
HAL Id: hal-01378521
https://hal.science/hal-01378521

Submitted on 10 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidential grids with semantic lane information for
intelligent vehicles

Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait

To cite this version:
Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait. Evidential grids with semantic lane information
for intelligent vehicles. RFIA- Journée Transports Intelligents, Jun 2016, Clermont-Ferrand, France.
�hal-01378521�

https://hal.science/hal-01378521
https://hal.archives-ouvertes.fr


Evidential grids with semantic lane information for intelligent vehicles
Chunlei Yu1, Véronique Cherfaoui1, Philippe Bonnifait1

Abstract—Occupancy grids are popular in autonomous nav-
igation for encoding obstacle information into grid cells to
provide real-time environmental models. However, very few
studies have been carried out on encoding lane and traffic
information in grids. This information refines the world model
up to the lane level which is important in many situations
to enable vehicles to follow basic road rules, such as lane
keeping or lane changes in case of overtaking for instance.
Usual approaches consist in detecting lane boundaries using
on-board cameras or lidars but the problem is tricky when the
road is multi-lanes or in challenging weather conditions. In this
work, we propose to tackle this problem by using a vectorial
prior map that stores detailed lane level information. We take
advantage of the pose estimation from a localization solver and
propagate the estimation uncertainty over the grids cells. Both
Bayesian and Evidential models are presented and some of
their special characteristics are highlighted and compared. Real
results carried on public roads with the same real-time software
are reported to support the comparison.

I. INTRODUCTION

In this paper, a grid-based approach is proposed to tackle
the lane level perception for autonomous navigation. When
running on a multi-lane road, the host vehicle needs semantic
lane information to plan trajectories conforming to road
rules, this is the reason why many lane detection methods
have been studied and developed [1][2][3][4]. Nevertheless,
lane detection methods relying on vision and lidar systems
perform badly to extract parallel multi-lanes particularly in
challenging weather conditions. In this work, we propose
to take advantage of a prior maps to have access to lane
level resources such as lane borders or lane orientations
(in the sense of driving direction). With such detailed prior
maps, a lane information can be easily retrieved once good
localization (position and heading) with reliable confidence
information is obtained. Advantages can be numerous: the
map can provide accurate and integrated information for
reliable navigation; the semantic lane information is easily
accessible; no distance limit for map information, compared
to even high definition sensors, since they all have a limited
detection distance.

Occupancy grids [5][6][7][8] focus on the management of
obstacle information into grid cells, in this work, we also
propose to encode the lane information into spatial grids.
One can interpret this lane information as a semantic meaning
encoded in the cells. From the host vehicle’s point of view,
the navigable space is made up of the accessible lanes having
a driving direction compatible with the vehicle orientation.

1 The authors are with Sorbonne Universités, Université de Technologie
de Compiègne, CNRS Heudiasyc UMR 7253, France

Lanes with opposite direction and space outside of the road
are non-navigable. So, let consider a frame of discernment
defined as Ω = {Ego, Accessible, Forbidden}. It contains
minimal information allowing a vehicle to perform lane level
navigation. In lane grids, every cell is filled with a belief state
which characterizes the semantic lane information.

Figure 1: System overview

Fig 1 shows the whole process to construct Lane Grid.
The Ego-localization system provides the pose information
(position and heading) of the ego vehicle. The estimated pose
has to be reliable, which implies that the true pose of the
host vehicle has to be included in some estimated uncertainty
bound. There exists two kinds of uncertainty in the process
which come respectively from the estimated pose and from
the map. In the current approach, we consider that the map
is accurate and the one used in the experiments have been
made with high-grade mobile mapping sensors. The pose
uncertainty is therefore the predominant uncertainty which
has to be taken into account.

The contributions of this work are a analysis of the
propagation of pose uncertainties into the grid construction
process, the developments of both probabilistic and evidential
approaches to encode semantic lane information from maps,
and a demonstration and comparison of the two approaches
with real road data.

The paper is organized as follows: Section II gives a
detailed illustration of uncertainty analysis concerning the
two steps to construct lane grids. The two steps are detailed
in sections III and IV. In section V, experimental results
are shown and compared. Finally, conclusions are given in
section VI.

II. UNCERTAINTY ANALYSIS

The termBelief used in Fig 1 can have different meanings
depending on the considered approach. In the probabilistic
approach, Belief refers to Probability; in the evidential
one, Belief means Mass, since Mass is the basic belief
assignment in the Dempster-Shafer’s theory.

A. Coordinates definition for different uncertainties
Let denote FO the global frame, it has an origin O close

to the navigation area to work in 2D. A road-oriented frame
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Figure 2: Lateral position uncertainty transformation

FR [9] has the same origin as the global frame but with its
x-axis pointing in the direction of the road. It is actually a
rotated version of the global frame. The body frame of the
vehicle FM is defined at the center of the vehicle’s rear axle
with an origin denotedM. Note thatM has not a deterministic
location inFO orFR because of the estimation uncertainty, but
the uncertainty has to be well quantified. In Fig 2, a position
M with an uncertainty ellipse g(x, y) is given for illustrating
purpose.

B. Uncertainty of vehicle position in the road frame

The lane belief distribution characterizes the states of the
lanes based on the estimated pose of the host vehicle on
the road. This process is carried out in the road-oriented
frame FR. To characterize the lane states, one has to decide
first on which lane the host vehicle is located. This requires
the knowledge of the lateral position with respect to the
road. The pose is estimated in the global frame with a
2D ellipse uncertainty g(x, y) as shown in Fig 2. In the
frame (xe, ye) defined at the estimated position, the lateral
position uncertainty to construct the lane belief distribution
is perpendicular to the lane direction, i.e, along the axis ye.
The lateral uncertainty is represented by p(y) in Fig 2.

To calculate this uncertainty, suppose that the position
uncertainty is represented in FO by the following covariance
matrix:

OP =

[
Op11

Op12
Op12

Op22

]
The transformation of this uncertainty into the road-oriented
frame FR is given by:The lateral uncertainty is represented
by p(y) in Fig 2.

RP =

[
Rp11

Rp12
Rp12

Rp22

]
= R · OP ·RT (1)

where R =

[
cos(ψ) sin(ψ)
−sin(ψ) cos(ψ)

]
is the rotation matrix in

which ψ is the heading of the road.

C. Uncertainty of grid cells in global frame

Fig 3 illustrates the uncertainty in the computation of the
belief distribution for the grid cells. b1 ∼ b6 represent the
belief distribution for each lane (the case where the position
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Figure 3: Lane cell mass computation

distribution extends to outside of the road is taken into
consideration, each side of the space outside the road is taken
as a lane). To illustrate the model, let us imagine that the true
position of vehicle isM and the lane grid is shown in red.

Let us compute the uncertainty denoted gi(x, y) of the red
cell i displayed in Fig 3. The coordinates vector of cell i in
FM is MXi =

[
Mxi

Myi
]T. Transformed into FO:

OXi =

[
Oxi
Oyi

]
= ORM ·

[
Mxi
Myi

]
+

[
OxM
OyM

]
= h(θ) (2)

whereORM is the rotation matrix from FM to FO, ORM =[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,
[

OxM
OyM

]
is the position ofM in FO. θ is

the estimated heading angle of the vehicle. (Mxi,
Myi) has

no uncertainty because the positions of the cells are known.
Thus, the position uncertainty of the cell in the global frame
comes only from the pose of the vehicle (OxM ,

OyM , θ).
To understand the effect of the uncertainty transformation,

let us suppose that the heading angle θ is decorrelated from
the position (OxM ,

OyM ). This allows analyzing the influ-
ence separately. Firstly, the uncertainty from (OxM ,

OyM )
is propagated uniformly since the relation is linear, if we
suppose the heading angle has no uncertainty.

Now, suppose the heading angle has some uncertainty and
the position is perfectly known. The covariance matrix of
OXi can be computed in close form as:

V ar(OXi|V ar(
[

OxM
OyM

]
) = 0) =

[
dh

dθ

]
· var(θ) ·

[
dh

dθ

]T
= var(θ) ·

[
u(θ) t(θ)
t(θ) v(θ)

]
(3)

where
u(θ) = (− sin(θ) ·M xi − cos(θ) ·M yi)

2

v(θ) = ( cos(θ) ·M xi − sin(θ) ·M yi)2

t(θ) = sin θ ·cos θ ·((Myi)
2−(Mxi)

2)+Mxi ·Myi ·((sin θ)2−(cos θ)2)

One can remark that the uncertainty of the heading angle θ is
not uniformly propagated to grid cells. The uncertainty is a



function of (Mxi,
Myi) which means that the position of the

cell inFM determines the shape of the uncertainty inFO. The
farther a cell is located, the larger the uncertainty is in the x
direction. The uncertainty in the y direction (with the same y
coordinate) increases when x coordinate augments. Thus, in
general, we can conclude that the uncertainty of one cell due
to heading error increases in the x direction.

For the general case, let denote V ar(OXi) the uncertainty
of cell i in the global frame. f(OxM ,

OyM , θ) denotes the
transformation (Eq 2). At the first order, we have:

gi(x, y) = V ar(OXi) =

[
δf

δOXi

]
· OP33 ·

[
δf

δOXi

]T
, (4)

whereOP33 represents the covariance matrix of the 2D pose
(OxM ,

OyM , θ) and
[

δf
δOXi

]
the Jacobian.

III. LANE BELIEF CONSTRUCTION

The lane belief distribution characterizes the lane status
from the estimated pose of the vehicle. It is based on the
road rules stored in the map. A multi-hypothesis probabilistic
approach is proposed. So, a lane belief serves both for the
probabilistic and evidential approaches in the grid cell belief
calculation process. In general, the belief level is denoted as
B() in this part, which can be transformed toP () andm() in
the probabilistic and evidential approaches respectively. Let
B(i, A) be the belief of stateA for lane i.

A. Multi-hypothesis approach

Due to the lateral uncertainty, one can make an error
when deciding on which lane the host vehicle is located. To
tackle this problem, we consider from this uncertainty every
possibility concerning which lane is Ego. The algorithms
considering all the hypotheses of belief distribution are given
in Algo 1, 2 and 3 shown in the Appendix. In summary, the
method considers every lane where the host vehicle can be
located, then computes for each case the belief supporting
that particular hypothesis.

The approach is illustrated in Fig 2. p(y) represents the
lateral position distribution in FR. The position has a large
lateral uncertainty and the Gaussian distribution covers multi-
lanes. Fig 4 gives an illustrative example on a four-lane road
with solid lane marking in the middle (AmeansAccessible,E
meansEgo,F meansForbidden). In Fig 4a, lane 3 is assumed
to be Ego and then the belief is calculated as the integral
of the pose distribution over the lane. Thus, B(3, Ego) =

P (Lane{3} = Ego) =
´ P
K
p(y)dy. This belief is propagated

to the other lanes based on the hypothesis that the map is
accurate and with no attribute error. Once lane 3 is regarded
asEgo, lane 4 should beAccessiblewith the same amount of
belief based on the relationship of the two lanes on the map,
B(4, Accessible) = P (Lane{3} = Ego). The same rule
applies to lane 1 and lane 2. These two lanes can only be
Forbidden, thus B(1, Forbidden) = B(2, Forbidden) =
P (Lane{3} = Ego).
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Figure 4: Multi-hypothesis algorithm illustration

To illustrate the model, a simulation has been done given
the same road situation. The result of the example is shown
in Fig 4b.

B. Belief accumulation

Every hypothesis is tackled independently, and each hy-
pothesis brings new belief on different propositions. If
different hypotheses would have contributed to the same
proposition, the belief would be accumulated. The final belief
distribution is shown in Fig 5. The belief accumulation is
mostly highlighted from the Forbidden mass outside the
road. The lateral pose distribution is limited to the road area,
thusForbidden belief accumulates to 100% outside the road,
which is conform with reality.
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Figure 5: Final lane belief distribution in the cross-track direction

IV. GRID CELL BELIEF CALCULATION

In this section, the formalism to calculate the belief state
is detailed, for both probabilistic and evidential approaches.

A. Probabilistic approach

In this framework, probabilities can only be assigned to
singletons in Ω. With the lane probability distribution already
composed, we need to model where locates the cell to com-
pute its probability distribution. To take advantage of the lane
belief distribution constructed in section III, the probability



of lane i to be in the state A is P (Slk = A) = B(k, A).
We define two properties for each cell in the grid: Li and
Si. They indicate respectively the lane index and the state of
cell i. Thus Li ∈ (1, 2, ... n) where n represents the number
of lanes, and Si ∈ Ω.

The probability of the red cell i in Fig 3 being located in
lane k can be calculated as:

P (Li = k) =

¨

(x,y∈Lanek)

gi(x, y)dxdy . (5)

According to the total probability law, the probability of the
stateA for the cell is computed as:

P (Si = A) =
n∑

k=1

P (Si = A |Li = k) · P (Li = k), A ∈ Ω.

With the partP (Li = k)already tackled in Eq. 5, the problem
resides in computing the part P (Si = A |Li = k). Suppose
the state for lane k is denoted as Slk, the first part can be
developed into:

P (Si = A |Li = k) = P (Si = A |Si = Slk )

because if one cell lies in lane k, then it has the same state
as the lane k. Moreover,

P (Si = A |Si = Slk ) = P (Slk = A) = B(k, A).

B. Evidential approach

Dempster-shafer’s theory provides a generalized way to
deal with uncertainty. The singletons in Ω are mutually
exclusive. The power set is defined as:

2Ω = {∅, Ego, Accessible, Forbidden, {Ego, Accessible},
{Ego, Forbidden}, {Accessible, Forbidden}, Ω}.

One advantage of the evidential representation is that one
can attribute mass to any subset of the frame of discernment.
For example {Ego, Accessible} is not null in the case when
the mass supports both Ego and Accessible, but there is
not enough information to tell whether the mass should be
assigned toEgo orAccessible.

If one cell lies inside one lane, then it should have the
same mass distribution as the lane:

mi = mk, ifCi ∈ Lanek

in which mi and mk represent respectively the mass distri-
bution of cell i and Lanek. One should note that the belief
distribution constructed in section III can be adopted here as
mk(A) = B(k, A).

Due to the position uncertainty gi(x, y), the cell i can be
located within each lane with a certain confidence level which
can be computed by:

αi
k =

¨

(x,y∈Lanek)

gi(x, y)dxdy . (6)

This confidence level is applied to discount the mass distri-
bution of each lanemk [10].

The mass distribution for the cell i belonging to lane k is
mi
k and is computed:

mi
k(A) = αi

k · mk(A), A ⊆ Ω, A 6= Ω
mi

k(Ω) = αi
k · mk(Ω) + 1− αi

k

Fusing all the information provided by all the lanes, we can
now compute the mass distribution for cell i by:

mi = }km
i
k, k = 1, 2, ... , n (7)

in which k is the lane index, n is the number of lanes.
The fusion operator } proposed in [11] is defined as:{

(m1 }m2)(A) =
∑

B∩C=A6=∅m1(B) ·m2(C)

(m1 }m2)(A) =
∑

B∩C=∅, B∪C=Am1(B) ·m2(C)
A, B, C ⊂ Ω

The specialty of this operator is that the conflicting mass
is put into union states. In our case, this conflicting mass
is due to the position uncertainty. If, in the fusion process,
conflicting information is generated, we assume that the
evidence supports the mass distribution of the two fused
hypotheses. This highlights an advantage of the evidential
approach which will be demonstrated in the results.

V. REAL ROAD EXPERIMENTS AND RESULTS

Real road experiments have been done with an equipped
vehicle of the Lab shown in Fig 6. A pre-constructed map
with a negligible error level has been used. In the map, any
road is explicitly described with lane information, including
lane markings and road boundaries. The lane markings are
distinguished in the map with different attributes. This feature
is important to determine the lane state. A GPS system with
RTK corrections provided accurate positioning information
with high confidence during the tests.

Figure 6: Experimental vehicle used in this work

To qualitatively evaluate the result, the approach proposed
in [12] is adopted. The retro-projection of the Lane Grid on
the scene image helps support a qualitative evaluation. The
essential purpose of this method is to analyze and evaluate
the correspondence between the Lane Grid and the scene
observed by the camera.

The grids are of 40 ∗ 16 meters in length and width and
the cells size is (0.1∗0.1) meters. For denotation purpose, we
herein use(σx, σy , σθ)as the 2D pose uncertainty. The whole
approach has been implemented in C++. A video illustrating
the results of a whole test on public roads with lane changes
is accessible on line1. The results are shown in the form of a
RGB image. The advantage is that the belief level is reflected
by the RGB color brightness. A brighter color means a higher
believe level. In the following, we focus on one particular
sample and we compare the two approaches.

A. Probabilistic lane grid result

1https://www.youtube.com/watch?v=0Cl4m2cua_c&feature=youtu.be

https://www.youtube.com/watch?v=0Cl4m2cua_c&feature=youtu.be


(a) Ego (b) Accessible (c) Forbidden (d) All

(e) Retro-projection on the front-looking image
Figure 7: Probabilistic approach

Fig 7 shows the resulting probabilistic grids with the
following pose uncertainty (σx = 0.3m, σy = 0.2m,σθ =
0.1radians). The Ego, Accessible, and Forbidden proba-
bilities along each lane become smaller as the distance of
the cells to the host vehicle gets larger. However, the space
covered by the probability distribution extends to outside
of each lane, which means that the probability becomes
more dispersed. The uncertainty propagation explained in
section II is the reason for this phenomenon. It is clear
that if one cell has a larger position uncertainty, it ought
to have more ambiguous probability distribution. As the
approach takes into account the 2D pose uncertainty, the
cells at farther distance tend to have larger uncertainty. The
combined probability shown in Fig 7d further reflects this
phenomenon. One can remark clearly that cells close to the
host vehicle tend to have just single state probability, whereas
at farther distance, the probability distribution can become
very ambiguous.

The retro-projection of the lane grid on the image in Fig
7e gives a qualitative result evaluation. One can see the result
is valid given the correspondence of the lane grid projected
on the image.

B. Evidential lane grid result

Fig 8 displays the results of the evidential approach with
the same pose uncertainty. The belief of the states of the
lanes gradually decreases as the distance of the cells to the
host vehicle becomes larger. From the mass in the union
states shown in Fig 8d, one can remark that some quantity
of mass is put in the union states, which is displayed by the
combination of colors. In Fig 8d, yellow, cyan and magenta
colors represent respectively the mass in {Ego, Forbidden},
{Ego, Accessible} and {Accessible, Forbidden}. The fact
that farther cells have larger uncertainty is more clearly
reflected in this image, as the union mass area becomes wider
in the farther space. In Fig 8g the retro-projection of union

(a) Ego (b) Accessible (c) Forbidden (d) Union (e) Singleton

(f) Retro-projection of all singleton masses on the image

(g) Retro-projection of the union of masses on the image
Figure 8: Evidential approach

mass is demonstrated, this result directly shows the fact that
the union mass is mainly focused on the cells that are close
to the lane markings.

C. Influences of position and angle uncertainties

Based on the discussion in section II, the position uncer-
tainty is propagated uniformly over the lane grid, whereas
the angle uncertainty is not. In this section, we show the
results which reflect these two propagations of uncertainties.
The uncertainty propagation effects have same impact on the
Bayesian and Evidential approaches, herein we choose the
evidential approach for illustration since more visual results
can be demonstrated. In Fig 9 the results with only position
uncertainties are displayed. The uncertainties are respectively
(0.3m, 0.2m, 0.0radians)and (1.0m, 1.0m, 0.0radians) in
Fig 9a and Fig 9b. Based on these results, one can remark
that with position uncertainty, the fading effect of each lane
states over each lane is uniform all along the lane space,
even the distance get larger. With larger position uncertainty,
the mass level for lane states get lower, which means less
confident about the lane states for the grid cells.

The Fig 10 shows two cases of different angle uncer-
tainties when there is no position uncertainty. The un-
certainties are respectively (0.0m, 0.0m, 0.05radians) and
(0.0m, 0.0m, 0.1radians) in Fig 10a and Fig 10b. The effect
of larger angle uncertainty is reflected by the lower mass level
over the space in larger distance in Fig 10b. With larger angle
uncertainty, the cells in Fig 10b have larger uncertainties, thus
their mass dispersion is more significant, which results in the
more ambiguous lane grid.



(a) small position uncertainty

(b) large position uncertainty
Figure 9: Results with only position uncertainties

(a) small angle uncertainty

(b) large angle uncertainty
Figure 10: Results with only angle uncertainties

D. Comparison between the two approaches

The evidential approach provides richer information than
the probabilistic one. Indeed, it puts beliefs into union states
if the belief in each single state is not clear. Ignorance
is explicitly quantified by the Unknown mass. Moreover,
the evidential approach provides a flexible method to tackle
conflicting information which also brings useful information.
Here, the conflicting mass corresponds to the lane markings.

Another essential difference resides in the decision pro-
cess. In a probabilistic approach, decision is classically made
by selecting the maximum probability. Thus, the decision is
always among these three states, no matter how uncertain

(a) Proba (b) Evidence (c) Pignistic
Figure 11: Decision grids (used by client applications)

the information is. However, in the evidential approach, it
is authorized to explicitly announce ignorance when there is
too large uncertainty. Fig 11 shows the decision grids of the
results shown in Fig 7 and in Fig 8. In these decision grids,
the belief level is kept to reflect the uncertainty level. Fig 11a
shows the max of probabilities. TheEgoandAccessible lanes
at farther distance become more narrow. This phenomenon
is due to the fact that the probability dispersion in this area
becomes larger and theForbiddenbelief outside the road has
larger influence which leads to Forbidden belief invasion
into lane space. Fig 11b shows a decision grid based on
the maximum of mass of evidence. One can remark that
over the far away space, the cells are Unknown, which
means that no decision can be made in this area due to
the lack of information. This is a great advantage for a
path planning process, since, as this evidential decision grid
provides explicitly ignorant information, no risky trajectory
can be planned.

In Fig 11c shows another decision grid based on pignis-
tic probability [13], commonly used to transform evidence
masses in probabilities. One can remark that this grid looks
almost exactly the same as the probabilistic decision grid in
Fig 11a. In fact, the ratio of identical decision of these two
grids reaches 99.992%. This result validates the way uncer-
tainty is handled in the proposed evidential grid mechanism
as it conducts to the same probabilistic conclusions.

VI. CONCLUSION

A new approach to characterize lane information and
semantic road rules into grid cells has been proposed. A
prior lane-level map is used to extract lane information
based on the pose provided by a localization system. As
any localization system provides uncertain information, the
uncertainty propagation over the grid has been analyzed
and methods to build probabilistic and evidential lane grids
have been proposed. Real road results have been reported
and compared with a qualitative evaluation based on the
retro-projection of the 2D grids on ground truth images.
The evidential framework relying on mass discounting has



been validated trough decision grids comparisons. It has the
advantage of explicitly managing ignorance which is clearly
an added value for safe autonomous navigation.
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APPENDIX

Algorithm 1 Multi-hypothesis Lane Belief Distribution Construction
input: Map, grid size(gSize), Pose(P), Pose uncertainty(COV)
output: Lane Belief Distribution
1. Check out the lane information from Map based onP and gSize
Nl=lane number,Nm=marking number
marking_continuity as (Nm * 1) vector. %indication of road rule

2.COVr = Convert2Road(COV) %covariance in the road frame
p(y) = Norm(0,COVr(2, 2)) %Gaussian distribution

3. Compute each lane’s span on the distribution, span(i), i∼(1,Nl)
4. Initialize lane_state asNl * 1 vector
5. For each lane lanei inNl

initialize lane_state all asForbidden
lane_state = ComputeLaneState(lane_state, lanei,

marking_continuity)
For each lane lanej inNl

B(lanej, lane_state_buffer(lanej)) +=
´
spani

p(y)
Endfor

Endfor

Algorithm 2 Function Convert2Road
input: Pose uncertainty(COV), road capψ.
output:COVr %covariance in road frame

1.Rotation = [cosψ sinψ;− sinψ cosψ]

2.COVr =Rotation *COV *RotationT

Algorithm 3 Function ComputeLaneState
input: lane_state, laneId,marking_continuity.
output: lane_state
1. lane_state(laneId) = Ego %when current lane is Ego
2. For each lane lanei inNl

IF lanei == laneId
continue

Endif
state_temp = Accessible
IF lanei > laneId

FormarkingId in [laneId, lanei − 1]
IFmarking_continuity(markingId) == solid
state_temp = Forbidden

Endif
Endfor

Endif
IF lanei < laneId

FormarkingId in [laneId− 1, lanei]
IFmarking_continuity(markingId) == solid
state_temp = Forbidden

Endif
Endfor

Endif
lane_state(lanei)=state_temp

Endfor
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