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Abstract. In Systems Biology, modelers develop more and more re-
action-based models to describe the mechanistic biochemical reactions
underlying cell processes. They may also work, however, with a sim-
pler formalism of influence graphs, to merely describe the positive and
negative influences between molecular species. The first approach is pro-
moted by reaction model exchange formats such as SBML, and tools
like CellDesigner, while the second is supported by other tools that have
been historically developed to reason about boolean gene regulatory net-
works. In practice, modelers often reason with both kinds of formalisms,
and may find an influence model useful in the process of building a reac-
tion model. In this paper, we introduce a formalism of influence systems
with forces, and put it in parallel with reaction systems with kinetics, in
order to develop a similar hierarchy of boolean, discrete, stochastic and
differential semantics. We show that the expressive power of influence
systems is the same as that of reaction systems under the differential
semantics, but weaker under the other interpretations, in the sense that
some discrete behaviours of reaction systems cannot be expressed by in-
fluence systems. This approach leads us to consider a positive boolean
semantics which we compare to the asynchronous semantics of gene reg-
ulatory networks à la Thomas. We study the monotonicity properties of
the positive boolean semantics and derive from them an efficient algo-
rithm to compute attractors.

1 Introduction

In Systems Biology, modelers develop more and more reaction models to describe
the biochemical reactions underlying cell processes. This approach is promoted
by reaction-model exchange formats such as SBML [18] and by the subsequent
creation of large reaction-based model repositories such as BioModels [25], with-
out prejudging of their interpretation by differential equations, Markov chains,
Petri nets, or boolean transition systems [12].

Modelers can also work, however, with a simpler formalism of influence sys-
tems to merely describe the positive and negative influences between molecular
species, without fixing their implementation with biochemical reactions. In par-
ticular, boolean influence systems have been popularized in the 70’s by Glass,



Kauffman [15] and Thomas [30,31] to reason about gene regulatory networks,
represented by ordinary graphs between genes given with a boolean transition
table which defines their synchronous or asynchronous boolean transition seman-
tics. Necessary conditions for multi-stability (cell differentiation) and oscillations
(homeostasis) have been given in terms of positive or negative circuits in the in-
fluence graph [27,29]. Several tools such as GINsim [22], GNA [4] or Griffin [28],
use these properties and powerful graph-theoretic and model-checking techniques
to automate reasoning about the boolean state transition graph, compute attrac-
tors and verify various reachability and path properties. The representation of
boolean influence systems by Petri nets was described in [6] but leads to compli-
cated encodings. It is also worth mentioning that influence systems with spatial
information have been nicely developed in [7] as a formalism particularly suitable
for describing natural algorithms in life sciences and social dynamics.

In Systems Biology, modelers often reason with both kinds of formalisms,
and may find it useful to use and maintain an influence model in the process
of building a reaction model, for instance in order to reduce it while preserving
the essential influence circuits [23]. One reason is that it is easier to visualize
influence systems, rather than reaction systems for which complicated graphical
conventions such as SBGN [26] have been developed. While it is clear that the
influence graph is an abstraction of the reaction hypergraph [12], and perhaps
more surprisingly that the Jacobian influence system derived from the differen-
tial semantics of a reaction system is largely independent of the kinetics [13],
influence models are mostly used for their graphical representation and their
boolean semantics, but more rarely as a modeling paradigm for systems biology
with quantitative semantics using differential equations, or stochastic semantics.

In this paper, we introduce a formalism of influence systems with forces,
which we put in parallel with reaction systems with kinetics, in order to develop
a similar hierarchy of boolean, discrete, stochastic and differential semantics for
influence systems, similarly to what is done for reasoning about programs in the
framework of abstract interpretation [10,12]. We show that the expressive power
of influence systems is the same as that of reaction systems under the differential
semantics, but is weaker under the other interpretations, in the sense that some
formal discrete behaviours of reaction systems cannot be expressed by influence
systems. This approach provides an influence model with a hierarchy of possible
interpretations related by precise abstraction relationships, so that, for instance,
if a behavior is not possible in the boolean semantics, it is surely not possible in
the stochastic semantics whatever the influence forces are.

This leads us to consider a positive boolean semantics which we compare to
the asynchronous semantics of gene regulatory networks à la Thomas. We study
the monotonicity properties of the positive boolean semantics and derive from
them an efficient algorithm to compute attractors. These concepts are illustrated
with models from the literature.



2 Preliminaries on Reaction Systems with Kinetics

In this article, unless explicitly noted, we will denote by capital letters (e.g. S)
sets or multisets, by bold letters (e.g., x) vectors and by small roman or Greek
letters elements of those sets or vectors (e.g. real numbers, functions). For a mul-
tisetM , let Set(M) denote the set obtained from the support ofM , and brackets
like M(i) denote the multiplicity in the multiset (usually the stoichiometry). ≥
will denote the pointwise order for vectors, multisets and sets (i.e. inclusion).

2.1 Syntax

We recall here definitions from [11,13] for directed reactions with inhibitors:

Definition 1. A reaction over molecular species S = {x1, . . . , xs} is a quadruple
(R,M,P, f), also noted f forR/M ⇒ P , where R is a multiset of reactants, M
a set of inhibitors, P a multiset of products, all composed of elements of S, and
f : Rs → R, called kinetic expression, is a mathematical function over molecular
species concentrations. A reaction system is a finite set of reactions.

It is worth noting that a molecular species in a reaction can be both a re-
actant and a product (i.e. a catalyst), or both a reactant and an inhibitor (e.g.
Botts–Morales enzymes [19]). Such molecular species are not distinguished in
SBML and both are called reaction modifiers. Unlike SBML, we find it useful to
consider only directed reactions (reversible reactions being represented here by
two reactions) and to enforce the following compatibility conditions between the
kinetic expression and the structure of a reaction.

Definition 2 ([11,13]). A reaction (R,M,P, f) over molecular species {x1, . . . , xs}
is well formed if the following conditions hold:

1. f(x1, . . . , xs) is a partially differentiable function, non-negative on Rs
+;

2. xi ∈ R if and only if ∂f/∂xi(x) > 0 for some value x ∈ Rs
+;

3. xi ∈M if and only if ∂f/∂xi(x) < 0 for some value x ∈ Rs
+.

A reaction system is well formed if all its reactions are well formed.

Example 1. The classical prey-predator model of Lotka–Volterra can be repre-
sented by the following well-formed reaction system (without reaction inhibitors)
between a proliferating prey A and a predator B:

k1*A*B for A+B=>2*B.
k2*A for A=>2*A.
k3*B for B=>_.



2.2 Hierarchy of Semantics

As detailed in [12], a reaction system can be interpreted with different formalisms
that are formally related by abstraction relationships in the framework of ab-
stract interpretation [10] and form a hierarchy of semantics. We simply recall
here the definitions of the different semantics of a reaction system.

The differential semantics corresponds to the association of an Ordinary
Differential Equation (ODE) system with the reactions in the usual way:

dxj
dt

=
∑

(Ri,Mi,Pi,fi)

(Pi(j)−Ri(j))× fi

It is worth noting that in this interpretation, the inhibitors are supposed to
decrease the reaction rate but do not prevent the reaction from proceeding with
effects on the products and reactants. For instance, in Ex. 2, we get the classical
Lotka–Volterra equations dB/dt = k1∗A∗B−k3∗B, dA/dt = k2∗A−k1∗A∗B,
and the well-known oscillations between the concentrations of the prey and the
predator.

The stochastic semantics for reaction systems defines transitions between
discrete states describing numbers of each molecule, i.e. vectors x of Ns. A
transition is enabled if there are enough reactants, and the reaction propensity
is defined by the kinetics:

∀(Ri,Mi, Pi, fi),x −→fi
S x′ with propensityfi if x ≥ Ri,x

′ = x−Ri + Pi

Transition probabilities between discrete states are obtained through normaliza-
tion of the propensities of all enabled reactions, and the time of next reaction
can be computed from the rates à la Gillespie [14]. In this interpretation, the in-
hibitors are supposed to decrease the reaction propensity but do not prevent the
reaction from occurring. They are thus ignored here by the stochastic transition
conditions as in the differential semantics. In Ex. 1, the stochastic interpreta-
tion can exhibit some oscillations similar to the differential interpretation, and
(almost surely) the extinction of the predator.

The discrete, or Petri Net, semantics is similar but ignores the kinetics and
is thus a trivial abstraction of the stochastic semantics by a forgetful functor:

∀(Ri,Mi, Pi, fi),x −→D x′ if x ≥ Ri,x
′ = x−Ri + Pi

The boolean semantics is similar to the discrete one but on boolean vectors
x of Bs, obtained by the “zero, non-zero” abstraction of integers. With this ab-
straction, when the number of a molecule is decremented, it can still remain
present, or become absent. It is thus necessary to take into account all the pos-
sible complete consumption or not of the reactants in order to obtain a correct
boolean abstraction of the discrete and stochastic semantics [12]. The boolean
transition system −→B is thus defined by:

∀(Ri,Mi, Pi, fi),∀C ∈ P(Set(Ri)),x −→B x′ if x ⊇ Set(Ri),x
′ = x\C∪Set(Pi)



It is worth remarking that in Ex. 2 under this boolean interpretation, one
can observe either the stable coexistence of the prey and the predator, or the
extinction of the predator with or without the preceding extinction of the prey.

As proven in [12], the last three of these semantics are related by successive
Galois connections, which means that if a behaviour is not possible in the boolean
semantics, it is not possible in the stochastic semantics whatever the reaction
kinetics are. On the other hand, the first differential semantics is not an abstrac-
tion but rather a limit of the first one for high number of molecules, as shown
for instance in [14].

It is worth noticing that the set of inhibitors of a reaction is just a syntactical
annotation which has not been used to define the different semantics of the
hierarchy. One can also consider a boolean semantics with negation where the
set of inhibitors of a reaction is seen as a conjunction of negative conditions
for the transition (disjunctions can be represented with several reactions). The
boolean with negation transition system −→BN is then defined by:
∀(Ri,Mi, Pi, fi)∀C ∈ P(Set(Ri))x −→BN x′

if x ⊇ Set(Ri),x ∩Mi = ∅,x′ = x \ C ∪ Set(Pi)
However, this strict interpretation of inhibitors by negations restricts the set of
possible boolean transitions and is not compatible with the differential semantics,
since in that interpretation an inhibitor may just slightly decrease the rate of a
reaction without preventing it from proceeding.

2.3 Influence Graph of a Reaction System

Here we recall two definitions of the influence graph associated with a reac-
tion system, and their equivalence under general assumptions [13,11]. The first
definition is based on the Jacobian matrix J formed of the partial derivatives
Jij = ∂ẋi/∂xj , where ẋi is defined by the differential semantics.

Definition 3. The differential influence graph associated with a reaction sys-
tem is the graph having for vertices the molecular species, and for edge-set the
following two kinds of edges:

{A→+ B | ∂ ˙xB/∂xA > 0 for some value x ∈ Rs
+}

∪{A→− B | ∂ ˙xB/∂xA < 0 for some value x ∈ Rs
+}

Definition 4. The syntactical influence graph associated with a reaction sys-
tem M is the graph having for vertices the molecular species, and for edges the
following set of positive and negative influences:
{A→+ B | ∃(Ri,Mi, Pi, fi) ∈M , (Ri(A) > 0 and Pi(B)−Ri(B) > 0)

or (A ∈Mi and Pi(B)−Ri(B) < 0)}
∪{A→− B | ∃(Ri,Mi, Pi, fi) ∈M , (Ri(A) > 0 and Pi(B)−Ri(B) < 0)

or (A ∈Mi and Pi(B)−Ri(B) > 0)}
The syntactical graph is trivial to compute, in linear time, by browsing the

syntax of the rules. Both definitions are equivalent under general assumptions:

Theorem 1 ([11,13]). For any well-formed reaction system such that the syn-
tactical influence graph contains no conflict (i.e. no pair of the form A →+ B
and A→− B), the syntactical and differential influence graphs are identical.



3 Influence Systems with Forces

Reaction systems allow the description of mechanistic models of cell processes,
but modelers can also work with a simpler formalism of influence systems to
merely describe the positive and negative influences between molecular species,
without fixing their implementation with biochemical reactions. In this section,
we propose a syntax for influence systems with forces which allows us to define
a hierarchy of differential, stochastic, discrete and positive boolean semantics,
similarly to reaction systems. We then focus on different boolean semantics, and
compare them to Thomas’s setting for gene regulatory networks.

3.1 Syntax

The idea is to syntactically distinguish conjunctive from disjunctive conditions
by writing influences with several sources for representing a conjunction of con-
ditions, while the different influences on a same target express a disjunction of
conditions. These syntactical conventions are a particular case of the concept of
multiplexes introduced in [5] restricted here to disjunctive normal forms.

Definition 5. Given S = {x1, . . . , xs} a set of species, an influence system I
is a set of quintuples (P,N, t, σ, f) called influences, where P ⊂ S is called the
positive sources of the influence, N ⊂ S the negative sources, t ∈ S is the target,
sign σ ∈ {+,−} is the sign of the influence, and f is a real-valued mathematical
function of Rs, called the force of the influence.

Influences of sign + will be called positive influences and those of sign −,
negative influences. In addition, we distinguish the positive sources from the
negative sources in an influence (positive or negative), in order to annotate the
fact that in the differential semantics, the source increases or decreases the force
of the influence, and in the boolean semantics with negation whether the source
or the negation of the source is a condition for a change in the target.

For practical reasons we provide an ASCII syntax for influence systems which
is used in Biocham4 v4: they will be written as sequences of lines, where each set
is written as a comma-separated sequence of the corresponding species, where
the sign is represented as an arrow separating sources from the target, -> for
positive influences, and -< for negative influences, and where the positive and
negative sources are separated by a / that can be omitted if there is no negative
source.

Let us now define the concept of well-formed influence systems similarly to
the above Def. 2 for reaction systems, with a particular condition for the target
of a negative influence, as follows:

Definition 6. An influence (P,N, t, σ, f) over molecular species {x1, . . . , xs} is
well formed if the following conditions hold:

1. f(x1, . . . , xs) is a partially differentiable function, non-negative on Rs
+;

4 http://lifeware.inria.fr/biocham
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2. xi ∈ P if and only if σ = + (resp. −) and ∂f/∂xi(x) > 0 (resp. < 0) for
some value x ∈ Rs

+;
3. xi ∈ N if and only if σ = + (resp. −) and ∂f/∂xi(x) < 0 (resp. > 0) for

some value x ∈ Rs
+;

4. t ∈ P if σ = −.

An influence system is well formed if all its influences are well formed.

Example 2. The prey-predator model of Lotka–Volterra of Ex. 1 can also be
represented by the following well-formed influence system

k1*A*B for A,B -< A.
k1*A*B for A,B -> B.
k2*A for A -> A.
k3*B for B -< B.

composed of four influences with positive sources only, ({A,B}, ∅, A,−, k1 ∗A ∗
B), ({A,B}, ∅, B,+, k1∗A∗B), ({A}, ∅, A,+, k2∗A) and ({B}, ∅, B,−, k3∗B).

3.2 Hierarchy of Semantics

Given a set of species S = {x1, . . . , xs} and an influence system I over S, the
differential semantics associates the following ODE system with I:

dxk
dt

=
∑

(Pi,Ni,xk,+,fi)∈I

fi −
∑

(Pj ,Nj ,xk,−,fj)∈I

fj

Intuitively, it adds up all the forces of the positive influences on xk and subtracts
all forces of negative influences on xk in the derivative of xk over time. For
instance, in Ex. 2, we get the same equations as for Ex. 1.

It is worth noticing that the negative sources in a well-formed influence de-
crease the force of the influence but do not disable it. Consequently, we define
similarly the stochastic semantics of an influence system with forces, by a tran-
sition system, noted −→S , between discrete states, i.e. vectors x of Ns, with
the condition that the positive sources are present in sufficient number, with a
transition propensity defined by the force, and the target updated as follows:

∀(Pi, Ni, Ai, σi, fi),x −→fi
S x′ with propensityfi if x ≥ Pi,x

′ = x σi Ai

Transition probabilities between discrete states are obtained through normaliza-
tion of the propensities of all enabled transitions, and the time of next reaction
can also be given à la Gillespie [14]. In this interpretation, the negative sources
are supposed to decrease the influence propensity but do not prevent the influ-
ence from proceeding. They are thus ignored here by the stochastic transition
conditions.

The discrete (or Petri Net) semantics simply ignores the forces:

∀(Pi, Ni, Ai, σi, fi),x −→D x′ if x ≥ Pi,x
′ = x σi Ai



The positive boolean semantics is defined on boolean vectors x of Bs, by the
“zero, non-zero” abstraction of integers of the discrete semantics. Unlike reaction
systems, this boolean semantics associates one transition with one influence:

∀(Pi, Ni, Ai, σi, fi),x −→B x′ if x ≥ Pi,x
′ = x σi Ai

This boolean semantics is positive in the sense that it ignores the negative sources
of an influence and contains no negation in the influence enabling condition. In
Ex. 2 we get the same boolean transitions as in Ex. 1, although in general one
can expect to get more transitions (as shown below in Sec. 3.4).

With these definitions, one can obtain as in [12], a hierarchy of semantics
related by simple abstraction relationships (Galois connections in the framework
of abstract interpretation [10]) which allows us to state, for instance, that if a
behaviour is not possible in the positive boolean semantics, it is also not possible
in the discrete or stochastic semantics for any forces.

3.3 Influence Graph of an Influence System

One can define the differential influence graph of an influence system as in Def. 3
for reaction systems, and get a similar equivalence result with the following

Definition 7. The syntactical influence graph associated with an influence sys-
tem M is the graph having for vertices the molecular species, and for edges the
following set of positive and negative influences:
{A→+ B | ∃(Pi, Ni, B, σi, fi) ∈M , (A ∈ Pi and σi = +)

or (A ∈ Ni and σi = −)}
∪{A→− B | ∃(Pi, Ni, B, σi, fi) ∈M , (A ∈ Pi and σi = −)

or (A ∈ Ni and σi = +)}

Proposition 1. For a well-formed influence system such that the syntactical
influence graph contains no conflict, the syntactical and differential influence
graphs are identical.

Proof. Recall that ˙xB =
∑

(Pi,Ni,xB ,+,fi)∈I fi −
∑

(Pj ,Nj ,xB ,−,fj)∈I fj

Hence ∂ ˙xB

∂xA
=

∑
(Pi,Ni,xB ,+,fi)∈I

∂fi
∂xA
−

∑
(Pj ,Nj ,xB ,−,fj)∈I

∂fj
∂xA

Since the SIG does not have any conflict, A →+ B is in the SIG (a similar
reasoning can be made for A→− B) iff

∂ ˙xB

∂xA
=

∑
(Pi,Ni,xB ,+,fi)∈I,A∈Pi,A 6∈Ni

∂fi
∂xA
−
∑

(Pj ,Nj ,xB ,−,fj)∈I,A6∈Pj ,A∈Nj

∂fj
∂xA

Now, since the influence system is well formed, all terms of the left-hand sum
are non-negative (A 6∈ Ni) and strictly positive for some points xi and all terms
of the right-hand sum are non-positive (A 6∈ Pj) and strictly negative for some
xj .

We have that A →+ B in the SIG iff the above sum has at least one term,
which is equivalent to the existence of some x in the state space where one of the
terms above is non-null, and therefore ∂ ˙xB

∂xA
> 0, i.e., A→+ B is in the DIG. ut



3.4 Expressive Power Compared to Reaction Systems

Theorem 2. Any (well-formed) influence system with forces can be represented
by a (well-formed) reaction system with kinetics, with the same boolean, discrete,
stochastic and differential semantics.

Proof. Let us represent a positive influence f forP/N → t by a catalytic synthesis
reaction f for P/N ⇒ P + t.

Similarly, let us represent a negative influence f for P/N −� t, by an active
degradation reaction f for P + t/N ⇒ P .

It is straightforward to verify that the boolean, discrete, stochastic as well as
differential semantics recalled and defined above are the same.

Furthermore, the well-formedness condition is preserved. Indeed, this prop-
erty only depends on the forces/kinetic expressions and on the reactants/in-
hibitors, which do not change through that transformation thanks to the condi-
tion that in well-formed influence systems. In addition, t ∈ P in the case of the
negative influence. ut

This theorem shows that an influence system can be simulated by a reaction
system for the different semantics. The converse does not hold for the boolean
semantics, for instance. Indeed, let us consider boolean semantics of the reac-
tion C ⇒ A + B (the kinetics is omitted). We have a transition from the state
(A,B,C) = (0, 0, 1) to (1, 1, 0) which is obviously not possible in an influence
system since only one variable can change in one transition. However, the con-
verse holds for the differential semantics:

Theorem 3. Under the differential semantics, (well-formed) influence and re-
action systems have the same expressive power.

Proof. For each reaction (R,M,P, f) of a given reaction system, let us add the
following influences:

(Set(R),Set(M), xi,+, (P (i)−R(i))× f) when P (i)−R(i) > 0

(Set(R),Set(M), xi,−, (R(i)− P (i))× f) when P (i)−R(i) < 0

The associated ODE system collects all (Pi−Ri)×f exactly as in the differ-
ential semantics of the original reaction system. Furthermore, it is easy to check
that these influences are well formed since the original reaction is well formed
and the force is only a positive integer multiplied by the original kinetic expres-
sion. ut

This theorem shows that as far as the differential semantics is concerned, the
influence systems have the same expressive power as reaction systems and there
is no theoretical reason to develop a reaction model. This does not mean that
there is a canonical reaction system associated with an influence system. Gener-
ally, different implementations with reactions are possible without changing the
differential semantics. They represent extra information that is irrelevant to the
analysis or simulation of the differential equations, but could lead to different
stochastic simulations, for instance.



3.5 Boolean Semantics with Negation

One can also consider a boolean semantics with negation for influence systems,
where the negative sources are interpreted as negations in the enabling condition.
Formally, the boolean with negation semantics of an influence system is then
defined by the following transition system:

∀(Pi, Ni, Ai, σi, fi),x −→B x′ if x ≥ Pi, x ∩Ni = ∅, x′ = x σi Ai

This interpretation allows us to represent more boolean transition semantics.
Let us call a unitary transition system, a transition system that updates at most
one variable of x in each transition. It is worth remarking that in this case, the
state transition graph lives on a hypercube (e.g. Fig. 2 of Sec. 5).

Proposition 2. Any unitary boolean transition system can be represented by an
influence system under the boolean semantics with negation.

Proof. It is sufficient to notice that since a unitary boolean transition s −→BN s′

changes at most one species, say xi, from s to s′, it can be represented by
either a positive influence, (P,N, xi,+), if s′(xi) = 1, or a negative influence,
(P,N, xi,−), if s′(xi) = 0, with P = {x | s(x) = 1} and N = {x | s(x) = 0}. ut

Let us call a positive boolean transition system one that contains no negation
in the conditions for enabling a transition, i.e. if a transition is enabled when
s(xi) = 0 then it is also enabled when s(xi) = 1.

Corollary 1. Any unitary positive boolean transition system can be represented
by an influence system under the positive boolean semantics.

Proof. In the influence system associated by Prop. 2 with a positive unitary tran-
sition system, any influence that has negative sources is doubled by a counterpart
influence where such sources are positive (by definition of positive boolean transi-
tion system). Therefore, in the associated influence system, the negative sources
can be simply ignored, as done by the positive boolean semantics. ut

3.6 Functional Boolean Semantics with Negation à la Thomas

The boolean semantics defined by René Thomas originally for gene networks [31],
is functional, in the sense that the next boolean state x′ is defined by a boolean
function φ(x), not a relation. In this setting, the synchronous semantics is de-
terministic, and the non-deterministic asynchronous semantics is obtained by
interleaving, by considering all the possible transitions that change the boolean
value of exactly one of the genes at a time. A truly non-deterministic influence
system such as {(A, ∅, B,+, f), (A, ∅, B,−, g)}, for which the transition relation
is not a function, cannot be represented. Thomas’s setting excludes self-loops in
the state transition graph and all steady states are stable (i.e. terminal states):

Proposition 3. The boolean transition systems definable by Thomas’s regula-
tory networks are the unitary boolean transition systems without self-loops.



Proof. A Thomas’s transition graph is necessarily unitary and without self-loops
since each transition changes the boolean value of exactly (not at most) one
variable at a time. The converse follows from Prop. 2 by excluding the possibility
of having self-loop transitions which change no variable. ut

This restriction to transition functions is even more striking in Thomas’s
multilevel setting, where the above system can (in the discrete semantics) have
transitions from (1, 1) both to (1, 0) and to (1, 2). That would necessitate the
corresponding logical parameter for B to be at the same time < 1 and > 1. It
is worth noting that despite this restriction, the logical formalism of Thomas is
successfully used in a wide variety of models [32,17,24,16] in systems biology.

4 Properties of the Positive Boolean Semantics

In this section, we focus on the positive boolean semantics of influence systems
and study its properties. Recall that ≤ denotes the pointwise order on {0, 1}
coordinates of vectors representing states.

Proposition 4 (Monotonicity). The positive boolean semantics of influence
systems is monotonic: let I be an influence system over S = {x1, . . . , xs} and
v1, v2 be two boolean states, i.e., vectors of Bs

if v1 ≤ v2 then ∀v′1, v1 −→ v′1,∃v′2, v′1 ≤ v′2 and v2 −→ v′2

v1

v2

v′1

v′2

≤ ≤

Proof. One can simply notice that since there are no negations in the enabling
conditions, any influence that is enabled in v1 is also enabled in v2. ut

It is worth noticing that this monotonicity property for transitions is fun-
damentally different from that of monotone dynamical systems [3] which are
deterministic, and therefore impose the monotonicity property on the unique
image of v1 and v2. In our setting, Prop. 4 states that there exists some v′2 ≥ v′1,
but the existence of negative influences in the system permits that some other
images of v2 might not be greater than v′1. Nevertheless, we have

Proposition 5 (Greatest element). Let C be a Terminal Strongly Connected
Component (TSCC) of the state transition graph of a positive influence system,
then C has a greatest element: ∃v0 ∈ C,∀v ∈ C, v ≤ v0
Proof. Let us prove this proposition by contradiction: assume that there are two
incomparable maximal elements v1 and v2 in C. Since C is strongly connected
there is a path from v1 to v2 and along that path a state v3 and its successor in
the path v4 such that v3 ≤ v1 and v4 6≤ v1, as v2 6≤ v1. Now, using Prop. 4 we
get that v1 −→ v′1 with v4 ≤ v′1 and v′1 ∈ C since C is terminal. However v′1 is
either greater or less than v1 since it is the result of applying a single influence.
If v1 < v′1 we have a contradiction as we supposed v1 maximal. If v′1 ≤ v1 we get
v4 ≤ v1 by transitivity and that is also contradictory. ut



Corollary 2. To enumerate the attractors, i.e., TSCCs, of a positive influence
system, it is enough to check the strongly connected components (SCCs) of states
that have no strictly increasing transition.

Proof. This is an immediate consequence of Prop. 5 as each TSCC can be rep-
resented by its greatest element which has no strictly increasing transition. ut

Notice that stable states are a particular case with no strictly decreasing tran-
sition either. Moreover, any strictly decreasing transition should be “reversible”
for the SCC to be a TSCC. This allows us to rule out potential TSCC candi-
dates without exploring their whole SCC in Alg. 1 (implementation available in
Biocham v4).

Algorithm 1 TSCC maximal elements candidates enumeration algorithm
procedure list_tscc_candidates

Constraints← {P ∧ ¬N =⇒ t | (P,N,+, t, f) ∈ I}
. Enabled positive influences must not change the state

Candidates←EnumerateSolutions(Constraints)
for C ∈ Candidates do

if C has no strictly decreasing transition then
C is a stable steady state

else if C has a non-reversible strictly decreasing transition then
C is not in a TSCC

else
C’s SCC must be explored to check if it is a TSCC

end if
end for

end procedure
function EnumerateSolutions(Constraints)

Iteratively solve by SAT/CP the CSP defined by Constraints
return The set of solutions

end function

Proposition 6. Given an influence system, there is at least one TSCC of the
original influence system in each TSCC of its positive semantics.

Proof. The positive semantics only adds transitions by enabling more influences,
it can therefore only merge TSCCs. ut

This result suggests finding complex attractors of non-positive systems, such
as logical models à la Thomas [27,29], by enumerating the greatest elements of
the TSCCs of their positive boolean semantics, and then looking for attractors
of the original system. This approach provides an over-approximation of the
attractors and is complementary to recent works which provide lower-bounds on
their number [20].



5 Examples

5.1 Influence Model of p53/Mdm2 DNA Damage Repair System [1]

The p53/Mdm2 DNA damage repair system is an interesting oscillatory system
which has been first modeled in [8] by a reaction system with differential equa-
tions, and then in [1] and [2] by simplified influence systems with discrete and
differential semantics respectively.

We illustrate here the search for TSCCs with two versions of the influence
model of [1]. In the first model, we simply transcribe the graph of Fig. 4 of the
authors as a boolean influence system. We therefore ignore the multi-level aspect
they developed. In the second model, we add some activations on p53 and DNA-
damage, and an inhibition on cytoplasmic Mdm2, in order to take into account
some basal state of the model. The influence systems and the computed TSCCs
are listed in the Biocham session depicted in Fig. 1.

C N

P D

Biocham 4.0
Copyright (C) 2003 -2016 Inria ,

EPI Lifeware , Saclay -Ile de France
license GNU GPL 2,

http :// lifeware.inria.fr/biocham/
biocham: load_biocham(kaufman).
biocham: list_influences.
[0] P -> C
[1] C -> N
[2] N -< P
[3] P -< N
[4] P -< D
[5] D -< N
biocham: list_tscc_candidates.
[C-0,D-0,N-0,P-0] stable
[C-0,D-0,N-1,P-0] stable
[C-1,D-0,N-1,P-0] stable
[C-1,D-0,N-1,P-1] not terminal
[C-0,D-1,N-0,P-0] stable
[C-0,D-1,N-1,P-0] not terminal
[C-1,D-1,N-1,P-0]
[C-1,D-1,N-1,P-1] not terminal
biocham: add_biocham(kaufman2).
biocham: list_influences.
[0] P -> C
[1] C -> N
[2] N -< P
[3] P -< N
[4] P -< D
[5] D -< N
[6] _ -> P
[7] _ -> D
[8] C -< C
biocham: list_tscc_candidates.
[C-1,D-1,N-1,P-1]

Fig. 1. Left: Influence graph displayed in Fig. 4 of [1], without the activation multi-
levels. The dashed influences are those added in our second version of the model. Right:
Biocham v4 session for computing the TSCC in both influence systems.



Our algorithm shows that there is in each case a single complex attractor
(i.e. not marked as stable or not terminal), accordingly to [1], and four stable
steady states in the first case. Note that in [2], this influence model was further
extended with differential and stochastic dynamics which could be represented
in our setting by influence forces.

5.2 Influence Model of the Mammalian Circadian Clock [9]

A good example of the use of logical models à la Thomas is the recent paper
by Comet et al. [9] studying different variants of small models of the circadian
rhythms in mammals. A direct import in Biocham v4 of the logical model of
Section 5 of [9] gives the following influence system with negative sources:

_ / L -> L.
L -< L.
_ / G, PC -> G.
G, PC -< G.
G / PC , L -> PC.
PC / G -< PC.
PC , L -< PC.

The positive semantics of this system is close to the original boolean seman-
tics with negation à la Thomas of the model. They both have a single TSCC:
the vector (1, 1, 1) that is found by the command list_tscc_candidates as
sole candidate. Furthermore, only a few state transitions become reversible in
the positive boolean semantics, while they are irreversible in the original boolean
semantics with negation à la Thomas of the model, as depicted in Fig. 2.

G

L

PC

G

L

PC

Fig. 2. State transition graphs of the model under, Left: the boolean semantics with
negation à la Thomas, similar to Fig. 7 of [9], Right: the positive boolean semantics,
where some state transitions have become reversible.

The approximation introduced by the positive boolean semantics can be ex-
plained by quantitative dynamics considerations. For instance, when G is on,
the transcription leading to the PER-CRY complexes is stimulated, however [9]



explains that these complexes can only migrate to the nucleus in absence of
light. This absence cannot be checked in a positive semantics model, however
the consensus mechanistic process is rather thought to be a modulation of PER
transcription by light (see for instance [21] for the mammalian case). Being purely
quantitative, it is not easy to take into account such a regulation in a boolean
model except with the reversible activation of PC when G is on, whether L is
on or not. This is what happens in our positive model as can be seen in the right
panel of Fig. 2, and it is similar to what happens for the light in the original
model.

The same reasoning explains the reversible inactivation of G when PC is
active. Indeed there is a basal synthesis of G that cannot check, in a positive
setting, that PC is inactive in order to activate the genes. Once again, the mech-
anistic process is a quantitative inhibition of the CLOCK-BMAL1 complexes by
PER-CRY and a conservative boolean approximation of that process is reflected
by the reversible activation of G in presence of PC.

In [9], the authors also restrict the possible behaviours by introducing delays
for the boolean transitions which could be considered as a further expansion of
the formalism.

6 Discussion

In this paper, we hope to have clarified some differences between influence sys-
tems and reaction systems, and especially some subtle discrepancies between the
precise boolean semantics that have been considered in the literature. As far as
the modeling of one biological system is concerned, the modeler can work with
one formalism and one tool to answer the questions about their model. Never-
theless, as soon as different modeling tools are to be used, or the model has to
be communicated and reused for another purpose, understanding and mastering
these discrepancies in the semantics of the interactions becomes crucial.

We have shown that, for influence systems and reaction systems with in-
hibitors, one can obtain a hierarchy of semantics which goes from the concrete
stochastic semantics to a discrete Petri net, and then a positive boolean seman-
tics in which the inhibitors of the reactions or influences are just ignored. This
is consistent with the fact that the inhibitors decrease the rate or force in the
quantitative semantics, but do not really prevent the reaction or influence from
proceeding. This convention thus ensures that all discrete behaviours are ap-
proximated when we go up in the abstractions of the hierarchy of semantics,
and that if a behaviour is not possible in the positive boolean semantics (which
can be checked by model-checking methods for instance) it is not possible in
the stochastic semantics for any forces. Furthermore, we have shown that in the
positive boolean semantics, the monotonicity of the transition relation allows us
to enumerate the complex attractors more efficiently by restricting the search to
the greatest elements candidates.

On the other hand, the boolean semantics à la Thomas of influence systems,
interprets inhibitors as negations, and contains a restriction on the definition



of the transition relation by a function, not a relation, which limits the sources
of non-determinism. We have shown that the boolean semantics with negation
leads to a more expressive formalism in which any unitary boolean transition
system can be encoded, but does not correspond to an abstraction of the stochas-
tic semantics, unless the stochastic transitions interprets inhibitors as negative
conditions which does not correspond to the differential semantics. With the
functional restriction, we have proven that each TSCC in the positive semantics
contains at least one TSCC of the semantics à la Thomas, and thus that our
algorithm can be used to prune the search space in this setting also.

We have also shown that reaction systems and influence systems have the
same expressive power under the differential semantics. This means that, as far as
the differential equations are concerned, the details given in the reactant-product
structure of a reaction system are not necessary, and that the same differential
equations can be derived from an influence system with forces. Several reaction
systems can be associated with an influence system with the same differential
semantics. This leaves open the design of canonical forms for reaction systems,
and computer tools for automatically maintaining the implementation of an
influence system by a reaction system.
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