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Introduction

Nowadays, the numerical resolution of wave-like problems set on infinite or very large domains remains a challenging task. When using classical schemes based on finite difference, finite volume or finite element methods, a common strategy consists in computing the numerical solution only on a truncated domain, and using an adequate treatment at the artificial boundary to preserve the original solution. This treatment is supposed to simulate the outward propagation of signals and perturbations of all kinds generated inside the truncated domain, even if they are not a priori known. For this purpose, a lot of artificial boundary conditions, artificial layers and alternative techniques have been developed, studied and used for decades (see e.g. the review papers [START_REF] Antoine | A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations[END_REF][START_REF] Colonius | Modeling artificial boundary conditions for compressible flow[END_REF][START_REF] Givoli | Numerical Methods for Problems in Infinite Domains[END_REF][START_REF] Givoli | Computational absorbing boundaries[END_REF][START_REF] Hagstrom | Radiation boundary conditions for the numerical simulation of waves[END_REF][START_REF] Hagstrom | Radiation boundary conditions for Maxwell's equations: a review of accurate time-domain formulations[END_REF][START_REF] Tsynkov | Numerical solution of problems on unbounded domains. A review[END_REF] and references therein). Among them, the high-order absorbing boundary conditions [START_REF] Antoine | Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape[END_REF][START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF][START_REF] Hagstrom | Radiation boundary conditions for Maxwell's equations: a review of accurate time-domain formulations[END_REF][START_REF] Hagstrom | The double absorbing boundary method[END_REF][START_REF] Schmidt | Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order[END_REF] and the perfectly matched layers (PMLs) [START_REF] Appelö | Perfectly matched layers for hyperbolic systems: General formulation, well-posedness, and stability[END_REF][START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Bérenger | Perfectly Matched Layer (PML) for Computational Electromagnetics[END_REF][START_REF] Bermúdez | Perfectly matched layers for time-harmonic second order elliptic problems[END_REF][START_REF] Hastings | Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation[END_REF][START_REF] Hu | On absorbing boundary conditions for linearized euler equations by a perfectly matched layer[END_REF][START_REF] Hu | Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review[END_REF][START_REF] Katz | Validation and extension to three dimensions of the Bérenger PML absorbing boundary condition for FD-TD meshes[END_REF] provide treatments of the artificial boundary with arbitrarily-high accuracy.

The PML method has been introduced by Bérenger in the 90s [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] for transient electromagnetic problems, and has been quickly applied to other wave-like problems. With this method, the truncated domain is extended with a layer, where the governing equations are modified in such a way that outgoing waves are damped. In addition, at the interface between the truncated domain and the layer, the outgoing waves are transmitted without any reflection, whatever the angle of incidence. The combination of both these properties made the success of the method.

The key ingredient of the PML method is the set of governing equations defined inside the layer. With Bérenger's strategy, valid for squared and cuboidal truncated domains, the equations are built by splitting the original equations written in Cartesian coordinates, and using specific dissipations terms [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF]. In the 1 time-harmonic context, this strategy corresponds to a stretch of the Cartesian coordinates in the complex plane [START_REF] Chew | A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates[END_REF][START_REF] Rappaport | Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space[END_REF], and can be interpreted as a change of the metric [START_REF] Lassas | Complex Riemannian metric and absorbing boundary condition[END_REF][START_REF] Teixeira | Differential forms, metrics, and the reflectionless absorption of electromagnetic waves[END_REF]. The PML equations then involve complex metric coefficients. In alternative formulations, the original time-harmonic equations are used in the PML without any change, but complex anisotropic material parameters are defined [START_REF] Gedney | An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[END_REF][START_REF] Sacks | A perfectly matched anisotropic absorber for use as an absorbing boundary condition[END_REF][START_REF] Zhao | GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids[END_REF]. These PMLs, frequently called uniaxial PMLs, are interpreted as anisotropic material absorbers. Time-dependent formulations can finally be obtained by taking the inverse Fourier transform in time of time-harmonic PML equations, and using convolution products or additional fields. All the above mentioned strategies have been developed in the electromagnetics community in the 90s. During the last 20 years, they have been used and adapted to design PML formulations for increasingly complex problems in various physical contexts, such as aeroacoustics [START_REF] Hu | On absorbing boundary conditions for linearized euler equations by a perfectly matched layer[END_REF][START_REF] Hu | Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review[END_REF][START_REF] Hu | Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique[END_REF][START_REF] Nataf | A new approach to perfectly matched layers for the linearized Euler system[END_REF], geophysical fluid dynamics [START_REF] Lavelle | A pretty good sponge: Dealing with open boundaries in limited-area ocean models[END_REF][START_REF] Navon | A perfectly matched layer approach to the linearized shallow water equations models[END_REF], elastodynamics [START_REF] Basu | Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation[END_REF][START_REF] Basu | Perfectly matched layers for transient elastodynamics of unbounded domains[END_REF][START_REF] Bécache | Stability of perfectly matched layers, group velocities and anisotropic waves[END_REF][START_REF] Chew | Perfectly matched layers for elastodynamics: A new absorbing boundary condition[END_REF][START_REF] Collino | Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[END_REF][START_REF] Meza-Fajardo | A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropicelastic media: Stability analysis[END_REF] and quantum mechanics [START_REF] Zheng | A perfectly matched layer approach to the nonlinear Schrödinger wave equations[END_REF].

Most of the PML formulations are written in Cartesian coordinates and only deal with truncated domains that have straight artificial boundaries (e.g. squared or cuboidal). However, some problems are naturally written in other coordinate systems and, since the choice of the truncated domains is a priori arbitrary, it could be advantageous to take domains with non-classical shapes. This motivated the derivation of PML systems in alternative coordinate systems, firstly with cylindrical and spherical coordinates [START_REF] Chew | Complex coordinate stretching as a generalized absorbing boundary condition[END_REF][START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF][START_REF] Petropoulos | Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates[END_REF][START_REF] Teixeira | PML-FDTD in cylindrical and spherical grids[END_REF][START_REF] Teixeira | Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates[END_REF]. Some PML versions dealing with generally-shaped convex domains have been proposed in time-harmonic contexts by Teixeira and Chew [START_REF] Teixeira | Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves[END_REF][START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF], Lassas and Somersalo [START_REF] Lassas | Analysis of the PML equations in general convex geometry[END_REF][START_REF] Lassas | Complex Riemannian metric and absorbing boundary condition[END_REF], Zschiedrich et al [START_REF] Zschiedrich | A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions[END_REF] and Matuszyk and Demkowicz [START_REF] Matuszyk | Parametric finite elements, exact sequences and perfectly matched layers[END_REF]. Strategies have been presented for time-dependent simulations with non-Cartesian finite difference schemes [START_REF] Roden | Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique[END_REF][START_REF] Teixeira | Conformal PML-FDTD schemes for electromagnetic field simulations: A dynamic stability study[END_REF], mixed finite element schemes [START_REF] Donderici | Conformal perfectly matched layer for the mixed finite element time-domain method[END_REF] and discontinuous Galerkin schemes [START_REF] Alvarez | A leap-frog discontinuous galerkin time-domain method for hirf assessment[END_REF][START_REF] Dosopoulos | Interior penalty discontinuous Galerkin finite element method for the timedependent first order Maxwell's equations[END_REF] for Maxwell's equations. Alternative approaches with layers have also been proposed by Guddati et al [START_REF] Guddati | Continued fraction absorbing boundary conditions for convex polygonal domains[END_REF] and Demaldent and Imperiale [START_REF] Demaldent | Perfectly matched transmission problem with absorbing layers: Application to anisotropic acoustics in convex polygonal domains[END_REF] for polygonal domains.

In this paper, we present two PML formulations for transient acoustic problems defined on convex truncated domains with regular curved boundary. Following strategies used in the electromagnetics community, the formulations are obtained using, respectively, a complex stretch of coordinates and complex material properties in the time-harmonic version of the pressure-velocity system. We derive the tensor form of the final time-dependent equations and we provide the explicit definition of the coefficient tensors, which facilitates implementation with classical discretization methods. Finite element implementations based on a discontinuous Galerkin method are then proposed for both formulations and tested by means of three-dimensional numerical simulations. This paper is organized as follows. In section 2, PML formulations based on the pressure-velocity system are derived in both time-harmonic and time-dependent contexts for generally-shaped convex domains. Section 3 is dedicated to numerical simulations in the time domain. After describing numerical schemes based on a discontinuous Galerkin method, time-dependent formulations are tested and compared by means of a reference three-dimensional benchmark. An illustration of application is finally proposed.

Design of PML formulations

In this section, we derive two families of time-harmonic and time-dependent PML formulations for the acoustic wave system

       ∂p ∂t + ρc 2 ∇ • u = 0, ∂u ∂t + 1 ρ ∇p = 0, (1) 
where p(t, x) is the pressure, u(t, x) is the velocity, ρ is the reference density and c is the propagation speed of the medium. The complete original problem consists in finding the fields p(t, x) and u(t, x) that are governed by system (1) for t > 0 and x ∈ R d , with initial conditions given for both fields at t = 0. The spatial dimension d is equal to 2 or 3. For the modified problem, the fields are governed by system (1) only inside the truncated domain Ω ⊂ R d , which is surrounded with the PML Σ (see e.g. Fig. 1a).

The time-harmonic PML formulations are obtained from the original equations by stretching a spatial coordinate in the complex plan, which introduces a directional damping of waves. In order to deal with generally-shaped truncated domains, this stretch is performed in a specific local coordinate system. With this strategy, first used by Teixeira and Chew [START_REF] Teixeira | Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves[END_REF], the truncated domain must be convex with a regularity condition on its boundary, and the PML thickness is constant. The time-dependent formulations are then obtained by defining supplementary fields and applying an inverse Fourier transform in time.

The local coordinate system is described in section 2.1. The time-harmonic and time-dependent PML formulations are derived in sections 2.2 and 2.3, respectively.

Coordinate system associated with the domain boundary

We consider a local coordinate system defined in a layer Σ surrounding the domain Ω with a constant thickness δ. The system is based on lines (in two dimensions) or surfaces (in three dimensions) parallel and perpendicular to the interface Υ (Fig. 1a), which is assumed to be regular enough. This system has been used to derive PMLs [START_REF] Lassas | Analysis of the PML equations in general convex geometry[END_REF][START_REF] Lassas | Complex Riemannian metric and absorbing boundary condition[END_REF][START_REF] Teixeira | Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves[END_REF][START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF] and absorbing boundary conditions [START_REF] Antoine | Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape[END_REF].

In two dimensions, the interface Υ is a curve and the coordinate system is denoted (ξ 1 , ξ 2 ). Since Ω is convex, each point x(ξ 1 , ξ 2 ) of the layer Σ has a unique closest point on Υ. We define the coordinate ξ 1 as the distance between the two points, while the coordinate ξ 2 is given by a local parametrization of Υ. We consider a coordinate patch of Υ defined as p : V ⊂ R → Υ. Each point of p(V) ⊂ Υ then is given by p(ξ 2 ), where ξ 2 ∈ V. The coordinate patch is chosen in such a way that

dn dξ 2 = κt, with t = dp dξ 2 ,
where n(ξ 2 ) is the unit outward normal, t(ξ 2 ) is a unit tangent vector and κ(ξ 2 ) is the curvature of Γ at p(ξ 2 ). The coordinates ξ 1 and ξ 2 form an orthogonal curvilinear system, and the set of vectors (e 1 , e 2 ) = (n, t) constitutes an orthonormal frame. For each point of the layer Σ, we can then write

x(ξ 1 , ξ 2 ) = p(ξ 2 ) + ξ 1 e 1 (ξ 2 ),
which is illustrated in Fig. 1b.

The three-dimensional coordinate system (ξ 1 , ξ 2 , ξ 3 ) is adapted from the two-dimensional version. For each point of the layer Σ, the coordinate ξ 1 is the distance with the closest point on the surface Υ, and the coordinates ξ 2 and ξ 3 are provided by a local parametrization of Υ. We consider a coordinate patch p : V ⊂ R 2 → Υ. Each point of p(V) ⊂ Υ then is given by p(ξ 2 , ξ 3 ), where (ξ 2 , ξ 3 ) ∈ V. There exists a coordinate patch that gives (see [START_REF] Antoine | Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape[END_REF][START_REF] Do | Differential geometry of curves and surfaces[END_REF])

dn dξ i = κ i t i , with t i = dp dξ i , for i = 2, 3, (2) 
where n(ξ 2 , ξ 3 ) is the unit outward normal, t 2 (ξ 2 , ξ 3 ) and t 3 (ξ 2 , ξ 3 ) are two unit tangent vectors in the principal directions and κ 2 (ξ 2 , ξ 3 ) and κ 3 (ξ 2 , ξ 3 ) are the principal curvatures of the surface Γ at p 2 (ξ 2 , ξ 3 ). The coordinates ξ 1 , ξ 2 and ξ 3 form an orthogonal curvilinear coordinate system, and the set of vectors (e 1 , e 2 , e 3 ) = (n, t 2 , t 3 ) constitutes an orthonormal frame. For each point of the layer Σ, we can then write

x(ξ 1 , ξ 2 , ξ 3 ) = p(ξ 2 , ξ 3 ) + ξ 1 e 1 (ξ 2 , ξ 3 ). (3) 
In orthogonal curvilinear coordinates, system (1) can be written

         ∂p ∂t + ρc 2 1 ∏ k h k ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i h k ) u i ) )
= 0,

∂u i ∂t + 1 ρ 1 h i ∂p ∂ξ i = 0, for i = 1, . . . , d (4) 
where u i denotes a component of u in the coordinate system, and h i is the scale factor associated with the coordinate ξ i , which is defined by

h i = ∂x ∂ξ i . ( 5 
)
The lower and upper bounds of summation and product symbols are 1 and d, respectively. For the sake of clarity, they are not written. Using the definition (5) together with equations ( 2) and (3) gives the scale factors for the three-dimensional coordinate system described in this section,

h 1 = 1, h 2 = 1 + κ 2 (ξ 2 , ξ 3 ) ξ 1 , h 3 = 1 + κ 3 (ξ 2 , ξ 3 ) ξ 1 .

Coordinate stretch and time-harmonic PML systems

Two PML systems are derived for the time-harmonic acoustic wave system

         -ıω p + ρc 2 1 ∏ k h k ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) ) = 0, -ıωû i + 1 ρ 1 h i ∂ p ∂ξ i = 0, for i = 1, 2, 3, (6) 
where ω is the angular frequency and the hat ˆdenotes the Fourier transform in time. Both will be used to derive different time-dependent PML formulations in section 2.3.

In a time-harmonic context, a classical way to derive PML systems from the original system consists in stretching one coordinate in the complex plane, where the coordinate corresponds to the direction where waves must be damped in the layer. In our case, this corresponds to replacing the real coordinate ξ 1 ∈ [0, δ] with the complex one ξ1 ∈ U, where U is a curve in the complex plane (Fig. 2). We consider the parametrization of the curve

ξ1 (ξ 1 ) = ξ 1 - 1 ıω ∫ ξ1 0 σ(ξ ′ 1 ) dξ ′ 1 , with ξ 1 ∈ [0, δ], (7) 
where σ(ξ 1 ) is the so-called absorption function, which is positive. The effect of the complex stretching with this specific parametrization can be interpreted by considering the plane wave solution. For the original system (6), the plane wave solution reads

e ı(k•x-ωt) ,
where the wave number k is related to the angular frequency through the dispersion relation ω = c ∥k∥.

Replacing ξ 1 with ξ1 in this solution gives with the damping factor

e ı(k•x-ωt) e -γ(ξ1) , ℜe ℑm 0 δ • • (a) Original medium ℜe ℑm U 0 δ • • (b) PML medium
γ(ξ 1 ) = 1 c k • e 1 ∥k∥ ∫ ξ1 0 σ(ξ ′ 1 ) dξ 1 .
Except grazing waves (i.e. k • e 1 = 0), all the plane waves supported by the original system are damped in their direction of propagation. For outgoing plane waves (i.e. k • e 1 > 0), the damping factor is positive and increases when ξ 1 increases. By contrast, for ingoing plane waves (i.e. k • e 1 < 0), the damping factor is negative and increases when ξ 1 decreases.

When replacing ξ 1 with ξ1 in the time-harmonic system (6), the partial derivative with respect to

ξ 1 becomes ∂ ∂ξ 1 → ∂ ∂ ξ1 = 1 1 -σ/(ıω) ∂ ∂ξ 1 ,
and the scale factors h 2 and h 3 , which depend on ξ 1 , become

h 2 → h2 = 1 + κ 2 ξ1 , h 3 → h3 = 1 + κ 3 ξ1 .
The other partial derivatives do not change, nor does the scale factor h 1 = 1. Nevertheless, it is convenient to introduce the complex scale factor defined as h1 = 1 -σ/(ıω). Indeed, the time-harmonic PML system can then be written

         -ıω p + ρc 2 1 ∏ k hk ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i hk ) ûi ) ) = 0, -ıωû i + 1 ρ 1 hi ∂ p ∂ξ i = 0, for i = 1, 2, 3. (8) 
An alternative PML system is obtained by defining the new unknowns

û⋆ i = ∏ k̸ =i hk ∏ k̸ =i h k ûi , for i = 1, 2, 3. System (8) then becomes            -ıω p + ρc 2 ∏ k h k ∏ k hk 1 ∏ k h k ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i h k ) û⋆ i ) ) = 0, -ıωû ⋆ i + 1 ρ h i hi Π k̸ =i hk Π k̸ =i h k 1 h i ∂ p ∂ξ i = 0, for i = 1, 2, 3. (9) 
Both time-harmonic PML systems ( 8) and ( 9) have interpretations that are well-known in the electromagnetics community. For system (8), the complex coordinate stretch corresponds to a change of the metric of the space. In an orthogonal coordinate system, the original scale factors h i are indeed simply replaced with the complex ones hi (see e.g. [START_REF] Lassas | Complex Riemannian metric and absorbing boundary condition[END_REF][START_REF] Teixeira | Differential forms, metrics, and the reflectionless absorption of electromagnetic waves[END_REF][START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF]). The tensor form of system [START_REF] Bécache | On the analysis of Bérenger's perfectly matched layers for Maxwell's equations[END_REF] reads

   -ıω p + ρc 2 α∇ • û⋆ = 0, -ıω û⋆ + 1 ρ M∇p = 0,
where the scalar α and the second-order tensor M are defined by

α = ∏ k h k ∏ k hk and M = ∑ i h i hi ∏ k̸ =i hk ∏ k̸ =i h k (e i ⊗ e i ) .
This system is identical to the original one (system (1)), except that the (real) material parameters ρc 2 and 1/ρ have been replaced with the complex parameter ρc 2 α and the anisotropic complex tensor M/ρ. The time-harmonic PML can then simply be interpreted as an anisotropic absorber with specific complex material properties [START_REF] Gedney | An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[END_REF][START_REF] Sacks | A perfectly matched anisotropic absorber for use as an absorbing boundary condition[END_REF][START_REF] Teixeira | Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves[END_REF]. The same material properties have been obtained for the Helmholtz equation by Matuszyk and Demkowicz [START_REF] Matuszyk | Parametric finite elements, exact sequences and perfectly matched layers[END_REF] in a more general framework.

Time-dependent PML systems

Two time-dependent PML systems are obtained from the time-harmonic ones ( 8) and ( 9) by using an inverse Fourier transform in time. This transform can be performed thanks to the introduction of additional fields and equations. For the sake of clarity, we define the real functions

σ 1 = σ(ξ 1 ), σ 2 = κ2 (ξ 1 , ξ 2 , ξ 3 ) σ(ξ 1 ), (10) 
σ 3 = κ3 (ξ 1 , ξ 2 , ξ 3 ) σ(ξ 1 ), ( 11 
) with κi (ξ 1 , ξ 2 , ξ 3 ) = κ i 1 + κ i ξ 1 , with i = 2, 3, σ(ξ 1 ) = ∫ ξ1 0 σ(ξ ′ 1 ) dξ ′ 1 .
These functions allow us to rewrite the complex scale factors as

hi = ( 1 - σ i ıω ) h i . ( 12 
)
Let us firstly consider system [START_REF] Basu | Perfectly matched layers for transient elastodynamics of unbounded domains[END_REF]. By using equation ( 12), the second term of the first equation of system (8) successively becomes

ρc 2 1 ∏ k hk ∑ i ∂ ∂ξ i (( ∏ k̸ =i hk ) ûi ) = ρc 2 1 ∏ k hk ∑ i [ ( ∏ k̸ =i ( 1 -σ k ıω ) ) ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) + (( ∏ k̸ =i h k ) ûi ) ∂ ∂ξ i ( ∏ k̸ =i ( 1 -σ k ıω ) ) ] = ∑ i ( 1 -σi ıω ) -1 [ ρc 2 1 ∏ k h k ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) ] + ∑ i [ ρc 2 ( ∏ k ( 1 -σ k ıω ) -1 ) ûi h i ∂ ∂ξ i ( ∏ k̸ =i ( 1 -σ k ıω ) ) ] = ∑ i ( 1 -σi σi-ıω ) [ ρc 2 1 ∏ k h k ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) ] + ∑ i   ρc 2 (-ıω) σ i -ıω ∑ k̸ =i [ 1 σ k -ıω ∂σ k ∂ξ i ] ûi h i   .
Using the definitions of σ 1 , σ 2 , σ 3 and h 1 , the second term can be simplified as

∑ i   ρc 2 (-ıω) σ i -ıω ∑ k̸ =i [ 1 σ k -ıω ∂σ k ∂ξ i ] ûi h i   = ρc 2 û1 (-ıω) σ 1 -ıω [ 1 σ 2 -ıω ∂σ 2 ∂ξ 1 + 1 σ 3 -ıω ∂σ 3 ∂ξ 1 ] + ρc 2 (-ıω) (σ 2 -ıω)(σ 3 -ıω) [ û2 h 2 ∂σ 3 ∂ξ 2 + û3 h 3 ∂σ 2 ∂ξ 3 ] = ρc 2 û1 (-ıω) σ 1 -ıω [ σ 1 -σ 2 σ 2 -ıω κ2 + σ 1 -σ 3 σ 3 -ıω κ3 ] + ρc 2 (-ıω) (σ 2 -ıω)(σ 3 -ıω) [ û2 h 2 ∂σ 3 ∂ξ 2 + û3 h 3 ∂σ 2 ∂ξ 3 ] = ρc 2 û1 [ - (-ıω) σ 1 -ıω (κ 2 + κ3 ) + (-ıω) σ 2 -ıω κ2 + (-ıω) σ 3 -ıω κ3 ] + ρc 2 (-ıω)σ (σ 2 -ıω)(σ 3 -ıω) [ κ2 3 κ 2 3 û2 h 2 ∂κ 3 ∂ξ 2 + κ2 2 κ 2 2 û3 h 3 ∂κ 2 ∂ξ 3 ] = ∑ i ( 1 -σi σi-ıω ) (q i + σr i ),
where we have introduced the additional fields

q1 = -ρc 2 (κ 2 + κ3 )û 1 , r1 = 0, q2 = ρc 2 κ2 û1 , r2 = ρc 2 1 σ 3 -ıω κ2 3 κ 2 3 û2 h 2 ∂κ 3 ∂ξ 2 , q3 = ρc 2 κ3 û1 , r3 = ρc 2 1 σ 2 -ıω κ2 2 κ 2 2 û3 h 3 ∂κ 2 ∂ξ 3 .
Defining the additional fields pi = -

1 σ i -ıω [ ρc 2 1 ∏ k h k ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) + qi + σr i ] , for i = 1, 2, 3, system (8) 
can be rewritten as

                                     -ıω p + ρc 2 1 ∏ k h k ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) ) = - ∑ i (σ i pi ) - ∑ i (q i + σr i ), -ıωû i + 1 ρ 1 h i ∂ p ∂ξ i = -σ i ûi , for i = 1, 2, 3, -ıω pi + ρc 2 1 ∏ k h k ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) = -(σ i pi + qi + σr i ), for i = 1, 2, 3, -ıωr 2 = ρc 2 κ2 3 κ 2 3 û2 h 2 ∂κ 3 ∂ξ 2 -σ 3 r2 , -ıωr 3 = ρc 2 κ2 2 κ 2 2 û3 h 3 ∂κ 2 ∂ξ 3 -σ 2 r3 .
One equation can be removed by using p = ∑ i pi , as well as one term of the first equation since

∑ i qi = 0.
Using an inverse Fourier transform in time, we finally obtain the time-dependent PML system

                                   ∂p ∂t + ρc 2 ∇ • u = -σ 1 p 1 -σ 2 p 2 -σ 3 (p -p 1 -p 2 ) -σ(r 2 + r 3 ), ∂u ∂t + 1 ρ ∇p = - ∑ i σ i u i e i , ∂p i ∂t + ρc 2 ∇ i • u = -σ i p i -q i -σr i , for i = 1, 2, ∂r 2 ∂t = ρc 2 u 2 κ2 3 κ 2 3 (e 2 • ∇κ 3 ) -σ 3 r 2 , ∂r 3 ∂t = ρc 2 u 3 κ2 2 κ 2 2 (e 3 • ∇κ 2 ) -σ 2 r 3 . ( 13 
)
with

u i = e i • u, q 1 = -ρc 2 (κ 2 + κ3 )u 1 , q 2 = ρc 2 κ2 u 1 and ∇ i • u def. = ∇ • (u i e i ). (14) 
With this system, the governing equations of p and u are identical to the original ones, but with additional non-differential terms. The original equations are recovered if σ is equal to zero. This formulation has four supplementary differential equations: two with the differential operator of equation ( 14) and two ordinary differential equations. The latter involve the spatial variation of each principal curvature (κ 2 and κ 3 ) in the other principal direction (respectively, e 3 and e 2 ). For a sphere, the curvature is constant and the fields r 1 and r 2 are equal to zero. In two dimensions, only one supplementary partial differential equation is required.

We now consider system [START_REF] Bécache | On the analysis of Bérenger's perfectly matched layers for Maxwell's equations[END_REF], which can be rewritten as

           -ıω p + ρc 2 1 ∏ k h k ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i h k ) ûi ) ) = -ıω ( 1 - ∏ k hk ∏ k h k ) p, -ıωû i + 1 ρ 1 h i ∂ p ∂ξ i = -ıω ( 1 - hi h i ∏ k̸ =i h k ∏ k̸ =i hk ) ûi .
For the sake of clarity, the superscript ⋆ has been removed. Using equation ( 12), the right-hand sides of these equations become

-ıω ( 1 - ∏ k hk ∏ k h k ) p = -ıω ( 1 - ( 1 - σ 1 ıω ) ( 1 - σ 2 ıω ) ( 1 - σ 3 ıω 
)) p = -( ∑ i σ i ) p - ( ∑ i ∏ k̸ =i σ i ) p (-ıω) -( ∏ i σ i ) p (-ıω) 2 , -ıω ( 1 - hi h i ∏ k̸ =i h k ∏ k̸ =i hk ) ûi = -ıω ( 1 - 1 -σ i /(ıω) ∏ k̸ =i (1 -σ k /(ıω))) ) ûi = -ıω ∏ k̸ =i (ıω -σ k ) -ıω(ıω -σ i ) ∏ k̸ =i (ıω -σ k ) ûi = -ıω ıω ( σ i - ∑ k̸ =i σ k ) + ∏ k̸ =i σ k ∏ k̸ =i (ıω -σ k ) ûi = - ( σ i - ∑ k̸ =i σ k ) (v i + ûi ) - ( ∏ k̸ =i σ k ) ŵi ,
where vi and ŵi have been introduced such that

vi + ûi = (ıω) 2 ∏ k̸ =i (ıω -σ k ) ûi = (ıω) 2 (ıω) 2 -ıω ( ∑ k̸ =i σ k ) + ( ∏ k̸ =i σ k ) ûi , ŵi = ıω ∏ k̸ =i (ıω -σ k ) ûi = ıω (ıω) 2 -ıω ( ∑ k̸ =i σ k ) + ( ∏ k̸ =i σ k ) ûi , which give 
-ıωv i = - ( ∑ k̸ =i σ k ) (v i + ûi ) + ( ∏ k̸ =i σ k ) ŵi , -ıω ŵi = -(v i + ûi ).
Defining supplementary fields for p/(-ıω) and p/(-ıω) 2 , and using an inverse Fourier transform in time, we finally obtain the system

                           ∂p ∂t + ρc 2 1 ∏ k h k ( ∑ i ∂ ∂ξ i (( ∏ k̸ =i h k ) u i ) ) = -( ∑ i σ i ) p - ( ∑ i ∏ k̸ =i σ i ) p (1) -( ∏ i σ i ) p (2) , ∂u i ∂t + 1 ρ 1 h i ∂p ∂ξ i = - ( σ i - ∑ k̸ =i σ k ) (u i + v i ) - ( ∏ k̸ =i σ k ) w i , ∂p (1) ∂t = p, ∂v i ∂t = - ( ∑ k̸ =i σ k ) (u i + v i ) + ( ∏ k̸ =i σ k ) w i ,
∂p (2) ∂t = p (1) ,

∂w i ∂t = -(v i + u i ).
The tensor form of this system reads

                       ∂p ∂t + ρc 2 ∇ • u = -(σ 1 + σ 2 + σ 3 ) p -(σ 1 σ 2 + σ 1 σ 3 + σ 2 σ 3 ) p (1) -(σ 1 σ 2 σ 3 ) p (2) , ∂u ∂t + 1 ρ ∇p = -A(u + v) -Bw, ∂p (1) ∂t = p, ∂v ∂t = -C(u + v) + Bw, ∂p (2) ∂t = p (1) , ∂w ∂t = -(u + v), (15) 
with the second-order tensors

A = (σ 1 -σ 2 -σ 3 ) I 1 + (-σ 1 + σ 2 -σ 3 ) I 2 + (-σ 1 -σ 2 + σ 3 ) I 3 , B = (σ 2 σ 3 ) I 1 + (σ 1 σ 3 ) I 2 + (σ 1 σ 2 ) I 3 , C = (σ 2 + σ 3 ) I 1 + (σ 1 + σ 3 ) I 2 + (σ 1 + σ 2 ) I 3 ,
where I i = e i ⊗ e i . As in system [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF], p and u are governed by the original equations where source terms are added. By contrast, this formulation involves two scalar and two vectorial supplementary fields, which are governed by ordinary differential equations. Only one scalar field and one vector field are required in two dimensions.

In the remainder, systems [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] and [START_REF] Bérenger | Perfectly Matched Layer (PML) for Computational Electromagnetics[END_REF] are respectively called the PML-PDE system and the PML-ODE system.

Interpretation and extension for domains with corners

Though the PML systems have been derived for convex domains with regular boundary, they can straightforwardly be adapted for squared and cuboidal domains with edge and corner regions where layers overlap. Formula ( 12) is classically used to stretch scale factors in the Cartesian directions to derive PML for squared and cuboidal domains (see e.g. [START_REF] Teixeira | Unified analysis of perfectly matched layers using differential forms[END_REF][START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF]). Therefore, the PML systems ( 13) and ( 15) can be used as is for Cartesian PMLs, but each absorption function σ i (x i ) is chosen independently and corresponds to the damping of waves in the corresponding Cartesian direction e i .

An analogy with the Cartesian PMLs provides a nice interpretation for the absorbing functions σ 2 and σ 3 expressed in equations ( 10) and [START_REF] Bécache | Stability of perfectly matched layers, group velocities and anisotropic waves[END_REF]. They can be considered as absorption functions associated with the principal directions, but they are due to the curvature of the domain boundary. They are equal to zero if the boundary is planar.

The validity of the PML systems ( 13) and [START_REF] Bérenger | Perfectly Matched Layer (PML) for Computational Electromagnetics[END_REF] can also be extended to other convex domains having corners with right angles. For instance, they can deal with cylindrical domains having convex cross-sections. Let us consider a cylinder with the axis e 3 . In the lateral PML that surrounds the cylinder, the PML systems are then simply obtained by considering that κ 2 is the curvature of the cross section and κ 3 → 0 in relations ( 10) and ( 11); e 1 remains the radial direction and e 2 is tangent the lateral surface and perpendicular to e 3 . At the two extremities of the cylinder, the PMLs are planar and only σ 3 is non-zero. At the corner, σ 1 and σ 2 are defined as in the lateral PML, and σ 3 is defined as in the PML of the border.

Classification and mathematical properties

The derived PML-PDE system (13) and PML-ODE system (15) can be categorized into two well-known families of PMLs. The first family contains the Bérenger-like PML systems that are built using the splittingfield technique of Bérenger [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] or the complex coordinate stretch technique [START_REF] Chew | A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates[END_REF][START_REF] Chew | Complex coordinate stretching as a generalized absorbing boundary condition[END_REF]. These systems involve additional fields governed by differential equations with spatial partial derivatives (see e.g. [START_REF] Bérenger | Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF][START_REF] Collino | Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[END_REF][START_REF] Hu | On absorbing boundary conditions for linearized euler equations by a perfectly matched layer[END_REF][START_REF] Hu | Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review[END_REF][START_REF] Hu | Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique[END_REF][START_REF] Navon | A perfectly matched layer approach to the linearized shallow water equations models[END_REF]). The second family corresponds to PML systems based on frequency-dependent complex material properties [START_REF] Gedney | An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[END_REF][START_REF] Sacks | A perfectly matched anisotropic absorber for use as an absorbing boundary condition[END_REF][START_REF] Zhao | GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids[END_REF] and written in the time-domain with supplementary ordinary differential equations [START_REF] Abarbanel | On the construction and analysis of absorbing layers in CEM[END_REF][START_REF] Chen | Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems[END_REF][START_REF] Rahmouni | An algebraic method to develop well-posed PML models: Absorbing layers, perfectly matched layers, linearized Euler equations[END_REF]. Such PMLs are generally referred as uniaxial PMLs.

The mathematical properties of PMLs from both families have been studied in many works and are still an active field of research (see e.g. [START_REF] Abarbanel | A mathematical analysis of the PML method[END_REF][START_REF] Abarbanel | On the construction and analysis of absorbing layers in CEM[END_REF][START_REF] Bécache | On the analysis of Bérenger's perfectly matched layers for Maxwell's equations[END_REF][START_REF] Bécache | Remarks on the stability of cartesian PMLs in corners[END_REF][START_REF] Diaz | A time domain analysis of PML models in acoustics[END_REF][START_REF] Duru | The role of numerical boundary procedures in the stability of perfectly matched layers[END_REF][START_REF] Halpern | Hyperbolic boundary value problems with trihedral corners[END_REF][START_REF] Halpern | The analysis of matched layers[END_REF][START_REF] Kaltenbacher | A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics[END_REF][START_REF] Rahmouni | An algebraic method to develop well-posed PML models: Absorbing layers, perfectly matched layers, linearized Euler equations[END_REF]). For wave problems described with symmetric hyperbolic systems (e.g. acoustic system (1) and Maxwell's equations), the PML systems derived with the original strategy of Bérenger are weakly hyperbolic, and lead to weakly well-posed problems [START_REF] Abarbanel | A mathematical analysis of the PML method[END_REF][START_REF] Bécache | On the analysis of Bérenger's perfectly matched layers for Maxwell's equations[END_REF]. By contrast, the uniaxial PML systems are symmetric hyperbolic and lead to strongly well-posed problems [START_REF] Abarbanel | On the construction and analysis of absorbing layers in CEM[END_REF][START_REF] Halpern | The analysis of matched layers[END_REF][START_REF] Rahmouni | An algebraic method to develop well-posed PML models: Absorbing layers, perfectly matched layers, linearized Euler equations[END_REF]. To our knowledge, only proofs of weak stability have been proposed for standard PML systems from both families [START_REF] Bécache | On the analysis of Bérenger's perfectly matched layers for Maxwell's equations[END_REF][START_REF] Bécache | On the long-time behavior of unsplit perfectly matched layers[END_REF][START_REF] Chen | Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems[END_REF]. This means that no exponentially growing modes are supported by the equations, but linear modes could pollute the solution in long-duration simulations. Since the PML systems studied in [START_REF] Bécache | On the analysis of Bérenger's perfectly matched layers for Maxwell's equations[END_REF][START_REF] Bécache | On the long-time behavior of unsplit perfectly matched layers[END_REF][START_REF] Chen | Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems[END_REF] correspond to planar versions of systems ( 13) and ( 15), the PML formulations proposed in this work will also suffer from the same long-time instability.

Let us note that modified PML formulations have been proposed to avoid any linear growing mode, and to improve the accuracy for problems involving evanescent and grazing waves. For instance, the so-called complex frequency shifted PML formulations [START_REF] Kuzuoglu | Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[END_REF][START_REF] Roden | Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media[END_REF] are derived using a modified coordinate stretch, where new parameters are introduced. In the time domain, these formulations can be seen as generalizations of standard PML formulations with supplementary terms and equations. The formulations proposed in this work could be enriched using the modified coordinate stretch, but at the cost of larger PML systems and more expensive computations.

Numerical simulations

Both time-dependent PML formulations are tested by means of a three-dimensional benchmark where a spherical wavefront is propagated in a truncated domain. The computational domain is the half of an ellipsoid of revolution, whose shell is extended with a PML. The simulations are performed using discontinuous finite element schemes that are described in section 3.1. After the description of the benchmark in section 3.2, accuracy results are proposed to validate our implementation and performance results are discussed (section 3.3). An illustration of application is finally proposed in section 3.4.

For the PML-PDE formulation [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF], both fields r i are set to zero and the corresponding equations are not computed. Since the domain has an axis of revolution, one of the principal curvatures is constant, and the corresponding field is equal zero. Setting the other field to zero is an approximation that corresponds to neglecting the effect of the spatial variation of the other principal curvature. With our specific benchmark, we have observed a posteriori that the performances of the formulation remain very good in comparison to the PML-ODE formulation, which is implemented without any approximation.

Discontinuous finite element schemes

We propose numerical schemes based on a nodal discontinuous Galerkin (DG) method for the PML systems. The schemes are derived following a classical strategy for hyperbolic systems [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF], with some further developments to discretize the supplementary equations.

The unknown fields are approximated on a spatial mesh of Ω made of non-overlapping polyhedral cells, Ω = ∪ k=1,...,K D k , where K is the number of cells and D k is the k th cell. With the nodal DG method, each scalar field and each Cartesian component of vector fields is approximated by piecewise polynomial functions, where discontinuities correspond to interfaces between elements. The discrete unknowns correspond to the values of fields at the nodes of elements. Over each cell D k , the approximation of any field q(x, t) can then be written as

q k (x, t) = N k ∑ n=1 q k,n (t) ℓ k,n (x), ∀x ∈ D k ,
where N k is the number of nodes over element k, q k,n (t) is the value of the field at node n, and ℓ k,n (x) is the multivariate Lagrange polynomial function associated with node n.

For both the original system (1) and the PML systems ( 13) and ( 15), the governing equations of p and u are discretized in the same manner. Multiplying these equations by test functions p and û, integrating the resulting equations over any cell D k , and using integration by parts, we get the weak form

( ∂p ∂t , p) D k - ( ρc 2 u, ∇p ) D k + ⟨f p , p⟩ ∂D k = (s p , p) D k , ( ∂u ∂t , û) D k - ( p ρ , ∇ • û) D k + ⟨f u , û⟩ ∂D k = (s u , û) D k ,
with the fluxes

f p = ρc 2 n k • u, f u = p ρ n k ,
where n k is the outward unit normal on the boundary ∂D k . For both PML systems, s p and s u contain the right-hand side terms of the governing equations of p and u. The discrete fields being discontinuous at the interface between elements, the fluxes are replaced by numerical fluxes which involve values of fields from both sides of interfaces. We choose the upwind fluxes

f num p = ρc 2 n k • { u } -c p , ( 16 
)
f num u = 1 ρ n k { p } -c n k ( n k • u ) , ( 17 
)
where the mean { q } and the semi-jump q of any field q are defined as

{ q } = q + + q - 2 , q = q + -q - 2 .
The plus and minus subscripts denote values on the side of the neighboring and current cells, respectively. These fluxes are classically obtained by using a Riemann solver (see e.g. [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]). At the external boundary, we use a first-order absorbing boundary condition (ABC) based on characteristics, which is simply implemented by taking the external values p + and u + equal to zero in the numerical fluxes ( 16)- [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF].

For the PML-PDE system (13), the partial differential equations that govern the supplementary fields p 1 and p 2 are discretized by analogy with the governing equation of p. Multiplying these equations by test functions, integrating over an element D k of the layer Σ, and integrating by parts lead to the weak form

( ∂p 1 ∂t , p1 ) D k - ( ρc 2 e 1 (e 1 • u), ∇p 1 ) D k + ⟨f p1 , p1 ⟩ ∂D k = (s p1 , p1 ) D k , ( ∂p 2 ∂t , p2 ) D k - ( ρc 2 e 2 (e 2 • u), ∇p 2 ) D k + ⟨f p2 , p2 ⟩ ∂D k = (s p2 , p2 ) D k ,
where f p1 and f p2 are defined as and s p1 and s p2 contain the source terms written in the right-hand side of equations. Since system ( 13) is no longer strictly hyperbolic, we cannot use the Riemann solver to derive upwind fluxes. Noting the similitudes between f p and both f p1 and f p2 , we propose to use the Lax-Friedrichs fluxes

f p1 = ρc 2 (n k • e 1 )(e 1 • u), f p2 = ρc 2 (n k • e 2 )(e 2 • u),
f num p1 = ρc 2 (n k • e 1 )(e 1 • { u } ) -c p 1 , f num p2 = ρc 2 (n k • e 2 )(e 2 • { u } ) -c p 2 .
These fluxes are valid inside the layer Σ, but not at its external boundary Γ and at the interface Υ with the domain Ω. Indeed, because the supplementary fields are defined only inside the layer, we cannot use their semi-jumps p 1 and p 2 on Υ and Γ. Fortunately, we note that n k = -e 1 on Υ and n k = e 1 on Γ. We also have n k • e 2 = 0 on both surfaces. Therefore, we have f p1 = f p and f p2 = 0 in both cases. We then use the numerical flux f num p instead of f num p1 , and f num p2 is simply set to zero.

Since the supplementary equations of the PML-ODE system (15) do not involve spatial differential operators, the derivation of the scheme is straightforward. In addition to the above scheme for the governing equations of p and u, ordinary differential equations will be only local, at each node of each element, for the supplementary fields p (1) , p (2) , v and w. We use the same time-stepping scheme for both partial and ordinary differential equations.

Description of the benchmark

The computational domain Ω is the half of an ellipsoid, with axes of lengths 330 m (x-direction) and 120 m (y-and z-directions), respectively. A symmetry boundary condition is used in the section of the semiellipsoid, and the shell is extended with a PML Σ (Figure 3). To generate the wavefront, a Gaussian pulse is prescribed as initial condition on the pressure, p(x, 0) = e -r 2 /R 2 with r = ∥x -x 0 ∥, x 0 = (-122.5 m, 0 m, 20 m) and R = 7.5 m, while the other fields are initially set to zero. With this setting, the initial pressure is negligible inside the PML. We use the physical parameters c = 1.5 km/s and ρ = 1 kg/m 3 .

The mesh is made of tetrahedra in the truncated domain Ω and prisms in the layer Σ, with element sizes between 3 m and 5 m. The mesh of the layer is generated by extrusion. The main reason is that it can be automatically done for truncated domain of any shape with a regular enough boundary Υ. It does not require the analytic representation of the external boundary Γ of the layer. With an ellipsoidal domain, the external boundary Γ is not an ellipsoid (see e.g. [START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF]), and, to the best of our knowledge, no analytical representation is known. Ideally, a mesh with curvilinear elements should be used in order to exactly follow the interface Υ and the boundary Γ that are curved. Elements with planar faces could be used with a lower computational cost, but the approximate polynomial representations of the surfaces introduce a geometric error. To reduce the global error, it is not clear if using curvilinear elements is computationally more efficient than using elements with planar faces and a thicker layer. In this paper, we consider only elements with planar faces.

We consider different thicknesses for the layer (1, 3 and 5 mesh cells) and both first-degree and seconddegree basis functions. All the meshes are generated with Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. The time-stepping is made with the fourth-order Runge-Kutta scheme. The time step ∆t is equal to 0.05 ms and 0.025 ms for first-degree and second-degree basis functions, respectively. Two alternative absorption functions σ(ξ 1 ) are considered: the hyperbolic function σ h and the shifted hyperbolic function σ sh , defined as

σ h (ξ 1 ) = c δ -ξ 1 , σ sh (ξ 1 ) = c δ ξ 1 δ -ξ 1 .
It has been shown in previous works [START_REF] Bermúdez | An exact bounded perfectly matched layer for time-harmonic scattering problems[END_REF][START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF][START_REF] Modave | An optimum PML for scattering problems in the time domain[END_REF][START_REF] Modave | Optimizing perfectly matched layers in discrete contexts[END_REF] that both these functions do not require the tuning of parameters. In particular, we have shown [START_REF] Modave | Optimizing perfectly matched layers in discrete contexts[END_REF] that σ sh is a good choice for a discontinuous Galerkin implementation with a Cartesian PML formulation similar to the PML-PDE system [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF]. Here, both functions are tested with both PML systems ( 13) and [START_REF] Bérenger | Perfectly Matched Layer (PML) for Computational Electromagnetics[END_REF].

The PML formulations require to know the coordinate ξ 1 , the principal curvatures κ 2 and κ 3 , and the local orthonormal frame (e 1 , e 2 , e 3 ). Both ξ 1 and e 1 are computed numerically by finding, in the initialization of the simulation, the closest node belonging to the mesh of the surface Υ. To define the principal curvatures and the other vectors, we use the fact that the domain is an ellipsoid of revolution. Then, e 2 belongs to the plane tangent to Υ and is oriented towards one pole, and e 3 is perpendicular to both e 2 and e 3 . κ 2 corresponds to the curvature of an ellipse [START_REF] Weisstein | Ellipse[END_REF],

κ 2 = a x a y [p 2
x (a y /a x ) 2 + (p 2 y + p 2 z )(a x /a y ) 2 ] 3/2 , and κ 2 is obtained from the Gaussian curvature G of an ellipsoid [START_REF] Weisstein | Ellipsoid[END_REF],

G = κ 2 κ 3 = (a x a y a z ) 2 [(p x a y a z /a x ) 2 + (p y a x a z /a y ) 2 + (p z a x a y /a z ) 2 ] 2 .
In these formulas, a x , a y and a z are the semi-axes of the ellipsoid and p x , p y and p z are the Cartesian coordinates of p(ξ 2 , ξ 3 ). Let us note that, in our case, a y = a z .

Validation and comparison

Figure 4 shows snapshots of the pressure p at different instants with a three-cells layer and the PML-PDE formulation. A spherical wave is generated by the initial pulse. As time goes by, the spherical wavefront reaches the PML with different angles of incidence, and propagates along the interface at a nearly grazing incidence. We observe that the spherical wave is not deformed near the interface, as we wished for, and the pressure is damped inside the layer.

The simulation is performed with different settings over the period [0 ms, 500 ms]. This includes a first phase where the wavefront is traveling in the truncated domain (before t = 200 ms) and a second phase where the wavefront has left the domain (after t = 200 ms). For all the settings, the difference between the numerical solution and the exact solution is quantified using the relative error defined as where the exact solution is given by

Error(t) = ∫ Ω ( 1 2ρc 2 (p exact (t, x) -p num (t, x)) 2 + ρ 2 ∥u exact (t, x) -u num (t, x)∥ 2 ) dx ∫ Ω ( 1 2ρc 2 (p exact (0, x)) 2 + ρ 2 ∥u exact (0, x)∥ 2 ) dx
p exact (t, x) = 1 2 ( r -ct r e -(r-ct) 2 /R 2 + r + ct r e -(r+ct) 2 /R 2 ) , u exact (t, x) = 1 2cρ [( R 2 2r 2 + r -ct r ) e -(r-ct) 2 /R 2 - ( R 2 2r 2 + r + ct r ) e -(r+ct) 2 /R 2 ] x -x 0 r .
The error corresponds to the ratio of the energy associated with the error fields to the energy associated with the initial fields in the truncated domain Ω.

Figure 5 shows the time-evolution of the error when the absorbing boundary condition (ABC) and threecells PMLs are used as truncation technique. Both first-degree and second-degree basis functions are tested. During the period [0 ms, 200 ms], all the PMLs exhibit a similar error for each polynomial degree. This error dramatically decreases when increasing the degree from one to two. By contrast, the error corresponding to the ABC is larger and stays at the same level (between 10 -2 and 10 -1 ) for both polynomial degrees. These observations are coherent with the properties of these truncation techniques. The considered ABC is only a first-order approximation that cannot simulate oblique outgoing waves without any reflection. The observed error then is dominated by the modeling error associated with spurious reflected waves already present at the continuous level. For the PMLs, the significant decay of error indicates that numerical errors dominate.

In the second phase of the simulation (after t = 200 ms), the ABC error curves are decreasing and similar with both polynomial degrees. The error is dominated by the modeling error corresponding to the multiple reflections of the initial wavefront that are leaving the domain. With the PMLs, the error curves are in a quite large range (between 10 -7 and 10 -5 ) and have slightly different behaviors, which confirms that the kind of PML formulation and the absorption function impact the error. For both degrees, the error is far higher with the ABC than with the PMLs at the beginning of the second phase, but the ABC error goes under the error obtained with some PMLs at the end of the simulation. While the ABC error is dramatically decreasing during the second phase, the PML errors are only slightly decreasing or even slightly increasing. This phenomenon could be explained by the linear growing modes that can be generated inside the PML and that can pollute the long-duration solution (see the end of section 3.3).

In order to compare the PML implementations, we now consider the mean value of the relative error over the period [250 ms, 500 ms], where the PMLs exhibit different errors. Figure 6 shows the mean error as function of the total runtime when using 2 Dual-Core Intel Xeon Processors L5420. All the one-cell PMLs provide similar errors for similar computational costs. For three-cells and five-cells layers, the PML-PDE implementation is more accurate with the shifted hyperbolic absorption function σ sh than with the hyperbolic one σ h . This result is coherent with the conclusions of previous works with similar formulations [START_REF] Modave | An optimum PML for scattering problems in the time domain[END_REF][START_REF] Modave | Optimizing perfectly matched layers in discrete contexts[END_REF]. For the PML-ODE implementation, both functions provide quite similar results. σ h is slightly better than σ sh with a three-cells layer, while the converse is true with a five-cells layer. Finally, the PML-PDE implementation (with the shifted hyperbolic function) is more efficient than the PML-ODE. For a five-cells layer, it even provides a more accurate result with a smaller runtime.

Illustration of application

Our strategy is now illustrated by the scattering of a submarine placed in the center of the ellipsoidal domain. The submarine is approximately 120 m in length, and the dimensions of the ellipsoid are not changed. The PML-PDE is used together with the shifted hyperbolic absorption function σ sh and the first-order ABC to terminate the layer. The mesh is made of 183,707 tetrahedra (truncated domain) and 62,650 prisms (five-cells layer). First-degree basis functions are used. There are 7,450,112 degrees of freedom.

Figure 7 shows snapshots of the pressure p at different instants. The spherical wave generated by the initial pulse hits the front of the submarine, and creates perturbations in the pressure field. The wavefront propagates along the submarine and is nearly grazing at the boundary of the domain. The perturbations, as well as the primary spherical wave, have correctly left the front zone at t = 200 ms. These results have been obtained using 8 Dual-Core Intel Xeon Processors L5420. The total runtime was 1 h 40 min, corresponding to the period [0 ms, 200 ms] and to 8000 time steps.

Conclusion

This paper is dedicated to generalizing PML formulations for acoustic wave propagation with generallyshaped convex domains, which offers flexibility when choosing the shape of the computational domain. Our strategy is based on the complex stretch of a specific curvilinear coordinate in the time-harmonic equations, and on the use of supplementary differential equations to write the time-domain PML formulations.

Two time-dependent PML formulations have been derived for the pressure-velocity system. One formulation involves supplementary PDEs, while only ODEs are required for the other. Both have been implemented in a discontinuous Galerkin finite-element solver and tested with a three-dimensional benchmark. The best accuracy is observed with the PML-PDE formulation, despite an approximation made during the implementation. That formulation is faster than the other, but the complete version requires the knowledge of supplementary geometrical information. In a more applicative context, we believe that all the required The approach is quite general and offers a wide range of extensions. Since the PML equations are written at the continuous level, they can be implemented with other numerical methods. As explained at the end of section 2.3, the formulations can be adapted to deal with domains having corners, though they have been derived assuming that the domain border was regular enough. The formulations can also be improved using a complex coordinate stretch with a frequency shift [START_REF] Kuzuoglu | Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[END_REF][START_REF] Roden | Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media[END_REF].

Figure 1 :

 1 Figure 1: Curvilinear coordinates and local frame associated with the boundary Υ in two dimensions. The curves of iso-value coordinates are represented in Fig. (a). Gray curves are parallel. Red lines are straight and perpendicular to Υ. Fig. (b) shows the local frame and the radial coordinate ξ1.

Figure 2 :

 2 Figure 2: Complex coordinate stretch of the radial coordinate ξ1.

Figure 3 :

 3 Figure 3: Geometry and mesh for the three-dimensional benchmark with a three-cells PML. This mesh is made of 58,396 tetrahedra in the truncated domain and 3 × 6, 998 prisms in the layer.

Figure 4 :

 4 Figure 4: Snapshots of the solution of the three-dimensional benchmark at different instants. Colored surfaces are iso-surfaces of p(x, t). The inner and outer white surfaces correspond to the interior and exterior boundaries of the PML, respectively.
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Figure 5 :

 5 Figure 5: Time-evolution of the error inside the domain Ω with the absorbing boundary condition (ABC) and threecells PMLs. First-degree (a) and second-degree (b) basis functions are considered with both PML formulations and both absorbing functions.
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Figure 6 :

 6 Figure 6: Mean error over the period [250 ms, 500 ms] as a function of the runtime. The three points of each curve correspond to one-cell (left), three-cells (middle) and five-cells (right) layers.

Figure 7 :

 7 Figure 7: Snapshots of the solution of the three-dimensional benchmark at different instants. Colored surfaces are iso-surfaces of p(x, t). The inner and outer white surfaces correspond to the interior and exterior boundaries of the PML, respectively
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