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I. INTRODUCTION

In this paper, a grid-based approach is proposed to tackle the lane level perception for autonomous navigation. When running on a multi-lane road, the host vehicle needs semantic lane information to plan trajectories conforming to road rules, this is the reason why many lane detection methods have been studied and developed [START_REF] Thuy | Lane detection and tracking based on lidar data[END_REF][2][3] [START_REF] Cui | Robust multilane detection and tracking in urban scenarios based on lidar and mono-vision[END_REF]. Nevertheless, lane detection methods relying on vision and lidar systems perform badly to extract parallel multi-lanes particularly in challenging weather conditions. In this work, we propose to take advantage of a prior maps to have access to lane level resources such as lane borders or lane orientations (in the sense of driving direction). With such detailed prior maps, a lane information can be easily retrieved once good localization (position and heading) with reliable confidence information is obtained. Advantages can be numerous: the map can provide accurate and integrated information for reliable navigation; the semantic lane information is easily accessible; no distance limit for map information, compared to even high definition sensors, since they all have a limited detection distance.

Occupancy grids [START_REF] Elfes | Using occupancy grids for mobile robot perception and navigation[END_REF][6][7] [START_REF] Moras | Credibilist occupancy grids for vehicle perception in dynamic environments[END_REF] focus on the management of obstacle information into grid cells, in this work, we also propose to encode the lane information into spatial grids. One can interpret this lane information as a semantic meaning encoded in the cells. From the host vehicle's point of view, the navigable space is made up of the accessible lanes having a driving direction compatible with the vehicle orientation.

Lanes with opposite direction and space outside of the road are non-navigable. So, let consider a frame of discernment defined as Ω = {Ego, Accessible, F orbidden}. It contains minimal information allowing a vehicle to perform lane level navigation. In lane grids, every cell is filled with a belief state which characterizes the semantic lane information. The Ego-localization system provides the pose information (position and heading) of the ego vehicle. The estimated pose has to be reliable, which implies that the true pose of the host vehicle has to be included in some estimated uncertainty bound. There exists two kinds of uncertainty in the process which come respectively from the estimated pose and from the map. In the current approach, we consider that the map is accurate and the one used in the experiments have been made with high-grade mobile mapping sensors. The pose uncertainty is therefore the predominant uncertainty which has to be taken into account.

The contributions of this work are a analysis of the propagation of pose uncertainties into the grid construction process, the developments of both probabilistic and evidential approaches to encode semantic lane information from maps, and a demonstration and comparison of the two approaches with real road data.

The paper is organized as follows: Section II gives a detailed illustration of uncertainty analysis concerning the two steps to construct lane grids. The two steps are detailed in sections III and IV. In section V, experimental results are shown and compared. Finally, conclusions are given in section VI.

II. UNCERTAINTY ANALYSIS

The term Belief used in Fig 1 can have different meanings depending on the considered approach. In the probabilistic approach, Belief refers to P robability; in the evidential one, Belief means M ass, since M ass is the basic belief assignment in the Dempster-Shafer's theory. F R [START_REF] Zui Tao | Road invariant extended kalman filter for an enhanced estimation of gps errors using lane markings[END_REF] has the same origin as the global frame but with its x-axis pointing in the direction of the road. It is actually a rotated version of the global frame. The body frame of the vehicle F M is defined at the center of the vehicle's rear axle with an origin denoted M. Note that M has not a deterministic location in F O or F R because of the estimation uncertainty, but the uncertainty has to be well quantified. In Fig 2, a position M with an uncertainty ellipse g(x, y) is given for illustrating purpose.

A. Coordinates definition for different uncertainties

B. Uncertainty of vehicle position in the road frame

The lane belief distribution characterizes the states of the lanes based on the estimated pose of the host vehicle on the road. This process is carried out in the road-oriented frame F R . To characterize the lane states, one has to decide first on which lane the host vehicle is located. This requires the knowledge of the lateral position with respect to the road. The pose is estimated in the global frame with a 2D ellipse uncertainty g(x, y) as shown in Fig 2 . In the frame (x e, y e ) defined at the estimated position, the lateral position uncertainty to construct the lane belief distribution is perpendicular to the lane direction, i.e, along the axis y e . The lateral uncertainty is represented by p(y) in Fig 2 .  To calculate this uncertainty, suppose that the position uncertainty is represented in F O by the following covariance matrix:

O P = O p 11 O p 12 O p 12 O p 22
The transformation of this uncertainty into the road-oriented frame F R is given by:The lateral uncertainty is represented by p(y) in Fig 2.

R P = R p 11 R p 12 R p 12 R p 22 = R • O P • R T (1) 
where R = cos(ψ) sin(ψ) -sin(ψ) cos(ψ) is the rotation matrix in which ψ is the heading of the road. distribution extends to outside of the road is taken into consideration, each side of the space outside the road is taken as a lane). To illustrate the model, let us imagine that the true position of vehicle is M and the lane grid is shown in red.

C. Uncertainty of grid cells in global frame

Let us compute the uncertainty denoted

g i (x, y) of the red cell i displayed in Fig 3. The coordinates vector of cell i in F M is M X i = M x i M y i T . Transformed into F O : O X i = O x i O y i = O R M • M x i M y i + O x M O y M = h(θ) (2) 
where O R M is the rotation matrix from

F M to F O , O R M = cos(θ) -sin(θ) sin(θ) cos(θ) , O x M O y M is the position of M in F O . θ is
the estimated heading angle of the vehicle. ( M x i , M y i ) has no uncertainty because the positions of the cells are known. Thus, the position uncertainty of the cell in the global frame comes only from the pose of the vehicle

( O x M , O y M , θ).
To understand the effect of the uncertainty transformation, let us suppose that the heading angle θ is decorrelated from the position ( O x M , O y M ). This allows analyzing the influence separately. Firstly, the uncertainty from

( O x M , O y M )
is propagated uniformly since the relation is linear, if we suppose the heading angle has no uncertainty. Now, suppose the heading angle has some uncertainty and the position is perfectly known. The covariance matrix of O X i can be computed in close form as:

V ar( O X i |V ar( O x M O y M ) = 0) = dh dθ • var(θ) • dh dθ T = var(θ) • u(θ) t(θ) t(θ) v(θ) (3) 
where

u(θ) = (-sin(θ) • M x i -cos(θ) • M y i ) 2 v(θ) = ( cos(θ) • M x i -sin(θ) • M y i ) 2 t(θ) = sin θ•cos θ•(( M y i ) 2 -( M x i ) 2 )+ M x i • M y i •((sin θ) 2 -(cos θ) 2 )
One can remark that the uncertainty of the heading angle θ is not uniformly propagated to grid cells. The uncertainty is a function of ( M x i , M y i ) which means that the position of the cell in F M determines the shape of the uncertainty in F O . The farther a cell is located, the larger the uncertainty is in the x direction. The uncertainty in the y direction (with the same y coordinate) increases when x coordinate augments. Thus, in general, we can conclude that the uncertainty of one cell due to heading error increases in the x direction. For the general case, let denote V ar( O X i ) the uncertainty of cell i in the global frame. f ( O x M , O y M , θ) denotes the transformation (Eq 2). At the first order, we have:

g i (x, y) = V ar( O X i ) = δf δ O X i • O P 33 • δf δ O X i T , (4) 
where O P 33 represents the covariance matrix of the 2D pose

( O x M , O y M , θ
) and δf δ O Xi the Jacobian.

III. LANE BELIEF CONSTRUCTION

The lane belief distribution characterizes the lane status from the estimated pose of the vehicle. It is based on the road rules stored in the map. A multi-hypothesis probabilistic approach is proposed. So, a lane belief serves both for the probabilistic and evidential approaches in the grid cell belief calculation process. In general, the belief level is denoted as B() in this part, which can be transformed to P () and m() in the probabilistic and evidential approaches respectively. Let B(i, A) be the belief of state A for lane i.

A. Multi-hypothesis approach

Due to the lateral uncertainty, one can make an error when deciding on which lane the host vehicle is located. To tackle this problem, we consider from this uncertainty every possibility concerning which lane is Ego. The algorithms considering all the hypotheses of belief distribution are given in Algo 1, 2 and 3 shown in the Appendix. In summary, the method considers every lane where the host vehicle can be located, then computes for each case the belief supporting that particular hypothesis.

The approach is illustrated in 

B. Belief accumulation

Every hypothesis is tackled independently, and each hypothesis brings new belief on different propositions. If different hypotheses would have contributed to the same proposition, the belief would be accumulated. The final belief distribution is shown in Fig 5 . The belief accumulation is mostly highlighted from the F orbidden mass outside the road. The lateral pose distribution is limited to the road area, thus F orbidden belief accumulates to 100% outside the road, which is conform with reality. In this section, the formalism to calculate the belief state is detailed, for both probabilistic and evidential approaches.

A. Probabilistic approach

In this framework, probabilities can only be assigned to singletons in Ω. With the lane probability distribution already composed, we need to model where locates the cell to compute its probability distribution. To take advantage of the lane belief distribution constructed in section III, the probability of lane i to be in the state A is P (S l k = A) = B(k, A). We define two properties for each cell in the grid: L i and S i . They indicate respectively the lane index and the state of cell i. Thus L i ∈ (1, 2, ... n) where n represents the number of lanes, and S i ∈ Ω.

The probability of the red cell i in Fig 3 being located in lane k can be calculated as:

P (L i = k) = (x,y∈Lane k ) g i (x, y)dxdy. (5) 
According to the total probability law, the probability of the state A for the cell is computed as:

P (S i = A) = n k=1 P (S i = A | L i = k) • P (L i = k), A ∈ Ω.
With the part P (L i = k) already tackled in Eq. 5, the problem resides in computing the part P (S i = A | L i = k). Suppose the state for lane k is denoted as S l k , the first part can be developed into:

P (S i = A | L i = k) = P (S i = A | S i = S l k )
because if one cell lies in lane k, then it has the same state as the lane k. Moreover,

P (S i = A | S i = S l k ) = P (S l k = A) = B(k, A).

B. Evidential approach

Dempster-shafer's theory provides a generalized way to deal with uncertainty. The singletons in Ω are mutually exclusive. The power set is defined as: One advantage of the evidential representation is that one can attribute mass to any subset of the frame of discernment. For example {Ego, Accessible} is not null in the case when the mass supports both Ego and Accessible, but there is not enough information to tell whether the mass should be assigned to Ego or Accessible.

If one cell lies inside one lane, then it should have the same mass distribution as the lane:

m i = m k , if C i ∈ Lane k
in which m i and m k represent respectively the mass distribution of cell i and Lane k . One should note that the belief distribution constructed in section III can be adopted here as m k (A) = B(k, A).

Due to the position uncertainty g i (x, y), the cell i can be located within each lane with a certain confidence level which can be computed by:

α i k = (x,y∈Lane k ) g i (x, y)dxdy. ( 6 
)
This confidence level is applied to discount the mass distribution of each lane m k [START_REF] Kurdej | Conservative, proportional and optimistic contextual discounting in the belief functions theory[END_REF].

The mass distribution for the cell i belonging to lane k is m i k and is computed:

m i k (A) = α i k • m k (A), A ⊆ Ω, A = Ω m i k (Ω) = α i k • m k (Ω) + 1 -α i k
Fusing all the information provided by all the lanes, we can now compute the mass distribution for cell i by:

m i = k m i k , k = 1, 2, ... , n (7) 
in which k is the lane index, n is the number of lanes.

The fusion operator proposed in [START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF] is defined as:

(m 1 m 2 )(A) = B∩C=A =∅ m 1 (B) • m 2 (C) (m 1 m 2 )(A) = B∩C=∅, B∪C=A m 1 (B) • m 2 (C) A, B, C ⊂ Ω
The specialty of this operator is that the conflicting mass is put into union states. In our case, this conflicting mass is due to the position uncertainty. If, in the fusion process, conflicting information is generated, we assume that the evidence supports the mass distribution of the two fused hypotheses. This highlights an advantage of the evidential approach which will be demonstrated in the results.

V. REAL ROAD EXPERIMENTS AND RESULTS Real road experiments have been done with an equipped vehicle of the Lab shown in Fig 6 . A pre-constructed map with a negligible error level has been used. In the map, any road is explicitly described with lane information, including lane markings and road boundaries. The lane markings are distinguished in the map with different attributes. This feature is important to determine the lane state. A GPS system with RTK corrections provided accurate positioning information with high confidence during the tests. To qualitatively evaluate the result, the approach proposed in [START_REF] Moras | Drivable space characterization using automotive lidar and georeferenced map information[END_REF] is adopted. The retro-projection of the Lane Grid on the scene image helps support a qualitative evaluation. The essential purpose of this method is to analyze and evaluate the correspondence between the Lane Grid and the scene observed by the camera.

The grids are of 40 * 16 meters in length and width and the cells size is (0.1 * 0.1) meters. For denotation purpose, we herein use (σ x , σ y , σ θ ) as the 2D pose uncertainty. The whole approach has been implemented in C++. A video illustrating the results of a whole test on public roads with lane changes is accessible on line 1 . The results are shown in the form of a RGB image. The advantage is that the belief level is reflected by the RGB color brightness. A brighter color means a higher believe level. In the following, we focus on one particular sample and we compare the two approaches. 

A. Probabilistic lane grid result

C. Influences of position and angle uncertainties

Based on the discussion in section II, the position uncertainty is propagated uniformly over the lane grid, whereas the angle uncertainty is not. In this section, we show the results which reflect these two propagations of uncertainties. The uncertainty propagation effects have same impact on the Bayesian and Evidential approaches, herein we choose the evidential approach for illustration since more visual results can be demonstrated. In 

D. Comparison between the two approaches

The evidential approach provides richer information than the probabilistic one. Indeed, it puts beliefs into union states if the belief in each single state is not clear. Ignorance is explicitly quantified by the U nknown mass. Moreover, the evidential approach provides a flexible method to tackle conflicting information which also brings useful information. Here, the conflicting mass corresponds to the lane markings.

Another essential difference resides in the decision process. In a probabilistic approach, decision is classically made by selecting the maximum probability. Thus, the decision is always among these three states, no matter how uncertain the information is. However, in the evidential approach, it is authorized to explicitly announce ignorance when there is too large uncertainty. One can remark that over the far away space, the cells are U nknown, which means that no decision can be made in this area due to the lack of information. This is a great advantage for a path planning process, since, as this evidential decision grid provides explicitly ignorant information, no risky trajectory can be planned. In Fig 11c shows another decision grid based on pignistic probability [START_REF] Smets | Decision making in the tbm: the necessity of the pignistic transformation[END_REF], commonly used to transform evidence masses in probabilities. One can remark that this grid looks almost exactly the same as the probabilistic decision grid in Fig 11a . In fact, the ratio of identical decision of these two grids reaches 99.992%. This result validates the way uncertainty is handled in the proposed evidential grid mechanism as it conducts to the same probabilistic conclusions.

VI. CONCLUSION

A new approach to characterize lane information and semantic road rules into grid cells has been proposed. A prior lane-level map is used to extract lane information based on the pose provided by a localization system. As any localization system provides uncertain information, the uncertainty propagation over the grid has been analyzed and methods to build probabilistic and evidential lane grids have been proposed. Real road results have been reported and compared with a qualitative evaluation based on the retro-projection of the 2D grids on ground truth images. The evidential framework relying on mass discounting has
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 33 Fig 3 illustrates the uncertainty in the computation of the belief distribution for the grid cells. b 1 ∼ b 6 represent the belief distribution for each lane (the case where the position

  Fig 2. p(y) represents the lateral position distribution in F R . The position has a large lateral uncertainty and the Gaussian distribution covers multilanes. Fig 4 gives an illustrative example on a four-lane road with solid lane marking in the middle (A means Accessible, E means Ego, F means F orbidden). In Fig 4a,lane 3 is assumed to be Ego and then the belief is calculated as the integral of the pose distribution over the lane. Thus, B(3, Ego) = P (Lane{3} = Ego) = ´P K p(y)dy. This belief is propagated to the other lanes based on the hypothesis that the map is accurate and with no attribute error. Once lane 3 is regarded as Ego, lane 4 should be Accessible with the same amount of belief based on the relationship of the two lanes on the map, B(4, Accessible) = P (Lane{3} = Ego). The same rule applies to lane 1 and lane 2. These two lanes can only be F orbidden, thus B(1, F orbidden) = B(2, F orbidden) = P (Lane{3} = Ego).
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 4 Figure 4: Multi-hypothesis algorithm illustration
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 5 Figure 5: Final lane belief distribution in the cross-track direction
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 6 Figure 6: Experimental vehicle used in this work

  Retro-projection on the front-looking image
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 7 Figure 7: Probabilistic approach
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 8 Figure 8: Evidential approach

  Fig 9 the results with only position uncertainties are displayed. The uncertainties are respectively (0.3m, 0.2m, 0.0radians) and (1.0m, 1.0m, 0.0radians) in Fig 9a and Fig 9b. Based on these results, one can remark that with position uncertainty, the fading effect of each lane states over each lane is uniform all along the lane space, even the distance get larger. With larger position uncertainty, the mass level for lane states get lower, which means less confident about the lane states for the grid cells. The Fig 10 shows two cases of different angle uncertainties when there is no position uncertainty. The uncertainties are respectively (0.0m, 0.0m, 0.05radians) and (0.0m, 0.0m, 0.1radians)in Fig 10a and Fig 10b. The effect of larger angle uncertainty is reflected by the lower mass level over the space in larger distance in Fig 10b. With larger angle uncertainty, the cells in Fig 10b have larger uncertainties, thus their mass dispersion is more significant, which results in the more ambiguous lane grid.

  (a) small position uncertainty (b) large position uncertainty
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 9 Figure 9: Results with only position uncertainties
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 10 Figure 10: Results with only angle uncertainties
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 11 Figure 11: Decision grids (used by client applications)

  Fig 11 shows the decision grids of the results shown in Fig 7 and in Fig 8. In these decision grids, the belief level is kept to reflect the uncertainty level. Fig 11a shows the max of probabilities. The Ego and Accessible lanes at farther distance become more narrow. This phenomenon is due to the fact that the probability dispersion in this area becomes larger and the F orbidden belief outside the road has larger influence which leads to F orbidden belief invasion into lane space. Fig 11b shows a decision grid based on the maximum of mass of evidence.
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Ω = {∅, Ego, Accessible, F orbidden, {Ego, Accessible}, {Ego, F orbidden}, {Accessible, F orbidden}, Ω}.

https://www.youtube.com/watch?v=0Cl4m2cua_c&feature=youtu.be

been validated trough decision grids comparisons. It has the advantage of explicitly managing ignorance which is clearly an added value for safe autonomous navigation.