD
blocks in the subset of 84 lines. The group of susceptible
lines carried the highest number of unfavourable haplo-
types (three unfavourable haplotypes on average, versus
two and one for intermediate and resistant groups, re-
spectively). Two of the favourable haplotypes for

resistance to A. euteiches (II.1.02 and VII.16.07) were the
worst haplotypes for earliness as it gave the latest flower-
ing time. Another one (II.1.06) was unfavourable for
earliness as it gave intermediate flowering time. One of
the favourable haplotypes for resistance to A. euteiches
(VII.3.04) was unfavourable for plant height as it gave
higher plants. Early bloom and small height are two im-
portant selection criteria in dry pea breeding programs.

Putative candidate genes
Out of the 550 markers in the 52 disease-related LD blocks,
211 were located in gene sequences and could be assigned
to putative protein functions (Additional file 15). Out of
these 211 annotated SNPs, 135 SNPs corresponded to
genes with putative functions reported to be involved in
plant response to biotic stresses. Among these genes, 21 en-
code for protein domains reported as involved in plant rec-
ognition of pathogens (including Leucine Rich Repeat-LRR-
domains), 65 for domains reported to contribute to signal
transduction (including Serine-Threonine-Tyrosine Protein
Kinases and proteins involved in Ethylene biosynthesis), 12
for proteins playing a role in transcription regulation (in-
cluding a WRKY transcription factor, a VQ motif and a
basic helix-loop-helix domain) and 47 for proteins involved
in plant defence responses such as cell wall modifications
(including homeobox leucine zipper proteins), oxidative
burst (including Ras GTPases), detoxification (including an
ABC transporter C and cytochrome P450 enzymes) or cell
death (including chaperone Dnaj proteins). A subset of 24
putative proteins were also reported to be involved in plant
growth or development, out of which 14 were not reported
to be related to pathogen resistance. Four disease-trait-
associated markers in LD blocks III.14, IV.10,V.1 and VI.1,
were close to (0.1–4.4 cM) but not in LD with pea resist-
ance genes analogues (RGA) coding for nucleotide binding
site Leucine Rich Repeat (NBS-LRR) proteins (RGA1.1,
RGA2.75, RGA1.5 and RGA2.159, respectively) [81, 82].
Three RRI-associated markers in LD blocks III.12, IV.8 and
VII.11, and one Field_ADI-associated marker in LD block
VI.5, were close (0.5–0.8 cM) to cloned genes involved in
pea-rhizobia symbiosis (SYM7, SYM9, SYM29 and SYM8,
respectively). A Field_ADI- associated marker in LD block
I.5 co-localized with the SGR gene (Stay Green) which con-
trols chlorophyll catabolism during foliage senescence [83].
Among the 18 consistent or significant disease-related LD
blocks, 56 SNP markers were attributed to putative se-
quences coding for interesting candidate proteins involved
in plant resistance to pathogens, including Leucine-rich re-
peats (LRR) in LD blocks I.5, IV.8 and VII.3, Serine/threo-
nine protein kinases in six LD blocks [84] and an ABC
transporter [85] in LD block III.6.
Among the 15 additional LD blocks exclusively related

to earliness, 55 of the 110 SNP markers could be assigned
to a putative function, 24 of which are involved in plant
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growth or development. Three earliness-associated
markers in LD blocks II.3, III.2 and III.5, were close (0–
2.1 cM) to cloned genes involved in flowering time or in-
determinacy (PsFLD, Hr and PEAFLO respectively) [86–
88]. Among the three height-related LD blocks, 26 of the
44 SNP markers could be assigned to a function. Eight of
them were reported to be involved in plant growth and
development, including two SNPs in LD blocks III.11 and
III.17 designed in sequences of pea cloned genes control-
ling plant height, i.e., La (PsLA) [89] and Le (PsGA3ox1)
[90], respectively. The height-associated markers in the
third height-related LD block VII.3 was located just
0.8 cM from the SNP marker designed in the sequence of
the Cry gene, involved in plant growth [89].

Discussion
This work describes the first GWA approach in pea to
decipher polygenic control of partial resistance to A.
euteiches, using novel plant material as well as high
density and quality genomic resources. The study evalu-
ated a pea-Aphanomyces collection of 175 lines,
enriched in sources of resistance to A. euteiches, which
were identified in the last 15-years of research and
breeding programs. Genetic diversity and recombination
events screened in the collection were higher than those
previously studied in bi-parental populations. We took
advantage of the GenoPea Infinium ® BeadChip recently
generated [49], containing 13,204 SNPs precisely an-
chored onto a consensus genetic map generated from
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genotyping data on more than 1300 RILs. This novel
genomic resource greatly enhanced the resolution of the
genetic analysis in the association mapping collection
compared to the few hundred genetic markers used in
previous linkage studies of Aphanomyces resistance in
pea [41, 43]. We used the same resistance phenotyping
methodologies and Aphanomyces field network as in the
previous QTL analysis of resistance, which led to high
accuracy when comparing the results of these two ap-
proaches. Finally, this study used a MLMM to perform
GWA study. This model corrects for population struc-
ture and individual relatedness, and takes into account
significantly associated SNPs as cofactors to detect other
SNPs. This approach limits the number of false positive
and false negative associations [11].
Specifically, the GWA study (i) identified 14 consistent

loci out of a total of 52 small sized LD-based CIs de-
tected for resistance to A. euteiches; (ii) validated and re-
fined six of the seven major resistance QTL previously
identified; (iii) confirmed or broke negative associations
with morphological and developmental loci; (vi) pin-
pointed interesting haplotypes and determined their fre-
quency in the most resistance pea lines, for application
in breeding; (v) identified relevant and interesting puta-
tive candidate genes underlying main resistance loci.

GWA study validated most of the previously detected
QTL and identified new resistance loci
This study validated most of the previously detected
Aphanomyces resistance QTL in pea. Out of the 52
resistance-associated loci, 41 were estimated to be lo-
cated in 19 of the 27 projected Ae-Ps QTL, including six
of the seven main consistent QTL, and 12 of the 26 pro-
jected meta-QTL (MQTL-Ae) previously identified from
bi-parental population studies [41, 43]. Four and two of
the main previously consistent resistance QTL (Ae-
Ps1.2, Ae-Ps2.2, Ae-Ps3.1, Ae-Ps7.6a-b and Ae-Ps4.1, Ae-
Ps4.4-4.5) were re-detected in this study by eight of the
14 consistent resistance loci and seven of the other
single-variable specific loci, respectively. Twelve previ-
ously detected minor-effect QTL were also confirmed
with 18 resistance-associated loci, including two that
were consistently detected. GWA validation of previous
linkage resistance QTL was expected, as the pea-
Aphanomyces collection was enriched in genetic pools
derived from sources of resistance studied in previous
QTL analysis (90–2131, 552 and PI180693). A total of
87 % of the 121 GSP breeding lines and RILs of the col-
lection were derived from at least one of these three
sources of resistance. In crops, GWA studies usually
used panels with a good representation of species gen-
etic diversity, such as diversity collections developed in
pea [52, 91]. For pea Aphanomyces resistance, the GWA
study required an adapted panel with a higher resistance

allele frequency than to the one previously observed in
the pea natural genetic variation (Pilet-Nayel et al., un-
published) [36]. However, Kwon et al. [50] identified a
SSR marker (PSARGDECA_F) associated to Aphano-
myces resistance [34] in the USDA pea core-collection,
which is estimated to be located in the Ae-Ps7.6 QTL re-
gion, close to LD block VII.11, using comparative genetic
maps [43, 45, 49]. Marker and methodology tools were
also used to optimize comparative analysis of GWA and
previous linkage results. Most of the SSR markers, previ-
ously associated with resistance QTL [43], were inte-
grated into the consensus SNP genetic map of Tayeh et
al. [49]. Common markers were used as bridges for com-
parative mapping through linkage QTL projection. Fur-
thermore, the field and climate chamber conditions were
the same in [41, 43] and in this study, which increased
the accuracy of comparative mapping.
Eight of the 27 projected Ae-Ps QTL previously associ-

ated with the resistance [43] were not identified by
GWA in this study, including one main consistent QTL
(Ae-Ps5.1). Several factors could lead to non-validation
of QTL by GWA. These include the low detection
power of minor-effect QTL, low allele frequency, GxE
interactions, epistatic interactions and gaps in marker
coverage [5]. In this study, the detection power of low
effect QTL may have not been optimal due to the mod-
erate population size (175 lines). Markers with low MAF
(MAF < 5 %) were sometimes clustered in some genomic
regions, such as on LGV, and were removed from the
analysis, creating gaps in the genome-wide scan of
marker-trait associations. GxE interactions for field
Aphanomyces resistance were observed in this study
over the nine environments tested, as previously re-
ported and discussed regarding pedo-climatic condi-
tions, pathogen diversity and the presence of other root
rot pathogens [60]. They may have resulted in the detec-
tion of QTL specific to the field environments presently
studied compared to previous ones, which were submit-
ted to different climatic conditions and pathogen popu-
lation pressures. Epistatic interactions have also been
reported for Aphanomyces resistance [41] and some
QTL effects were recently shown to increase or be lost
when transferred into a new genetic background [44]. Fi-
nally, despite the unprecedented marker density used in
GWA analysis in pea, marker coverage gaps cannot be
excluded, due to the restricted choice of SNPs in the
Infinium SNP chip used and the unavailable information
on physical distances between markers. The non-
detection of the main consistent QTL Ae-Ps5.1 was par-
ticularly unexpected since it was identified from CC ex-
periments with several strains including RB84 and
Ae109 used in this study, and contributed up to 38 % of
the phenotypic variation in the DSP x 90–2131 RIL
population [43]. However, Lavaud et al. [44] recently
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showed that the effect of Ae-Ps5.1 was lost when trans-
ferred into pea lines other than DSP, suggesting epistatic
interactions between this QTL and genetic background.
In addition, a very low allele frequency was observed for
the SNP designed in the Ae-Ps5.1 closely linked marker
PsLD (MAF = 0.8 %) [41, 86] and for its neighbour SNP
in high LD (r2 = 0.55; MAF = 1.4 %), which were both
consequently removed from the analysis.
In this study 11 new Aphanomyces resistance loci

were identified, including three consistent ones (IV.11,
IV.12 and VII.18). Comparative mapping was based on
few markers (mainly SSRs) which resulted in some in-
versions. Thus, some projection inaccuracies may have
wrongly pointed out these loci as new ones, especially
for the VII.16 interval. However, the higher resolution of
GWA analysis may also have highlighted resistance al-
leles from the studied germplasm, which would not have
been previously detected due to low marker coverage.
Most probably, new favourable alleles are present in the
pea-Aphanomyces collection, which included new
sources of resistance [36] which were not investigated in
previous linkage-QTL analyses.
In other pathosystems, GWA mapping often validated

linkage mapping QTL and detected new loci. For ex-
ample, Samayoa et al. [15] and Zhao et al. [14] reported
similar results when comparing linkage and association
mapping of Mediterranean corn borer resistance in
maize and Sclerotinia sclerotinium resistance in soybean,
respectively.

GWA study detected resistance loci with a higher
resolution than in previous linkage mapping studies
In the present GWA study, QTL resolution increased
compared to previous linkage mapping studies of Apha-
nomyces resistance. The 52 resistance-associated inter-
vals were detected with much smaller sizes (0–5.2 cM,
depending on the locus, 0.9 cM in average) than those
previously identified in QTL mapping studies (2.1–
43.9 cM, depending on the Ae-Ps QTL, 17.4 cM in aver-
age). The LD decay rate in the pea-Aphanomyces collec-
tion was low (r2 < 0.5 within a map distance of 0.12 cM)
compared to the one observed in a similar study in pea
[9] (average r2 < 0.17 within a map distance of 5–10 cM).
This low LD decay rate is particularly interesting as LD
decay of autogamous (self-pollinated) species have gen-
erally been reported slow (~100kb), as in rice, foxtail
millet or soybean, compared to outcrossing species
(~2kb) [5]. This may be especially due to a high number
of recombination events in the breeding lines coming
from the GSP recurrent selection program (representing
58 % of the lines in the collection), which were mainly
derived from double crosses between multiple parents
(Additional file 1). The average distance between two ad-
jacent marker positions of the TMap considered in this

study (0.27 cM) was higher than the LD decay rate.
Since marker genetic positions may not have covered all
the putative recombination points in the collection,
there is still the potential to increase genotyping density
of the collection, to improve QTL detection resolution.
Previous meta-QTL analysis of Aphanomyces resistance
attempted to reduce QTL CIs but this reduction was po-
tentially over-estimated because of the only partial inde-
pendence on populations and environments compared
[43]. The MLMM model recently proposed by Segura et
al. [11], used cofactors that captured background genetic
variance during genome scan to improve the precision
of cofactor detection as found in Composite Interval
Mapping.
Comparative analyses of the QTL detected by linkage

and association studies are often not carried out on
comparable genetic distance scales in both studies. Con-
sequently, several association mapping loci could corres-
pond to a single QTL interval identified by linkage
mapping. Ingvarsson & Street [10] reported frequent
splitting of linkage mapping intervals into much smaller
association mapping intervals. Split association mapping
intervals involved in a same larger linkage mapping
interval could correspond to several linked genes con-
trolling the trait or to a single imprecisely located region
due to GxE effects on the phenotype. Our findings sug-
gest linkage between multiple genes hypothesis when
closely located LD blocks were detected from different
variables, as seen for example for the Ae-Ps7.6 region on
LGVII (VII.7-8 and VII.13-16 blocks). In other cases the
results were consistent with single genes hypothesis
when neighbouring blocks were detected for the same
type of variable, as in the Ae-Ps3.1 region on LGIII
(III.3–4 for Field_RRI variables; III.6–7 or III.8–9 for
Field_ADI variables).

GWA study provides new tools for pyramiding
Aphanomyces resistance alleles in breeding programs
This study identified marker haplotypes at consistent
Aphanomyces resistance loci, the pyramiding of which
was associated with increased levels of partial resistance
in pea lines of the collection. At the 14 consistent LD
blocks identified, 22 favourable haplotypes carrying the
favourable alleles at disease trait-associated markers
were significantly associated with enhanced resistance
levels. The highest resistant lines of the pea-
Aphanomyces collection carried a significantly higher
number of favourable haplotypes. The five most resistant
lines with no missing haplotypes were breeding lines
from the AeD99OSW GSP program, all derived from
direct crosses between the three most partially resistant
germplasm studied in previous QTL analysis [(90–2131
x PI180693) x 552]. These five breeding lines had a
higher level of partial resistance than their individual
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parents. They combined between eight and 13 of the
favourable haplotypes selected at the 14 consistent re-
sistance loci, whereas each of their single parental lines
combined between three to nine favourable haplotypes.
From this study, different combinations of haplotypes
seemed to be related to enhanced levels of resistance.
The best combinations were quite difficult to identify
since they could vary depending on the lines. However,
the favourable haplotypes defined at several blocks (I.5,
II.1, III.3, III.4, III.6 and III.9) appeared to be frequently
represented in the most resistant lines.
Our findings suggested that the pyramiding of Apha-

nomyces resistance alleles with moderate to low effects
is a powerful strategy to develop pea lines with increased
levels of partial resistance to A. euteiches. In the past 30
years, such a pyramiding strategy, based on phenotypic
recurrent selection schemes, was successfully developed
for root rot diseases in public USA pea breeding pro-
grams [31, 32]. In particular, Lewis and Gritton [92] de-
veloped a phenotypic recurrent selection protocol
consisting of one cycle per year, including selection of F2
lines on aerial symptoms of the plants in an infested
field nursery, followed by intercrosses and selfing of the
best lines. The 552 germplasm line was selected from
the eighth cycle of recurrent selection (Roux-Duparque,
Pers. Comm.), suggesting that this line accumulated re-
sistance alleles. Accumulation of resistance alleles in the
552 germplasm line was demonstrated in this study
(nine favourable haplotypes identified). More recently,
Lavaud et al. [44] reported that the combination of two
or three of the main consistent Aphanomyces resistance
QTL identified in [43] could increase the partial resist-
ance level, depending on genetic backgrounds. In several
other pathosystems, combinations of resistance alleles
were shown to successfully enhance resistance levels, in-
cluding stem rust resistance in wheat [93, 94], spot leaf
diseases resistance in spring wheat [95] and spot blotch
resistance in barley [96].
We also identified negative linkages between resistance

and morphological or developmental alleles, to be con-
sidered with caution for application in dry pea breeding.
Undesirable linkages were previously reported between
Aphanomyces resistance and coloured flowers, long in-
ternodes, normal leaves and late-flowering [43], and have
been avoided in breeding programs [32]. In the present
study, associations were highlighted between resistance
and late flowering alleles at markers in the consistent
disease LD blocks VII.13, VII.16 and VII.18. In non-
consistent disease LD blocks, undesirable links were also
highlighted between resistance and normal leaves (LD
block I.4) or late flowering (LD block II.2). In contrast,
high resolution of association mapping in this study also
enabled linkage between resistance and coloured flowers
(A gene) alleles to be broken in the genomic region

corresponding to the previous main resistance QTL Ae-
Ps2.1 (LD block II.1). Thus, different pea lines of the col-
lection carrying favourable haplotypes in the LD block
II.1 have white flowers. However, in the most resistant
lines of the collection, such as AeD99OSW- 45-8-7, some
negative associations could not be broken, as those lines
presented normal leaves and some of them still had
coloured flowers. Due to the high resolution of GWA
study, we could also hypothesize that loci controlling re-
sistance and delayed leaf senescence (SGR gene) [83] in
the LD block I.5 are distinct since they were not in LD
(r2 > 0.2). Morphological and developmental-trait-loci
which are not associated with Aphanomyces resistance
could also be detected, suggesting that resistance could
be improved without including undesirable traits. For
height and earliness, the height locus III.17 on the Le
gene and the earliness loci II.2, II.3, II.5,VII.5 and VII.17
were identified and not associated with resistance loci.
Genetic associations between plant disease resistance
and undesired developmental traits such as late-
flowering have been commonly reported in the literature
[2]. Association genetic studies could have confirmed
such negative linkages [97] but sometimes allowed them
to be broken, as observed in our study

GWA study identified relevant putative candidate genes
underlying Aphanomyces resistance QTL
The high resolution of the present association mapping
study and the recent availability of pea transcriptome se-
quences connected to the 13,204 SNPs used in this
study, constitute unprecedented advantages for identify-
ing putative candidate genes underlying Aphanomyces
resistance QTL. Indeed, the detection of plant height
QTL in previously cloned genes involved in plant
growth, and the proximity of flowering genes to earliness
LD blocks suggests that the resolution of the present
GWA study was high enough to pinpoint relevant candi-
date genes.
GWA study identified a high frequency (64 %) of puta-

tive candidate genes corresponding to a diversity of
stress-related protein functions, underlying resistance-
associated intervals. To date, the low number of resist-
ance QTL cloned suggested that the molecular functions
underlying them could be diverse [2, 3, 98]. Hypothetical
gene-encoded proteins underlying resistance QTL in-
cluded genes involved in plant-pathogen recognition,
signal transduction, activation or repression of transcrip-
tion, defence responses and developmental or morpho-
logical modifications with pleiotropic effects. Such a
diverse range of genes underlying resistance intervals
was also identified in this study. Putative candidate
genes underlying major effect QTL Ae-Ps4.4-4.5, re-
cently validated for pea resistance to the American A.
euteiches strain Ae109 [44] (LD block IV.8), included
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basic helix-loop-helix (bHLH) and ethylene-responsive
transcription factors and a NBS-LRR. A second main ef-
fect QTL Ae-Ps7.6, validated for pea resistance to the
French A. euteiches strain RB84 (LD blocks VII.8 and
VII.10), included two putative infection-induced pro-
teins. Some different types of putative stress-related
genes clustered in the disease LD blocks identified in
this study and thus may be strong candidates for under-
lying one of the known mechanisms. For example, LD
blocks III.9 and I.5 contained six and four putative can-
didate genes, respectively, involved in mechanisms of
pathogen recognition, transcription regulation, signal
transduction and/or defence response.
Other LD blocks seemed to be interesting as they are

very close to NBS-LRR cloned genes (III.14, IV.10,V.I and
VI.1), however they were detected in single environments
and had moderate effects. Genes encoding NBS-LRR pro-
tein domains are known to be clustered in crop genomes,
such as described in Medicago truncatula [99], since they
are known to be subjected to rapid evolution through
local duplications. In pea, Tayeh et al. [49] recently re-
ported a large cluster of 14 NBS-resistance-like genes at
the bottom of LGIII. This genomic region, including SNP
markers assigned to these 14 NBS-like genes, co-localized
with disease LD block III.14 and is close to consistent LD
block III.15 identified in this study.
Some disease LD blocks contained putative genes

similar to those underlying disease resistance QTL
cloned in plants, such as ABC transporters (III.6) and
NBS-LRR proteins (I.5, IV.8 and VII.3)). An ABC trans-
porter protein have been shown to underlie the Lr34
major QTL controlling durable resistance to leaf rust
stripe rust and powdery mildew in wheat [100]. Other
LD blocks could also be detected close to cloned symbi-
osis genes (III.2, IV.8, VI.5 and VII.11), suggesting pos-
sible common mechanisms between plant-pathogens
and plant-beneficial organisms interactions [101]. Some
LD blocks also included plant or root development
genes (IV.3, IV.7, VII.7 and VII.10), suggesting their in-
volvement in disease resistance, tolerance or avoidance
as reported for several pathosystems [100].

Conclusion
In the present GWA study, most of the previously iden-
tified Aphanomyces resistance QTL were validated with
a finer resolution than before, by taking advantage of the
new plant and genomic resources developed in pea. New
points of discussion were raised regarding comparison of
association and linkage analysis to dissect polygenic dis-
ease resistances in plants. This study provides new tools
for breeding, including pea germplasm and SNP markers
associated with resistance, as well as useful information
about marker haplotypes at main resistance loci and un-
desirable allele linkages with resistance. It demonstrates

that pyramiding resistance alleles is a key strategy for in-
creasing levels of partial resistance to Aphanomyces root
rot in pea. The choice of resistance loci to be pyramided
remains to be explored, especially using NILs [44]. This
study also identified relevant candidate genes to be con-
firmed and validated in future studies. These will benefit
from further genomic resources in progress, developed
in part from a complete pea reference genome sequence
becoming available, for increasing resolution of the
GWA study.

Availability of supporting data
Further data sets supporting the results of this article
are included in Additional files 16 and 17.

Additional files

Additional file 1: Description of the pea-Aphanomyces collection. (a)
Line categories, as referred in Fig. 1b and Additional file 9 in legends; (b) Line
codes in the Biological resource center (CRB) database of INRA Dijon, France;
(c) Country codes ISO3166-1; (d) Cv: Cultivar, Bl: breeding line, Gmp: germ-
plasm, Lv: local variety, Wa: wild accession; (e) Fd: fodder, Gd: garden; (f) Ws:
winter sown, Ss: spring sown; (g) Nl: normal leaves, af: afila leaves, (h) W: white,
Pu: purple, Pi: pink; (i) Wr: wrinkled, Sm: smooth; #: parents of GSP breeding
programs; $: parents of RIL populations. (XLSX 29 kb)

Additional file 2: Simple sequence repeat (SSR) markers used to
genotype the pea-Aphanomyces collection. (a) main Aphanomyces
resistance quantitative trait loci (QTL) defined in [43]. (XLSX 14 kb)

Additional file 3: Example of MLMM R package plot outputs for
analysis of the MFA.Dim.1 variable. (A): Bonferroni correction of the
highest marker p-value for each step of the forward and backward
analysis. Optimal step (dashed blue vertical line) is determined as the
largest stepwise mixed model regression in which all cofactors have –
log10(p-value) above the mBonf threshold (dashed black horizontal line).
(B): QQ-plot at the optimal step. (C): Partition of variance for each forward
and backward step. Variance explained by population structure (PCA;
grey); all markers used as cofactors (blue); Kinship matrix (green) and
unexplained variance (= missing heritability; red). The dashed blue vertical
line represents the optimal step according to mBonf threshold. (D)
Genome-wide Manhattan plot without marker cofactors. The dotted line
represents the multiple-Bonferroni threshold above which markers are
considered as significant. (E): Genome-wide Manhattan plot at the
optimal step with marker cofactors (4 red dots). The dotted line
represents the multiple-Bonferroni threshold above which markers are
considered as significant. (PDF 148 kb)

Additional file 4: Statistical analysis results of Aphanomyces
resistance, earliness and height scoring data in the pea-
Aphanomyces collection. (a) CC: controlled condition experiment, Field:
Infested field experiment, RRI: Root rot index, ADI1: First aerial decline
index, ADI2: Second aerial decline index, FLO1: date to 50 % bloom,
FLO2: date to 100 % bloom, RIPE: date to 100 % dried plants, HT: height
of plants, 09 to 13: year of experiment, All: global variables over all field
environments, DI: Dijon-Epoisses, Burgundy, France, RI: Riec-sur-Belon,
Brittany, France, REN: Rennes-Le Rheu, Brittany, France, KEN: Kendrick, ID,
USA, ‘$’ Residual normality statistics are not exact but graphs of residuals
are correct, (b) Mean, minimum, maximum and standard error in the
pea-Aphanomyces collection; (c) ANOVA significance p-value codes:
0 < ‘***’ < 0.001≤ ‘**’ < 0.01≤‘*’ < 0.05≤ ‘ns’ < 1; (d): Genotype effect; (e):
Replicate effect; (f): Environment effect; (g): Genotype x Environment
interaction effect; (h) mean-based heritability. (XLSX 16 kb)

Additional file 5: Frequency distribution of least square means
obtained for Aphanomyces resistance, earliness and plant height in
the pea-Aphanomyces collection. Least square means were obtained
from analysis of variance for three Aphanomyces resistance traits (Root
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Rot Index, first and second Aerial Decline Indexes, coded RRI, ADI1 and
ADI2, respectively), three earliness traits (dates to 50 % bloom, 100 %
bloom and 100 % dried plants, coded FLO1, FLO2 and RIPE, respectively)
and plant height (HT). Aphanomyces resistance traits were assessed over
nine infested field environments and against two reference strains of A.
euteiches (RB84 and Ae109) in controlled conditions. Earliness and height
were assessed in two healthy environments. n: total number of pea lines
assessed; m: mean ± standard deviation of the pea-Aphanomyces
collection; h2: mean-based heritability. (PDF 38 kb)

Additional file 6: Clustered heatmap of correlation coefficients
between disease resistance, earliness and height variables data.
Variables are coded as described in Additional file 4. Only correlations
with a p-value < 0.05 are shown. Colours represent level of correlation,
coded as follow: dark red: r < −0.8; medium red: −0.8 < r < −0.5; light
red: −0.5 < r < −0.2; white: −0.2 < r < 0.2 or p-value > 0.05; light green:
0.2 < r < 0.5; medium green: 0.5 < r < 0.8; dark green: r > 0.8. Clustering
is based on the UPGMA method. (PDF 48 kb)

Additional file 7: Variable contribution in the two first Multiple
Factor Analysis (MFA) principal components. (a) Variables are coded
as described in Additional file 4, (b) percentage of variable contribution
in the construction of the MFA axis, ‘*’: the six highest contributions; (c)
cos2 indicates the representation quality of the variable on the MFA axis,
‘*’: 0.2 < cos2 < 0.5, ‘**’: cos2 > 0.5; (d) correlation between variable and
MFA axis, ‘*’: 0.5 < r2 < 0.8, ‘**’: r2 > 0.8. (XLSX 17 kb)

Additional file 8: Linkage disequilibrium (LD) decay in the
pea-Aphanomyces collection. Coloured curves represent the estimated
LD decay for each linkage group (LG). Dashed horizontal lines represent
half of the maximum LD value (LD threshold=0.5). Arrows represent the
LD decay rate, as the estimated genetic distance (cM) to drop to the LD
threshold on each LG. (PDF 157 kb)

Additional file 9: Population structure of the pea-Aphanomyces col-
lection based on Principal Component Analysis (PCA). PCA from
GAPIT R package [75] based on 2937 markers. Distributions of pea lines of
the collection are represented on the first three principal components
(A–C), which explain a total of 20.91 % of inertia (D). Categories of pea
lines are described in Fig. 1 and Additional file 1. (D) Inertia contribution
of each principal component (from PC1 to PC169). (PDF 151 kb)

Additional file 10: Clustered heatmap of the Kinship matrix. Kinship
matrix from the GAPIT R package [75] based on 2937 SNP markers.
Clustering is based on the UPGMA method. Colours represent the degree
of relationship between two given lines. Pea line information is described
as in Additional file 1. Lines sharing same pedigree or end use or sowing
type are well clustered thus the Kinship matrix efficiently represents the
relationships between individuals. (PDF 1253 kb)

Additional file 11: Genetic loci associated with Aphanomyces
resistance, earliness and plant height detected by genome-wide as-
sociation mapping using the MLMM method. (a) Genetic positions are
estimated on the genetic map resulting from the projection of the
marker map from Hamon et al. [43] onto the consensus map from Tayeh
et al. [49]; (b) A linkage disequilibrium (LD) block is designed with all
markers in LD (r2 > 0.2) with the associated marker. LD blocks are named
in consecutive numerical order following their linkage group (LG) name
and their genetic position; (c) Aphanomyces resistance and earliness
Meta-QTL (quantitative trait loci) described in [43]; (d) Initial QTL for
Aphanomyces resistance and earliness before meta-analysis described in
[41, 43]; (e) Trait-associated marker(s) and their genetic position(s) in the
LD blocks. PsCam- markers are SNPs developed by Tayeh et al. [49], Af is
a morphological gene involved in leaves shape, other markers are SSRs
(detected allele in brackets); (f) Minor allele frequency (MAF) of each
detected marker in the collection; (g) Variables are coded as described in
Additional file 4; (h) significant p-value of the marker-trait association <
2.5E-5; (i) mean value of the trait corrected with the effect of all markers
included in the MLMM analysis; (j) allelic effect of the marker on the vari-
able, the sign depends on the allele code; (k) standard error at the marker
around the mean value of the trait in the collection. (XLSX 32 kb)

Additional file 12: Information on the connectivity between
projected maps. (a) HMap: consensus map from Hamon et al. [43]; (b)
TMap: consensus map from Tayeh et al. [49]; (c) number of common

markers between HMap and TMap for each linkage group (LG); (d):
Number of inversions of marker positions on each LG; (e) number of
inversions of marker positions in confidence intervals of the quantitative
trait loci (QTL) described by Hamon et al. [43]. (XLSX 11 kb)

Additional file 13: Description of linkage disequilibrium (LD) block
haplotypes in the pea-Aphanomyces collection. (a) LD blocks are named
as described in Additional file 11; (b) Each LD block is subdivided into marker
haplotypes according to its allelic composition. Marker haplotypes are named
with the LD block name followed by an Arabic numeral. Only haplotypes
without missing values or heterozygous markers are shown; For each LD
block: (c) list of markers significantly detected by genome-wide association in
the LD block; (d) the first line is a list of the markers included in the LD block
(detected markers in bold font and their markers in (LD) in plain font); (e) the
second line is the genetic positions of the listed markers on the genetic map
described in Additional file 11; (f) following lines are the pairwise LD r2 values
between each marker defined in the LD block and the marker detected by
GWA; (g) For SNP markers, ‘AA’ and ‘BB’ are allele codes of Genome Studio
analysis while for SSR markers, amplicon lengths are indicated. For each Apha-
nomyces resistance associated marker, enhancing allele(s) is in bold dark green
font and unfavourable allele(s) in bold dark red font; (h) the first line is the list
of the variables significantly associated with a marker in the LD block, variables
are described as in Additional file 4; (i) next lines are p-values of the marker-
trait associations; (j) grey or coloured lines are mean phenotypic values ±
standard error for marker haplotypes carried by more than 5 % of the lines
from the pea-Aphanomyces collection, letters indicate significantly different
means (Tukey-HSD, α < 0.05); dark green and red haplotypes: favourable and
unfavourable haplotypes of the LD block, respectively, as defined in the
Materiel and Methods section of the manuscript. (XLSX 73 kb)

Additional file 14: Marker haplotype composition of the pea-
Aphanomyces collection. (a) Name of marker haplotype carried by each
line as described in Additional file 13, at each of the 14 consistent linkage
disequilibrium (LD) blocks detected; dark green and red: favourable and
unfavourable marker haplotypes, respectively, as defined in the Material
and Methods section of the manuscript; (b) coordinates of each line of
the collection on the first Multiple Factor Analysis principal component;
the pea lines of the collection are ranked according to these coordinates;
(c) Composition of each line in favourable and unfavourable haplotypes,
is described in Additional file 13; (d) marker haplotypes with either a
missing value or heterozygous score for at least one marker of a LD
block. (XLSX 66 kb)

Additional file 15: Annotation of markers in detected linkage
disequilibrium (LD) blocks for putative candidate genes. (a) LD block
were constructed with markers detected by genome-wide association map-
ping and markers in LD with them, LD block are named according to Add-
itional file 11; (b) genetic positions are estimated as described in Additional
file 11; For each LD block:(c) traits associated with markers in the LD block;
(d) Pairwise LD between each marker and the marker(s) detected by GWA
in the LD block (detected marker in bold); (e) putative protein annotation
underlying each marker based on comparative Blast X data from Tayeh et
al. [49], see Methods section; (f) putative function of the protein in plant dis-
ease resistance based on the literature; (g) putative function of the protein
in plant development based on the literature; (h) reference for protein func-
tion involved in plant disease resistance or plant development; (i) Pea
cloned genes referred in literature; (j) extract of annotation data from Tayeh
et al. [49], Blast X of marker sequence onto P. sativum, M. truncatula, G. max
and A. thaliana proteins. (XLSX 131 kb)

Additional file 16: Least square means (LSMeans) of phenotypic
data in the pea-Aphanomyces collection after ANOVA. Variables are
coded as in Additional file 4. NA: missing data. (XLSX 71 kb)

Additional file 17: Genotyping data of the pea-Aphanomyces col-
lection used for the GWA analysis before filters and imputation. NA:
missing data. (a) Morphological gene genotyping data are coded “AA”
when phenotypes are white flowers, normal leaves or smooth seeds for
A, Af and R genes, respectively, and “BB” when they are colored flowers,
afila leaves or wrinkled seeds; (b) PCR specific genotyping data are coded
“AA” or “BB” when specific to the first or second allele; (c) SSR genotyping
data are presented with the allele size (in bp); (d) SNP genotyping data
are coded “AA” or “BB” when homozygous for the first or second allele,
“AB” when heterozygous. (XLSX 7252 kb)
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Abbreviations
(c)DNA: (coding) deoxyribonucleic acid; ADI: aerial decline index; ADI1: first
aerial decline index; ADI2: second aerial decline index; CC: controlled
conditions; CI: confidence interval; DI: Dijon-Epoisses, France; DSP: Dark Skin
Perfection (germplasm); E: environment; EMMA: efficient mixed-model associ-
ation; FLO1: number of calendar days to 50 % bloom; FLO2: number of
calendar days to 100 % bloom; G: genotype; GAPIT: Genome Association and
Prediction Integrated Tool; GSP: Groupement des sélectionneurs de pois
protéagineux; GWA: genome-wide association; GxE: Genotype x environment
interaction; HMap: consensus map from [43]; HT: plant height at 100 %
bloom; INRA: Institut national de la recherche agronomique; KEN: Kendrick,
USA; LD: linkage disequilibrium; LG: linkage group; LM: linear model;
LRR: leucine rich repeat; LSMeans: least square means; MAF: minor allele
frequency; MAGIC: multi-parent advanced generation inter-cross;
MAS: marker assisted selection; mBonf: multiple-Bonferroni threshold;
MFA: multiple factors analysis; MFA.Dim.1: first principal component of MFA;
MFA.Dim.2: second principal component of MFA; MLMM: multi-locus mixed
model; NAM: nested association mapping; NBS: nucleotide binding site;
NGS: next generation sequencing; NIL: near-isogenic line; PC: principal
component; PCA: principal components analysis; PCR: polymerase chain
reaction; QTL: quantitative trait locus; R: replicate; REN: Rennes-Le Rheu,
France; RI: Riec-sur-Belon, France; RIL: recombinant inbred line; RIPE: number
of calendar days to 100 % dried plants; RRI: root rot index; SGR: stay green
gene; SNP: single nucleotide polymorphism; SSR: simple sequence repeats;
THMap: consensus map from projection of HMap onto TMap;
TMap: consensus map from [49]; UPGMA: unweighted pair group method
with arithmetic mean; USA: United States of America; USDA: United States
Department of Agriculture.
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