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PACS 47.55.db – Drop and bubble formation 

PACS 47.55.df – Breakup and coalescence 

PACS 47.35.Pq – Capillary waves 

 

Abstract - We experimentally investigate single drop formation from a vibrating capillary tube 

immersed in a second immiscible liquid. At set forcing frequencies, significantly smaller drops are 

generated when a threshold amplitude is reached. We show that a drop grows and resonates in first 

mode once the drop resonance frequency and the forcing frequency coincide. The drop then detaches 

by a stretching mode if its elongation ratio exceeds a critical value, function of the drop to pore 

diameter ratio. The detached drop diameter is well described by the Bisch et al. expression for bound 

drop resonance frequency. Otherwise, the drop grows, leaves the first-mode resonance range and 

detaches at a larger size by dripping. The threshold and drop diameters are well predicted by a simple 

LFHO-based model. 

 

Introduction. - Controlling drop breakup is key for industries performing emulsification such as the 

food, pharmaceutical and chemical industries. Indeed, drop size and distribution affect emulsion 

rheological properties and stability. Membrane emulsification (ME) consists in forcing a dispersed 

phase through a porous membrane. The drops are directly generated on the other side of the membrane 

into a continuous flowing phase, which exerts shear on the drops [1]. ME is commonly operated in 

dripping (drop by drop) mode.  

http://epljournal.edpsciences.org/articles/epl/abs/2015/16/epl17314/epl17314.html
http://iopscience.iop.org/article/10.1209/0295-5075/114/59901
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In recent years, a few attempts were made to couple ME with vibration to better control drop 

detachment, thus drop size [2-4]. Most investigations concern longitudinal vibrations (see [2] and 

references therein). In these studies, the shear stress experienced by the drop is mainly due to the 

membrane oscillation and drop size is controlled by the peak shear stress at the membrane surface. The 

drop size does not depend on the membrane excitation frequency apart from its influence on shear 

stress [2]. ME coupled with transversal vibrations (perpendicular to the membrane surface) has been 

less studied [3,4]. In this case, membrane vibration induces axial vibrations of the drops. Arnaud 

found a strong decrease in drop size when the membrane (mean pore size of 0.8 µm) was excited at a 

frequency of 15 kHz (unknown forcing amplitude). The peak of the volume-weighted drop size 

distribution was shifted from 30 µm without vibration to 10 µm with vibration [3]. The mechanisms at 

hand were not explained [3,4].  

However, axial oscillations of bound drops undergoing forced vibrations have been extensively 

investigated since the pioneering experimental work of Bisch et al. [5]. Strani and Sabetta examined 

the case of small linearised oscillations and found an additional vibration mode (   ) for the bound 

drop, associated with the translation motion of the centre of mass of the drop [6]. It is reminded that 

the     mode is the first vibration mode for a free drop as established by Lamb [7]. The response of 

drops undergoing large-amplitude vibrations has been studied by DePaoli et al. and Wilkes and 

Basaran [8,9]. They showed that bound drops behave as soft nonlinear oscillators and can exhibit 

hysteretic responses. Finally, Wilkes and Basaran and Kim studied drop detachment in air under 

strong forcing [10,11]. Wilkes and Basaran examined drop ejection from an oscillating rod using 

computational fluid dynamics. They found that above a critical forcing amplitude, a pendant drop 

(with a pinned contact line) breaks up and a primary drop is ejected [10]. Kim experimentally studied 

the fall-off of a pendant drop (with a free contact line) from a smooth solid vibrating surface. Kim 

found that the vibration amplitude inducing fall-off is minimal when the forcing frequency and 

resonance frequency of the drop coincide [11]. 

In order to understand the effect of vibration on drop detachment in ME, we focus on a simplified 

configuration where rising drops form from an axially vibrating capillary tube into an unbounded 

liquid under gravity. A dedicated transparent setup has been designed to observe drop formation. 

Contrarily to cross-flow ME, there is no continuous phase flow and the membrane reduces to a single 

pore, i.e., the capillary tube, so potential interactions between drops at adjacent pores are avoided. 

Drops are constantly fed dispersed phase, thus their size increases with time whereas in the studies on 

drop oscillation mentioned above, the drop size is set. The aim of the present paper is to study drop 

generation assisted by axial oscillations, so as to identify the different regimes and the mechanisms 

involved depending on the excitation parameters.  

 

Experimental setup. - Oil-in-water emulsions were formed with dodecane (99%, viscosity     1.34 

mPa.s at 25°C, density     750 kg.m
-3 

at 25°C) as the dispersed phase and distilled water (viscosity 

    0.89 mPa.s at 25°C, density     997 kg.m
-3

 at 25°C) as the continuous, aqueous phase. The 

interfacial tension was of    46.0 ± 2.1 mN.m
-1

 as measured by the rising drop method with a 

tensiometer (Tracker, I.T. Concept, Teclis), averaged between 10 s and 20 s after drop formation. 

A single-pore vibrating setup has been designed to observe drop formation (fig. 1). The setup 

consists in a transparent tank filled with 70 mL of stationary aqueous phase, in which a glass capillary 
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tube is placed. The dispersed phase is fed through the capillary with a syringe pump (R-99, Razel 

Instruments). For the pore diameter     0.32 mm, three dispersed phase flow rates are tested:    

2.5 µL.s
-1

, 4.3 µL.s
-1 

and 6.5 µL.s
-1

. When the influence of    is investigated, dispersed phase flow 

rates are set at    2.2 µL.s
-1

, 6.5 µL.s
-1

, 6.9 µL.s
-1

 and 10.1 µL.s
-1

 (accuracy within 2%) for      

0.11 mm, 0.32 mm, 0.35 mm and 0.75 mm respectively. The flow in the capillary is laminar as the 

associated Reynolds numbers lie between         5 and        22 (with                  and 

           
  , the dispersed phase velocity).  

The capillary is fixed on a vibrating exciter (Bruel & Kjaer 4810) and is driven with a sinusoidal 

motion function of time                     . The vibration is parallel to the capillary tube axis, 

so drops undergo axial vibrations. Forcing frequencies are    30 Hz to 150 Hz (10 Hz intervals until 

100 Hz, variable intervals above depending on   ). Peak-to-peak amplitudes range from      0 mm 

to 2 mm, measured by an LED sensor (M5L/2, Bullier International), with an uncertainty in the order 

of 10 µm. 

A halogen cold light illuminates the system. A high-speed camera (Phantom v310) mounted with a 

macro lens (AF Zoom-Micro Nikkor 70-180mm f/4.5-5.6D ED, Nikon) captures drop formation 

images with a resolution of 800 × 600 pixels. Acquisition frequency is set at 10 times the forcing 

frequency and at 100 fps for trials without vibration. The images are analysed using ImageJ with the 

scale set by the capillary outside diameter. Data are provided including average drop diameters    and 

axial drop elongations. The maximum relative errors are of 7%, mainly due to statistical dispersion, as 

the error due to image resolution is of 1%. Experiments were carried out in triplicate and the error bars 

in the figures correspond to statistical dispersion. 

After experimentation, the setup is cleaned with a surfactants solution (3 vol%, Mucasol, Merz) 

and thoroughly rinsed with distilled water. As a result, the glass surface is hydrophilic and the 

capillary outside diameter does not influence dodecane drop detachment.  

 

Figure 1: Ex  rim nt l s tu : 1, high s   d   m r ; 2,  om ut r; 3  nd 3’, windows; 4, light sour  ; 5, 

 ontinuous  h s ; 6, dis  rs d  h s ; 7, gl ss    ill ry; 8, 8’  nd 8’’, LED sensor, emerging rod and distance 

measured; 9, vibrating motion; 10, syringe; 11, syringe pump; 12, exciter; 13, flexible seal; 14, optical table. 

 

Drop detachment mode without vibration. - Without vibration, experiments are in dripping mode 

for the dispersed phase flow rates and pore diameters tested. Indeed, a drop by drop formation is 

observed, with the drops formed close to the capillary tip.  
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In dripping mode, detachment occurs when buoyancy    exceeds the maximum capillary force 

  
          that the drop neck can withstand without breaking,  s st t d by T t ’s l w [12]: 

        
   ,             

 

 
  

                    

with     the Harkins Brown correction factor, introduced to account for the fraction of liquid volume 

which remains attached to the capillary tip after drop break off [13].  

Theoretical drop diameters were calculated from eq. (1) using the factor     proposed by Mori 

[14]. They were compared to those measured. The relative differences between calculated and 

measured diameters vary between -7% and 5% depending on pore diameters and dispersed phase flow 

rates. It is in the order of drop diameter uncertainty.  

Figure 2: (a) Drop diameter    depending on the peak-to-peak capillary amplitude     for    100 Hz,      

0.32 mm,    4.3 µL.s
-1

: () measurements, measured amplitude threshold (dash-dotted line), (*) estimates from 

eq. (1), estimates from the balance      
    (dotted line), estimates from the balance        

    
   

    

(dashed line), estimates from eq. (9) (solid line). (b) Drop image just before detachment in dripping mode (left, 

     0.095 mm), in stretching mode (centre and right,      0.419 mm). 

 

Detachment modes with vibration. - Amplitude sweeps from low to high amplitudes were carried 

out at set forcing frequencies. For    30 Hz to   150 Hz, two modes of detachment are observed, 

characterized by large or small drops. These modes are separated by a threshold amplitude     (fig. 2). 

For other frequencies, the transition could not be observed due to limitations of the vibrating exciter. 

This was also the case above 110 Hz and 120 Hz for     0.11 mm and 0.75 mm respectively. 

For         , drops detach at large sizes, close to those for drops formed without vibration 

(      . As     increases, drop size decreases and an increasing deformation of the drop interface 

is seen. However drops still detach in dripping mode (fig. 2(b), left). The large apparent black ring 

inside the drop (fig. 2(b), left) is due to the differences in the refractive index of dodecane (    1.42) 

and water (    1.33). 

For         , enhanced drop detachment occurs: smaller monodispersed drops are generated at a 

faster rate than in dripping mode. A decrease of 45% (for    30 Hz) to 76% (for    150 Hz) in drop 

diameter is observed at     compared to without vibration. Beyond the threshold, drop diameters 

continue to decrease with increasing    . Drops are elongated at breakup in this mode (fig. 2(b), 

right). This was named the stretching mode.  
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Threshold. - The higher the forcing frequency, the lower the threshold amplitude (fig. 3). The 

threshold amplitude roughly scales as     for     0.32 mm and 0.35 mm. For     0.75 mm, no 

scaling law emerges. For     0.11 mm, the threshold amplitude is around twice higher compared to 

other pore diameters and scales as      . Dispersed phase flux does not significantly affect     (not 

shown). 

The diameters of the drops generated at     decrease with increasing forcing frequency (fig. 4). 

Furthermore, it appears that drop diameters scale as       for all pore diameters. Also, as expected, 

the larger the pore diameter, the larger the drops produced. Lastly, as the dispersed phase flux 

increases, a slight increase in drop diameter is observed (not shown). It is attributed to the extra 

dispersed phase fed to the drop during necking. 

 

Figure 3: Thr shold  m litud  d   nding on th  for ing fr qu n y: (□)      0.11 mm,    2.2 µL.s
-1

, 

(◊)      0.32 mm,    6.5 µL.s
-1

, (o)      0.35 mm,    6.9 µL.s
-1

, (x)      0.75 mm,    10.1 µL.s
-1

. 

 

Figure 4: Drop diameter depending on th  for ing fr qu n y: (□)      0.11 mm,    2.2 µL.s
-1
, (◊)      0.32 

mm,    6.5 µL.s
-1

, (o)      0.35 mm,    6.9 µL.s
-1

, (x)      0.75 mm,    10.1 µL.s
-1

. Estimates from eq. 

(9):       0.11 mm (dotted line),       0.32 mm (dash-dotted line),      0.35 mm (solid line),      0.75 

mm (thick solid line). 

 

Resonance. - In the moving non-inertial frame of reference where the capillary is still (axes defined in 

fig. 2(b)), the forces exerted on the drop due to the capillary motion are the inertial force and the 

 sso i t d Ar him d s’ thrust. W  not  th t, in th   r s nt s tu , th   ontinuous  h s   bov  th  

capillary and its support is accelerated by the exciter, as shown by Faraday waves at the free surface. 

Thus, the resulting excitation force reads 
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with                          the capillary acceleration in the laboratory inertial frame and 

      the forcing pulsation. Hence, the peak excitation force is 

    
    

        
 

  
  

                

A Tate-like model based on the balance between the maximum driving force of drop detachment 

        
    

  and the restoring capillary force   
    is represented in fig. 2(a).     is omitted as it is 

a first-order correction. This simple model does not account for the experimental results as the sudden 

jump in drop diameter is not predicted. Additionally, the measured drop diameters in stretching mode 

are significantly lower than the predicted diameters. 

Drop generation footage reveals that as a drop grows, its length   (measured from capillary tip to 

drop apex, fig. 2(b), centre) oscillates and it elongates more just before enhanced detachment. In 

addition, we found a strong correlation between drop diameter at     and forcing frequency (fig. 4). 

These elements suggest that drop resonance is involved in enhanced detachment. 

Figure 5 presents typical variations of drop length   with time   (arbitrary time origin) for     

    . These variations coincide with the drop apex motion in the capillary frame. Figure 5 

simultaneously shows the displacement   of the capillary tip in the laboratory inertial frame. We 

observe that mean drop length increases as dispersed phase is constantly fed to the drop. Drop length 

oscillates around the mean due to the excitation force     . Drop oscillation amplitude is significantly 

lower than the capillary one. Indeed, the amplitude of the drop excitation force per mass unit is lower 

than the capillary acceleration amplitude, by a factor               0.325. From    0.12 s, the 

drop oscillation amplitude increases until a maximum reached at    0.21s, then decreases. From    

0.12 s to 0.26 s, drop oscillation amplitudes are higher than outside this area. This relates a resonance 

zone (RZ) of the drop. Resonance may be involved in stretching mode as drop sizes in the RZ are 

close to detached drop sizes at    . 

 

Figur  5: (◊) Dro  l ngth  , capillary displacement   (solid line), approximate boundaries of the 

resonance zone RZ (dashed line), phase shift estimation guidelines (dotted line):    50 Hz,      

0.32 mm,      0.56 mm <      0.88 mm,    4.3 µL.s
-1

. 

  

Drop shapes in the resonance zone (fig. 2(b), centre and right) correspond to the shapes reported by 

Bisch et al. [5] for the     vibration mode of bound drops. A simple empirical formula for mode 1 

resonance frequency    is given by Bisch et al. [5]: 
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with    9 for any two immiscible fluids with equal densities. In our experiments, densities are close 

as        1.3. Equation (4) was established for drop to pore diameter ratios of 1.3 to 7. In our case, 

the ratios are of 1.3 to 12.3. We note that the scaling law followed by the drop diameter at    , i.e. 

          , is consistent with eq. (4). In comparison, if a bound drop resonated exactly as a free drop, 

the drop diameter would scale as          . 

From eq. (4), we calculate the resonance frequency of the drops detached at    . The diameter of 

the resonating bound drop is assimilated to the detached drop diameter. These frequencies concur well 

with the experimental forcing frequencies (fig. 6). We conclude that once a drop reaches a critical size 

such that its resonance frequency and the forcing frequency coincide, it resonates in mode 1 and 

detaches if the capillary oscillation amplitude exceeds    .  

For      0.11 mm, the calculated frequencies are lower than the forcing frequencies (fig. 6). 

Indeed, drop to pore diameter ratios range from 7.5 to 12.3, which is above where eq. (4) was 

validated. The calculations of Strani and Sabetta [6] show that the bound drop first resonance 

frequency scales as        
  where   varies from -2.9 to -1.75 when the drop to pore diameter ratios 

vary from 1.3 to 7, respectively. They show that eq. (4) underestimates the resonance frequency when 

       , which is consistent with the deviation seen for      0.11 mm.  

 

Figure 6: C l ul t d mod  1 r son n   fr qu n y [5] v rsus s t  x  rim nt l fr qu n y: (□)      0.11 mm, 

   2.2 µL.s
-1
, (◊)      0.32 mm,    6.5 µL.s

-1
, (o)      0.35 mm,    6.9 µL.s

-1
, (x)      0.75 mm,    

10.1 µL.s
-1

. 

 

We suppose that the resonating bound drop behaves as a linearly forced harmonic oscillator 

(LFHO) with moderate damping and that drop growth is slow enough to consider steady-state 

oscillations. Before the RZ, the drop is so small that its resonance frequency is notably greater than the 

forcing frequency  . In this case, the LFHO model [15] predicts that drop oscillations are in phase 

with the excitation force and that the drop oscillation amplitude is close to the forcing amplitude, i.e. 

    . This agrees with drop behavior (fig. 5). We remind that the capillary motion      is in phase 

opposition with the excitation force         (eq. (2)). After the RZ, the drop is so large that its 

resonance frequency is notably lower than  . Then, the LFHO model [15] predicts that drop 

oscillations are in phase opposition with the excitation force and that the drop oscillation amplitude 

becomes small compared to the forcing amplitude when   is large enough. This explains why the 
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Tate-like model based on peak excitation force (dashed line, fig. 2(a)) rapidly underestimates drop 

diameters in dripping mode. At resonance, drop oscillation amplitudes are maximal and the phase shift 

is equal to        (fig. 5), which is in accordance with the LFHO model [15].  

In fig. 5, the RZ is wide as drop size increases slowly with the dispersed phase flow rates used: the 

drop diameter increase per oscillation is of about 1.3% in the RZ. 

When the drop does not detach in the RZ, it grows and detaches at a larger size in dripping mode, 

at 2.36 s in the example in fig. 5 (not shown). At this point, drop oscillations (which became weak) 

increase again, but with a lesser amplitude than in the RZ. This is attributed to the excitation of a 

higher resonance mode of the drop. This explains why in the dripping mode, drop diameter steadily 

decreases as     increases. 

 

Force-based analysis. - To account for the transition from dripping to stretching mode, we propose a 

model where the drop is described as a LFHO and the condition for drop detachment is expressed with 

a force-based criterion. The system is certainly nonlinear since oscillations can be large enough to 

induce drop detachment [8,9]. However, it is expected that the main features of the transition can be 

understood from this approximation. 

The bound drop is subjected to a restoring capillary force, made up of a stationary and oscillatory 

part. The stationary part balances the buoyancy force and can be expressed as 

  
      

 

 
  

                   

The oscillatory part responds to the excitation force. According to the LFHO model, this part reads 

  
     

 

 
  

     
                

with    the mode 1 eigenpulsation of the bound drop without damping and       the displacement of 

the centre of mass of the drop. We assume that the buoyancy force negligibly affects the drop 

eigenpulsation and damping constant. Indeed, the drop Bond number,  o                   , 

in the RZ is significantly lower than 1. Assuming quasi-steady-state oscillations, the drop centre-of-

mass motion is given by                           with the peak-to-peak amplitude 

       
   

     

    
             

          

where    is related to    (resonance pulsation) by the expression   
     

      , with         

(   the resonance frequency) and   the damping constant. For moderate damping,       and the 

peak-to-peak amplitude of the steady-state oscillations at resonance is given by   
          with 

the quality factor           . 

We first estimated   from eq. (8) given by Bisch et al. [5], which relates   to the resonance 

frequency    and to the phase properties (valid for             as is our case): 

                                             

We found       . On the other hand, at set  , we measured the maximum amplitude   
    of 

the drop centre-of-mass motion in the RZ (for        ). We estimated Q by   
           and 
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found significantly lower values than from eq. (8). For example, in the conditions of fig. 2, 

  
              . This ratio is independent of    : it depends on the other operating parameters. 

The difference between measured and calculated values is attributed to the fact that the drop does not 

spend enough time in the RZ to reach steady state.  

The drop detaches when the overall restoring force reaches the maximum retaining capillary force  

 

 
  

             
 

 
    

   
                     

where   
                  

     since the drop does not spend enough time in the RZ to reach 

amplitudes exceeding   
   . As an example,    is calculated from eq. (9) for growing drops in the 

conditions of fig. 2(a), with   
            and   from eq. (8). Results are shown by the solid line 

in fig. 2(a). The transition from dripping to stretching is well reproduced. The model from eq. (9) was 

applied with   
           estimated between 80 Hz and 100 Hz for each    (for         . 

Results are shown in fig. 4. The model is in good agreement with the experiments except for    = 0.11 

mm. However, the discrepancy is coherent with the one observed for    = 0.11 mm in fig. 6 and is 

explained in the same manner. 

Above    , drop size decreases with increasing     because the detachment criterion is satisfied 

earlier in the RZ (for     ). The model overestimates drop sizes above    , attributed to nonlinear 

effects [8,9]. A downwards shift in resonance frequency occurs when increasing     for soft nonlinear 

oscillators [16]. Below    , drop sizes are also overestimated: a resonance mode higher than mode 1 is 

excited and this is not taken into account in eq. (9). 

We note that the present model does not account for the scaling           observed in fig. 3 since 

eq. (9) under steady-state assumption leads to            . The LFHO assumption is too simplified to 

capture all the features of the transition. Also, the transient stage and nonlinear effects are not 

modeled. 

 

Elongation-based analysis. - Similarly to Wilkes and Basaran [10], we also examined the maximum 

length reached by the drop prior to its detachment. At    , we measured the maximum drop length 

     and defined the elongation ratio as the maximum drop length divided by the detached drop 

diameter. Dimensional analysis shows that         should essentially depend on the drop to pore 

diameter ratio      , since the physicochemical properties are set.  

We report elongation ratio values as a function of       (fig. 7) for all tested forcing frequencies 

and pore diameters. Although the statistical dispersion is significant, the larger the drops are compared 

to the pore, the lower the critical elongation ratio needed for detachment. On average, the critical 

elongation ratios decrease from about 1.4 to 1.1 when       varies from 1.4 to 12. 

The decreasing trend can be explained by the results of Strani and Sabetta [6]. Indeed, they 

reported that when the drop to pore diameter ratio tends to infinity, the     vibration mode 

degenerates into a zero-frequency rigid motion. Thus, for a large but finite      , the drop essentially 

experienced a rigid motion with the deformation mainly localised at the neck. This explains the lower 

drop elongation ratios for      0.11 mm.  
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For      0.75 mm, critical elongation ratios are below the trend. It is attributed to the fact that, for 

     0.75 mm, drop breakup occurred partly inside the tube rather than at the surface. Then, the 

measured method for      (from capillary tip to apex) underestimates the real drop length. 

 

 

Figure 7: Elongation ratio function of drop to pore diameter ratio (   30 Hz - 150 Hz): (□)      0.11 mm, 

(◊)      0.32 mm, (o)      0.35 mm, (x)      0.75 mm. 

 

The comparison with the simulation results of Wilkes and Basaran [10] are difficult since in their 

results, only a drop fraction is ejected. Moreover, the drop equivalent diameter is smaller than   . The 

closest case to our study is a       value slightly lower than 1. In this case, a critical elongation ratio 

of the order of 2 is reported, consistent with our results. According to their simulation snapshots, drop 

deformation creates pressure gradients inside the drop, leading to flow out of the neck, pinch-off and 

thus drop detachment. A similar scenario is expected in our experiments. 

 

Conclusion. - Drop generation from a vibrating tube exhibits a transition from dripping to stretching 

mode when increasing the forcing amplitude at a set forcing frequency. In stretching mode, drops are 

significantly smaller from a threshold amplitude and above. During drop growth, the bound drop 

resonates in first mode once its resonance frequency and the forcing frequency coincide. It detaches by 

a so-called stretching mode if its elongation ratio exceeds a critical value, function of the drop to pore 

diameter ratio. The main features of this transition, i.e. threshold and drop diameter, can be described 

by a simple LFHO model using the expression of Bisch et al. for bound drop resonance frequency.  

 

Acknowledgements. - We thank J. Trubuil and T. Martin for their help with designing and 

manufacturing the experimental setup. 

 

Erratum 

- The paragraph on the bottom of page 7 (and beginning of page 8) of the present version of the 

article should read as follows: 

“We suppose that the resonating bound drop behaves as a linearly forced harmonic oscillator (LFHO) 

with moderate damping and that drop growth is slow enough to consider steady-state oscillations. 

Before the RZ, the drop is so small that its resonance frequency is notably greater than the forcing 

frequency  . In this case, the LFHO model [15] predicts that drop oscillations are in phase with the 

excitation force (we remind that the excitation force         is in phase opposition with the capillary 
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motion     ) and that the drop oscillation amplitude should be small compared to the forcing 

amplitude. However, as the support below the drop is open, part of the drop volume is free to oscillate 

in and out of the capillary, leading to higher oscillation amplitudes than expected. After the RZ, the 

drop is so large that its resonance frequency is notably lower than  . Then, the LFHO model [15] 

predicts that drop oscillations are in phase opposition with the excitation force and that the drop 

oscillation amplitude is close to the forcing amplitude, i.e.      when   is l rg   nough.” 

 

- The following sentence in this same paragraph (bottom of page 7) should be removed: 

“This  x l ins why th  T t -like model based on peak excitation force (dashed line, fig. 2(a)) rapidly 

underestimates drop diameters in dripping mod .” 

Indeed, the reason why the Tate-like model based on peak excitation force rapidly underestimates 

drop diameters in dripping mode differs from the one advanced before. Let us consider a large drop 

after the resonance zone (RZ). Its eigenpulsation is typically much smaller than the forcing pulsation. 

The detachment criterion (eq. (9) presented further in the letter) simplifies under the assumption 

     to give 

  
     

  
     

 
                   

to be compared with the Tate-like model: 

  
     

     

 
                   

Since      in dripping mode, we deduce that the Tate-like model based on peak excitation force 

then underestimates drop diameters. 
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