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The costs of indeterminacy: how to determine them?
Gen Yang, Sebastien Destercke, Marie-Hélène Masson

Abstract—Indeterminate classifiers are cautious models able to
predict more than one class in case of high uncertainty. A problem
that arises when using such classifiers is how to evaluate their
performances. This problem has already been considered in the
case where all prediction errors have equivalent costs (that we will
refer as the “0/1 costs” or accuracy setting). The purpose of this
work is to study the case of generic costs functions. We provide
some properties that the costs of indeterminate predictions could
or should follow, and review existing proposals in the light of
those properties. This allows us to propose a general formula
fitting our properties that can be used to produce and evaluate
indeterminate predictions. Some experiments on the cost-sensitive
problem of ordinal regression illustrate the behaviour of the
proposed evaluation criterion.

Index Terms—indeterminate classifier, evaluation, imprecise
probabilities, cost-sensitive classification

I. INTRODUCTION

The classification task consists in identifying the class of a
new observation, described by a set of features, on the basis of
a set of training data. However, classification errors frequently
occur when multiple classes have high and similar probabilities
of occurrence (uncertainty due to ambiguity), or when training
data are in insufficient quantity (uncertainty due to a lack of
information). One possibility to increase classifiers reliability
is by allowing their outputs to better reflect these uncertain
situations. Indeterminate classifiers, which are able to predict
more than one class in case of high uncertainty, have been
introduced for this purpose.

While the idea of reject option, that is of not making a
prediction for some specific data, has been around for some
time [1], [2], [3], the idea of producing indeterminate or
partial predictions is more recent [4], [5], [6], [7], [8]. These
techniques are often used for problems where being cautious or
reliable is as important as being accurate. When dealing with
cost-sensitive applications, two main approaches can produce
indeterminate predictions. The first one, directly inspired from
the reject option, is to integrate costs of indeterminacy in the
decision making [9], [10]. The second approach is to consider
imprecise probability estimates rather than precise models. In-
deed, in the last years several extensions of classical classifiers,
such as C4.5 trees [11], Naive Bayes classifiers [5], nested
dichotomies [12], [13] or Bayesian Model Averaging [14]
consider such a setting.
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However, a problem still largely unsolved when using
such settings is to determine sensible costs of indeterminate
predictions. This is also necessary when having access to an
expert willing to estimate these costs, in order to provide
this expert with proper guidelines and/or questions. This
can also be useful in applications naturally involving costs,
such as imbalanced classification problems [15] or ordinal
regression [16]

The costs of indeterminate predictions are also essential to
compare the classifiers or models producing such predictions,
and therefore to choose an optimal model. And although
some specific solutions, discussed in Section V, have been
proposed in the literature [4], [17], we are unaware of any work
proposing generic guidelines applicable to any cost-sensitive
indeterminate predictions.

Providing and discussing the relevance of such generic
guidelines is the purpose of this paper. For this, we par-
tially take inspiration from principled approaches [18], [9]
(reviewed in Section III) extending accuracy (or 0/1 costs)
to indeterminate predictions. We propose our guidelines and
properties for costs of indeterminacy in Section IV, going
from those we perceive as the most essential to those whose
adoption seems largely contextual. To make these guidelines
operational, we then propose in Section VI a simple yet
generic formula satisfying most of our properties and relying
on a single parameter measuring the decision maker aversion
to indeterminacy. Section VII presents two illustrative experi-
ments performed on ordinal regression problems, the first one
dealing with the problem of tuning an imprecise probabilistic
classifier, the second one with the problem of comparing
indeterminate cost-sensitive classifiers. Necessary background
knowledge and notations are provided in Section II.

II. SETTINGS: COST FUNCTIONS AND PREDICTIONS

Multi-class classification problem is about assigning a pre-
diction ŷ to an observation x issued from the input feature
space X = X1×. . .×Xm. When the prediction ŷ is a singleton
of the output space Ω, it is what we call a determinate
prediction.

Requiring such determinate predictions is by far the most
encountered setting in classification. Yet, there are some
classes of problems where making indeterminate (i.e., set-
valued) predictions may be useful, for instance to pre-select
some possible classes with weak but efficient classifiers, or to
make more reliable predictions in sensible areas (e.g., medical
diagnosis, risk analysis, fault detection). An indeterminate
prediction then consists in predicting a set Ŷ ∈ 2Ω \ ∅ of
classes. A determinate classifier then becomes a special case
where all sets are reduced to singletons.

We also assume that we are in a cost-sensitive setting: each
class of the output space ŷ ∈ Ω is associated to a cost function



IEEE TRANSACTIONS ON CYBERNETICS 2

cŷ : Ω → R+, such that cŷ(y) is the cost of predicting class
ŷ ∈ Ω when y ∈ Ω is the ground-truth, i.e., the observed class.
In the rest of the paper, we will refer to the specific case of
0/1 costs (cŷ(y) = 1 when ŷ 6= y, 0 otherwise) as accuracy,
to differentiate it from generic costs.

Example 1. The interest of cost functions is to model the
costs of making a wrong decision. For example, consider
the problem of obstacle recognition where a vehicle needs
to recognize in situation x whether it faces a human (h), a
bicycle (b) or nothing (n) (i.e. Y = {h, b, n}).

As both human and bicycle are obstacles to be avoided, a
confusion between h and b is not very important. Predicting
h or b when there is nothing becomes more costly (the vehicle
makes a unnecessary manoeuvre). Finally, predicting n when
there is an obstacle h or b is a big mistake that could cause
an accident. This kind of information can easily be expressed
through predictive costs. Table I provides an example of a cost
matrix modelling these information.

TABLE I
COST MATRIX DEFINED ACCORDING TO THE RISK LEVEL OF SITUATIONS

truth
cŷ(y) y = h y = b y = n
ŷ = h 0 1 2
ŷ = b 1 0 2
ŷ = n 4 4 0

In learning settings, these costs can be used both to
1) determine what is the optimal prediction of a new

instance x when a probabilistic model is given, and
2) evaluate the average cost incurred by a predictive model,

in order to compare models and pick the best one.
We will first recall how such costs are used in a determinate
probabilistic setting, before discussing how they can be ex-
tended to accommodate indeterminacy.

A. Making and evaluating determinate predictions

In a probabilistic model, (determinate) predictions are based
on the conditional probability functions p(·/x) : Ω → [0, 1]
of the class given x. The classical means to compare different
predictions is the expected cost

E[cŷ] =
∑
y∈Ω

p(y/x)cŷ(y) (1)

of predicting/choosing a class ŷ. The prediction

ŷ? = arg min
ŷ∈Ω

E[cŷ] (2)

with the lowest expected cost is then chosen. An alternative
way to interpret this decision process, that will be instrumental
in the rest of this paper, is that it comes down to establish a
preference order � between the classes, defined as follows:

Definition 1. Prediction ŷ1 ∈ Ω is preferred to ŷ2 ∈ Ω,
denoted ŷ1 � ŷ2, iff

E[cŷ2 − cŷ1 ] > 0⇔ E[cŷ2 ] > E[cŷ1 ]. (3)

The ŷ? of Equation (2) is then equivalent to taking the
maximal element of �. Definition 1 can be interpreted in the

following way: ŷ1 is preferred to ŷ2 when the expected cost of
exchanging ŷ1 for ŷ2 is positive. Note that when considering
simple accuracy, this procedure reduces to comparing the
probabilities of each class y and choosing the one having the
maximal probability.

Beyond making optimal predictions once a model is learned,
the notion of cost can also be used to assess the empirical
average performance of a model on a set of I.I.D. test data D =
(xi, yi)i∈[1;N ], and therefore to compare two models. Let fk :
X → Ω be the decisions taken when applying Equation (2)
to conditional probabilities pk issued from different models.
Then the average loss (cost) Rk, also known as empirical risk,
incurred by fk on D is

Rk = 1
N

N∑
i=1

cfk(xi)(yi), (4)

and we can compare any pair fk, f` of models to choose the
one incurring the minimal average loss.

Remark 1. In practice, Equation 4 can be derived from any
decision function f , not necessarily obtained from conditional
probabilities. In this case, the misclassification costs have to be
integrated in the learning process to obtain optimal models, in
contrast with probabilistic approaches. In the rest of the paper,
to make the discussion easier to follow, we keep assuming
a probabilistic model. Yet, our results extend easily to non-
probabilistic decision functions allowing for indeterminate
predictions.

B. Making and evaluating indeterminate predictions with pre-
cise probabilities

In principle, adapting the cost-sensitive setting to inde-
terminate predictions is rather straightforward: we just have
to define, for each set-valued prediction Ŷ ∈ 2Ω\∅, a cost
function cŶ : Ω→ R+ where cŶ (y) is the cost of predicting
the set Ŷ when y is the observed class. This means that the
equivalent cost matrix is no longer a square matrix, but has a
number of rows equal to 2|Ω| − 1.

Example 2. We consider Example 1, but now allow for the
possibility to predict sets of classes. That is, we may decide to
predict that the potential obstacle may be “human or bicycle”
({h, b}), “bicycle or nothing” ({b, n}), “human or nothing”
({h, n}) or even “uncertain” ({h, b, n}). Table II summarizes
the extended cost matrix.

TABLE II
COST MATRIX WITH INDETERMINATE PREDICTIONS

truth
cŶ (y) y = h y = b y = n

Ŷ = {h} 0 1 2
Ŷ = {b} 1 0 2
Ŷ = {n} 4 4 0
Ŷ = {h, b} c{h,b}(h) c{h,b}(b) c{h,b}(n)
Ŷ = {b, n} c{b,n}(h) c{b,n}(b) c{b,n}(n)
Ŷ = {h, n} c{h,n}(h) c{h,n}(b) c{h,n}(n)
Ŷ = {h, b, n} c{h,b,n}(h) c{h,b,n}(b) c{h,b,n}(n)
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Once this cost matrix is defined, producing optimal inde-
terminate predictions or evaluating an indeterminate classifier
can be done by simply extending the domain of the output
space from Ω to 2Ω\∅ in Equations (2) and (4).

It should be noted that while such a matrix is useful to
visualise how costs of indeterminacy can be defined, it is
not computationally practical if there are many classes, as an
exponentially increasing number of alternatives is involved in
Equation (2). This is why most existing probabilistic proposals
[9], [19], [4] (reviewed in next sections) focus on providing
formulas for which only a limited number of indeterminate
predictions have to be considered to obtain the optimal one.

C. Making and evaluating indeterminate predictions with im-
precise probabilities

Indeterminate predictions, by being more cautious, are
meant to be more reliable than determinate ones. In practice,
this reliability need can also be addressed when representing
the uncertainty, prior to the decision-making stage. This is one
of the core idea of the imprecise probability framework [20],
where uncertainty is modelled by a (convex) set P of possible
probability distributions instead of a single one. This set, also
called credal set [21], represents the uncertainty about the true
distribution that cannot be perfectly identified (e.g., due to
noises, biases, lack or imprecision of data, . . . ). Example 3
shows how our obstacle recognition illustrative problem can
be represented in the imprecise probability framework.

Example 3. We consider again Example 1. A standard prob-
abilistic classifier could yield precise estimates such as:

p(h/x) = 0.1, p(b/x) = 0.3, p(n/x) = 0.6.
In the imprecise probability framework, a classifier could

return interval-valued estimates such as:

p(h/x) ∈ [0; 0.2], p(b/x) ∈ [0.3; 0.4], p(n/x) ∈ [0.4; 0.6].
The probabilities are now interval-valued, the width of

which represent the uncertainty about the estimations. A large
interval means that we have poor or inconsistent information
about the class. On the contrary, the classifier may output
“precise” estimations (or narrow interval) when it has enough
information (data).

The credal set P is the set of all possible precise probabil-
ities (p(h/x), p(b/x), p(n/x)) within these interval bounds.
Here P is a polytope defined by the convex hull of its four
vertices in a three dimensional space:

P = CH{(0, 0.4, 0.6); (0.2, 0.3, 0.5)
; (0.2, 0.4; 0.4); (0.1, 0.3, 0.6)}

where CH stands for convex hull.

As P is a polytope and the expectation E is a linear operator,
expectations on P can be represented by lower and upper
bounds [E;E], on which we can base our decision process.
Given a function c : Ω→ R, the lower expectation reads

E[c] = min
p∈P

E[c] = min
p∈P

∑
y∈Ω

p(y/x)c(y), (5)

The upper expected cost E is obtained by replacing min with
max and both are dual, in the sense that E(c) = −E(−c).

There are then several ways to extend the notion of expected
cost and classical decision making to credal sets [22], some of
which still producing determinate predictions, other producing
indeterminate ones, on which we will focus. More precisely,
we will use the notion of maximality, that builds a partial order
�M over the classes using the following definition:

Definition 2 (Maximality).

ŷi �M ŷj ⇔ E[cŷj − cŷi ] > 0⇔ E[cŷj − cŷi ] > 0 ∀p ∈ P.
(6)

This is a formal extension of Definition 1, as we retrieve
it when P is reduced to a singleton. Equation (6) can be
interpreted as follows: ŷi is preferred to ŷj if exchanging ŷi for
ŷj always has a positive cost whatever the given probability
distribution. Note that obtaining the order � requires to
perform at worst K(K − 1) computations (where K = |Ω|
is the cardinal of Ω), one for each pair of classes. As in
the classical case, we can take as prediction Ŷ the maximal
elements of the induced order:

Ŷ =
{
ŷi ∈ Ω |6 ∃ŷj : ŷj �M ŷi

}
. (7)

There are other extensions of Definition 1 using credal sets and
producing indeterminate predictions (i.e., interval dominance,
E-admissibility), yet for the purpose of this paper, it is enough
to focus on the most used and well-founded one. We refer to
Troffaes [22] for a detailed discussions of the different rules.

Example 4. Let us use the maximality criterion on the
interval-valued probabilities given in Example 3 and the costs
given in Example 1 to infer ŶM.

Let us first consider the pair {b, n} and the difference cn−
cb. We have

E[c{n} − c{b}] = min
(
3p(h/x) + 4p(b/x)− 2p(n/x)

)
= 3 ∗ 0.1 + 4 ∗ 0.3− 2 ∗ 0.6 = 0.3

which is obtained for the extreme point (0.1, 0.3, 0.6) of
Example 3. As this is positive, we can infer b �M n.
Furthermore, for the pair {h, b} we have

E[c{h} − c{b}] = min
(
− 1p(h/x) + 1p(b/x) + 0p(n/x)

)
= −0.2 + 0.3 = 0.1

obtained for the extreme point (0.2, 0.3, 0.5). This is again
positive, so b �M h, and b ends up being the only non-
dominated class, hence Equation (7) gives us Ŷ = {b}.

In contrast with the precise case of Section II-B, it is
not necessary to expand the original determinate costs cŷ to
generic sets cŶ in order to produce the prediction Ŷ from
a credal set. This means, in particular, that with generic
costs the computational complexity of producing indeterminate
predictions increases quadratically in the number of classes,
rather than exponentially. However, we still needs to define
costs cŶ to be able to compare the predictions of two classifiers
based on credal sets.
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If defining cost of determinate predictions can already be
difficult, defining the cost functions of indeterminate predic-
tions is even more difficult. For instance, costs of determinate
prediction can be extracted from expert information, from
the actual costs (in money) of making mistakes, or from
the structure of Ω (examples include ordinal classification,
multilabel problems, hierarchical classification, . . . ). Such
sources cannot usually be used when adding imprecision to
the predictions, making more difficult the task to assess the
cost of indeterminacy.

This assessment is the question we address in this paper,
which can take the following form: considering Example 2,
how to fill up the missing numbers in matrix in Table II
so that they make sense? Although some specific proposals
exist [4], [17], there are to our knowledge no general axiomatic
guidelines applicable to any cost functions that would help
to define principled costs of indeterminate classifications. We
provide such guidelines in Section IV, while the next section
reviews the case of standard accuracy, for which convincing,
principled answers already exist.

III. STANDARD ACCURACY

Accuracy for determinate classification corresponds to the
cost function cŷ(y) = 0 if y = ŷ, and cŷ(y) = 1 oth-
erwise. A common proposal to adapt this to indeterminate
classification is the so-called discounted accuracy, such that
cŶ (y) = 1 − 1/|Ŷ | (where |Ŷ | stands for the cardinal of
Ŷ ) if y ∈ Ŷ , cŶ (y) = 1 else. Yet such a choice has been
strongly criticized by Zaffalon et al. [18], on the basis that
it considers the value of predicting Ŷ to be the same as
choosing randomly within Ŷ . In other words, it gives no value
to cautiousness, which is confused with randomness. We will
see that a similar argument holds for costs of indeterminate
predictions in Section IV.

A. Utility discounted accuracy

Rather than adopting the discounted accuracy, Zaffalon et
al. [18] propose to keep cŶ (y) = 1 if y 6∈ Ŷ , but to take
cŶ (y) = 1−g(1/|Ŷ |) if y ∈ Ŷ , where g is a utility function on
[0, 1] such that g(1/|Ŷ |) ≥ 1/|Ŷ |, g(1) = 1 and g(0) = 0. They
interpret g as a concave function modelling the risk-aversion
(i.e., the utility), or the cautiousness-seeking attitude of the
decision maker. In particular, they propose specific quadratic
forms of g fitted by specifying one additional point, among
which the following one:

g(x) = −0.6x2 + 1.6x (8)

That corresponds to fixing g(1/2) = 0.65, a small increase of
the initial discounted accuracy 1/2. The function is pictured in
Figure 1. This specific utility keeps some appealing properties
of the discounted accuracy: when the correct class is not in Ŷ
the cost should stay at 1, when the prediction is both precise
and accurate (|Ŷ | = 1, y ∈ Ŷ ) then the cost should be 0.
Moreover, this utility function should express our risk-aversion
by giving a smaller cost (or higher accuracy) to imprecise but
correct predictions compared to the discounted accuracy.

cost

1/|Ŷ |

0.35

0.5

0.5

0.5

1

10

discounted accuracy

g(x) = −0.6x2 + 1.6x

Fig. 1. Risk-averse discounted accuracy

Table III provides the matrix obtained when Equation (8)
is applied to Example 1. The very basic properties we will
propose in the next sections will rely on a similar observation
concerning the costs of indeterminate predictions. However,
there will be some differences with accuracy, notably because
the costs of making mistakes in the prediction will not always
be the same.

TABLE III
COST MATRIX DEFINED USING THE UTILITY DISCOUNTED ACCURACY

truth
cŶ (y) y = h y = b y = n

Ŷ = {h} 0 1 1
Ŷ = {b} 1 0 1
Ŷ = {n} 1 1 0
Ŷ = {h, b} 0.35 0.35 1
Ŷ = {b, n} 1 0.35 0.35
Ŷ = {h, n} 0.35 1 0.35
Ŷ = {h, b, n} 0.54 0.54 0.54

B. Fβ measure

Del Coz and Bahamonde [9] make a similar proposal to
evaluate indeterminate predictions based on the well-known
Fβ measure, which computes the harmonic mean (weighted
by the coefficient β) between precision P and recall R:

Fβ = (1 + β2)P ·R
β2P +R

. (9)

This approach has been shown in [18] to be equivalent to
choosing a specific instance of utility function g. The precision
P measures how many predicted classes in Ŷ are relevant, and
the recall R measures how many relevant classes are predicted.
Therefore, for an indeterminate prediction Ŷ and the truth
y ∈ Ω, we can compute the following contingency table:

y = z y 6= z
∑

z ∈ Ŷ TP FP |Ŷ |
z /∈ Ŷ FN TN |Ω| − |Ŷ |∑

1 |Ω| − 1
The table expresses four situations: the sets of “true posi-

tive” {z ∈ Ŷ : y = z} and “false positive” {z ∈ Ŷ : y 6= z}
on one hand, with cardinality TP and FP , respectively; and
the sets of “false negative” and “true negative” on the other
hand, with cardinality FN and TN , respectively. Therefore,
TP+FP gives the cardinal of the predicted set Ŷ and, as there
is only one true class, TP + FN is equal to one. Therefore
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precision and recalls simplify into

P (Ŷ , y) = TP
TP + FP =

1Ŷ (y)
|Ŷ |

,

R(Ŷ , y) = TP
TP + FN = TP = 1Ŷ (y),

where 1Ŷ is the indicator function of Ŷ . As Fβ measures
the reward of a prediction, and not its cost, the costs of
indeterminate prediction are given by 1−Fβ . Table IV provides
the matrix that would be obtained in Example 1 when β is set
to 1.

TABLE IV
COST MATRIX DEFINED USING F1 MEASURE

truth
cŶ (y) y = h y = b y = n

Ŷ = {h} 0 1 1
Ŷ = {b} 1 0 1
Ŷ = {n} 1 1 0
Ŷ = {h, b} 1/3 1/3 1
Ŷ = {b, n} 1 1/3 1/3
Ŷ = {h, n} 1/3 1 1/3
Ŷ = {h, b, n} 0.5 0.5 0.5

In the case of accuracy, both approaches correspond to
reward cautiousness when making indeterminate predictions
containing the true class. Because mistake costs are constant,
this reward is always the same for a given cardinality (e.g.,
c{h,n}(h) = c{h,n}(n) in our examples), and similarly the
cost of making a mistake is also constant (e.g., c{h,b}(n) =
c{b,n}(h) = c{h,n}(b)). In the next section we shall propose
guidelines for general costs that, as we shall discuss in
Section V, are consistent with 0/1 case.

IV. THE COST OF INDETERMINACY: GUIDELINES

This section proposes guidelines to build the function cŶ ,
by defining properties that it should or could follow. We
will start with properties that it should follow, those that
make indeterminate predictions possible and that belong to
common sense. We will then discuss some properties that
may be desirable in some settings, and undesirable in others.
This will allow us to revisit some existing proposals, before
proposing some generic formulation (similar to the g function
in Equation (8) for accuracy).

A. Making indeterminacy possible

The logic of discounted accuracy (Section III) gives a first
way to define costs for indeterminate predictions, that we will
call discounted costs.

Definition 3. Given costs cŷ for determinate predictions ŷ ∈
Ω, a discounted cost is defined as the average cost (noted c̄)
over its precise components ŷ ∈ Ŷ , such that

c̄Ŷ (y) =
∑
ŷ∈Ŷ cŷ(y)
|Ŷ |

. (10)

Discounted costs reduce to discounted accuracy when con-
sidering 0/1 costs. Table V gives the completed matrix of
Example 2 with the discounted costs of Definition 3.

TABLE V
COST MATRIX WITH DISCOUNTED COSTS

truth
cŶ (y) y = h y = b y = n

Ŷ = {h} 0 1 2
Ŷ = {b} 1 0 2
Ŷ = {n} 4 4 0
Ŷ = {h, b} 1/2 1/2 2
Ŷ = {b, n} 5/2 2 1
Ŷ = {h, n} 2 5/2 1
Ŷ = {h, b, n} 5/3 5/3 4/3

We will say that an indeterminate prediction is possible if
it satisfies the following definition:

Definition 4 (Possibility of an indeterminate prediction Ŷ ).
An imprecise prediction Ŷ is said to be possible if there exists
a probability distribution p such that:

E[cŶ ] < min
ŷ∈Ŷ

E[cŷ].

Now, if we want to make indeterminate predictions, a first
obvious requirement is that at least one of them should be
possible. This can be translated by the following property, that
we call Possibility of indeterminate predictions.

Property 1 (Possibility of indeterminate predictions). Costs
are said to make indeterminate predictions possible if there
is at least one indeterminate prediction Ŷ ∈ 2Ω \ ∅ that is
possible, according to Definition 4.

This is an essential property, since if we do not have it, then
speaking of indeterminate predictions makes no sense at all,
as they would be impossible to obtain. In light of this, we can
easily show that discounted costs, or any cost function c such
that cŶ > c̄Ŷ , do not make indeterminate predictions possible.

Proposition 1. The discounted costs c̄Ŷ (y) are such that for
any Ŷ ∈ 2Ω \ ∅

E[c̄Ŷ (y)] ≥ min
ŷ∈Ŷ

E[cŷ].

Proof: We have that

E[c̄Ŷ ] =
∑
y∈Ω

p(y/x)c̄Ŷ (y) = 1
|Ŷ |

∑
y∈Ω

p(y/x)
∑
ŷ∈Ŷ

cŷ(y)

= 1
|Ŷ |

∑
ŷ∈Ŷ

∑
y∈Ω

p(y/x)cŷ(y) = 1
|Ŷ |

∑
ŷ∈Ŷ

E[cŷ].

As E[c̄Ŷ ] is the average of values E[cŷ] for ŷ ∈ Ŷ , it cannot
by definition be lower than minŷ∈Ŷ E[cŷ].

Hence, cŶ 6≥ c̄Ŷ is a necessary constraint for indeterminate
prediction Ŷ to be possible, showing that discounted costs,
similarly to the discounted accuracy in the 0/1 case, are not
ideal choices to make indeterminate predictions.

Example 5. Consider Table II with the following values for
Ŷ = {h, b}:

c{h,b}(h) = c{h,b}(b) = 1 and c{h,b}(n) = 2

which are higher than the discounted costs of Table V. Since
c{h,b} ≥ c{h} and c{h,b} ≥ c{b}, then E[c{h,b}] ≥ E[c{h}] and
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E[c{h,b}] ≥ E[c{b}] for any probability. On the converse, if we
now take the value

c{h,b}(h) = c{h,b}(b) = 1/4 and c{h,b}(n) = 2

that are lower than the discounted cost, then {h, b} becomes
a possible prediction. Indeed, the uniform probability gives
E[c{h,b}] = 5/6, which is lower than E[c{h}] = E[c{b}] = 1.

A stronger property is to require every possible indetermi-
nate prediction to satisfy the necessary condition

Property 2 (indeterminacy permissiveness). Costs are said to
be indeterminacy permissive if, for all Ŷ ∈ 2Ω \ ∅, we have

cŶ 6≥ c̄Ŷ
where cŷ1 ≤ cŷ2 denote element-wise inequality, that is :

cŷ1 ≤ cŷ2 ⇔ ∀y ∈ Ω : cŷ1(y) ≤ cŷ2(y). (11)

Unless we want some particular indeterminate prediction
to be impossible, or strongly penalized during evaluation, this
property looks sensible. Let us now enumerate some properties
that are not related to allowing for indeterminate predictions,
but can be seen as common-sense, and should therefore be
satisfied in our opinion.

B. Common-sense properties

A first common sense property, similar to those addressed
in the case of accuracy (Section III), is that cautiousness
should be rewarded to some extent. Said in other words, an
indeterminate prediction Ŷ should be rewarded if it contains
the true value y, i.e., if y ∈ Ŷ .

Property 3 (Reward rightful cautiousness). Costs are said to
reward rightful cautiousness if, for any Ŷ , we have

y ∈ Ŷ ⇒ cŶ (y) < c̄Ŷ (y).

This property complements the one of indeterminacy per-
missiveness (Property 2), as it specifies at least a subset of
values for which the inequality cŶ 6≥ c̄Ŷ should be satisfied.
For example, Property 3 imposes c{h,b}(h) ≤ 1/2 in Table II,
but does not constraint c{h,b}(n), as n 6∈ {h, b}.

Up to now, we have explored properties making indeter-
minate predictions possible, yet another natural requirement
is that determinate predictions should also remain possible. In
particular, this means that none of the indeterminate prediction
should have a cost always lower than the minimum of the
determinate costs of its components.

Property 4 (Non dominance of indeterminate predictions).
Indeterminate predictions are said to be non-dominant if, for
all Ŷ ∈ 2Ω \ ∅, we have

cŶ (y) ≥ min
ŷ∈Ŷ

cŷ(y).

For example, we should have c{b,n}(h) ≥ 1 or c{h,b}(n) ≥
2 in Table II. Put together, Properties 2 and 4 already provide
some constraints that cŶ should follow. Another one is that,
if the cost vectors formed by the elements of a indeterminate
predictions are the same, up to a permutation, for two observed

classes y and y′, then cŶ (y) and cŶ (y′) should be identical,
due to symmetry reasons. Before giving the related property,
let us introduce some notation. If Ŷ = {ŷ1, . . . , ŷn} is an
indeterminate prediction and y a class, we will denote by
C(Ŷ )(y) = (cŷ(1)(y), . . . , cŷ(n)(y)) the ordered vector such
that cŷ(i)(y) ≤ cŷ(i+1)(y).

Property 5 (permutation invariance). Costs of indeterminate
prediction Ŷ are said to be permutation invariant if, for two
different classes y and y′, we have

C(Ŷ )(y) = C(Ŷ )(y
′)⇒ cŶ (y) = cŶ (y′).

For instance, in Example 2, we do have that C{h,b,n}(h) =
C{h,b,n}(b) = (0, 1, 4), hence if we require permutation invari-
ance, we should have c{h,b,n}(h) = c{h,b,n}(b) in Table II. We
do not see any reason to not require permutation invariance,
hence we also consider it as a desirable property.

C. Context-dependent properties

We will now study properties whose desirability may de-
pend on the specific use of indeterminate predictions. In
particular, we will differentiate two different settings:
• The filtering setting, where the goal is to filter some

classes (possibly with computationally cheap methods)
before applying a costlier procedure. In this case, it seems
essential that the indeterminate prediction contains the
true class, otherwise the costly procedure is applied for
nothing;

• The choice setting, in which case the indeterminate pre-
diction aims at giving cautious predictions to the decision
maker, that can then make a choice among them if she/he
desires or takes other actions such as gathering more
information. In this case, an indeterminate prediction is
a valuable information by itself, as it may indicate to
the decision maker an ambiguous or poorly informed
situation, therefore it may be desirable even if the true
class is not within it.

Again, we will illustrate these two settings with Example 7.
1) Mistake behaviour: When making mistakes with inde-

terminate predictions, we can have two behaviours: either
penalizing such mistakes, or seeking cautiousness even when
making mistakes. This can be translated in the following two
properties:

Property 6 (Mistake averse). Costs are said to be mistake
averse if, for any Ŷ , we have

y 6∈ Ŷ ⇒ cŶ (y) ≥ c̄Ŷ (y).

Property 7 (Cautiousness seeking). Costs are said to be
cautiousness seeking if, for any Ŷ , we have

y 6∈ Ŷ ⇒ cŶ (y) ≤ c̄Ŷ (y).

Clearly, these two properties complement Property 3 in
opposite ways, by specifying the desirable behaviour of inde-
terminate predictions in case of mistake. In the filtering setting,
making a mistake when being indeterminate is clearly penal-
izing, as we will incur the cost of the additional procedure
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without any benefit, therefore Property 6 is more adapted than
Property 7 to this setting.

In the choice setting, we think that the choice is not so
obvious. Of course the decision maker could desire to punish
the fact of being indeterminate and wrong by considering that
this is worse than being determinate and wrong. Yet, it could
also be the case that the decision maker prefers to be cautious
when missing some information, even if the prediction is
wrong. Indeed, by explicitly stating (through indeterminacy)
that the situation is ambiguous, further introspection could lead
to the right results, while expressing certainty would not lead
to such introspection. A similar remark could be made about
automatic systems where indeterminacy triggers a warning
towards a human operator, while determinacy let the automatic
system handle the situation. Therefore, we think that in the
choice setting, both Properties 6 and 7 can be conceived.

Example 6. Consider Table II with the following values for
Ŷ = {h, b}:

c{h,b}(h) = c{h,b}(b) = 1/4 and c{h,b}(n) = 3

which satisfy all previous properties as well as Property 6.
In this, {h, b} is still a possible prediction (for example by
taking p(h/x) = p(b/x) = 1/2), but the uniform probability
gives E[c{h,b}] = 7/6, which is now higher than E[c{h}] =
E[c{b}] = 1, in contrast with what happens in Example 5.

2) Cost-sensitivity to correctness: Property 5 tells us that
identical cost vectors should result into identical costs for the
related indeterminate predictions. Yet, it does not specify any
behaviour when the vectors are different. The two following
properties address this situation.

Property 8 (Correctness cost-insensitivity). Costs are said to
be insensitive in case of correctness if, for any Ŷ and any two
classes y, y′ ∈ Ŷ , we have cŶ (y) = cŶ (y′).

Property 9 (Correctness cost-sensitivity). Costs are said to
be correctness sensitive if we can have a Ŷ and two different
classes y and y′, such that

C(Ŷ )(y) 6= C(Ŷ )(y
′) and cŶ (y) 6= cŶ (y′).

In a fully automatic procedure like in the filtering setting
where the goal is to filter the relevant classes and to leave the
final decision to a more specialized classifier, we think that
the first property fits better, as the cost then corresponds to the
cost of using the specialized classifier, which is independent
of the true class. However, Property 9 could be useful in some
situations, namely when an expert is able to assign different
costs according to the truth. Example 7 gives an illustration
of these two settings.

Example 7. To simplify things, assume that in the problem of
obstacle recognition, only the two classes h and n are present.
The cost matrix given in Table VI satisfies properties 2, 3
and 8. Using simple computations, we can express the associ-
ated decision rule as a function of p(n/x). This decision rule
is represented in the upper part of Figure 2.

We consider now that the opinion of an expert is that
deciding {h, n} when the truth is {n} is a kind of false alarm

TABLE VI
COST MATRIX WITH INDETERMINATE PREDICTIONS

truth
cŶ (y) y = h y = n

Ŷ = {h} 0 2
Ŷ = {n} 4 0
Ŷ = {h, n} 0.5 0.5

(a)
0.25 0.875

p(n)

Ŷ = {h} Ŷ = {h, n} Ŷ = {n}

(b)
0.17 0.83

p(n)

Ŷ = {h} Ŷ = {h, n} Ŷ = {n}

Fig. 2. Graphical representation of the decision as a function of p(n/x); (a)
: decision with a cost matrix in Table VI ; (b) : decision with a cost matrix
in Table VII.

and thus should be more costly than deciding {h, n} when
the truth is {h}. Assume that the expert roughly states that it
should be 3 times more costly, and that to fix cost values we
impose the expected cost of {h, n} to be 0.5 when p(h) = p(n)
(as in Table VI). This gives the cost matrix expressed in Table
VII, which now follows properties 2, 3 and 9.

TABLE VII
COST MATRIX WITH INDETERMINATE PREDICTIONS

truth
cŶ (y) y = h y = n

Ŷ = {h} 0 2
Ŷ = {n} 4 0
Ŷ = {h, n} 0.25 0.75

In this case, the decision is slightly modified and is repre-
sented in the lower part of Figure 2. As could be expected, the
boundary between {h, n} and {h} has been shifted to the left
due to the decrease of c{h,n}(h): the decision {h, n} is more
favoured for small values of p(n/x) than with the cost matrix
in Table VI. On the other hand, as the cost c{h,n}(n) has been
raised, the boundary between {h, n} and {n} has also been
shifted to the left, what penalizes the decision {h, n} for high
values of p(n/x).

From Example 7, we can also notice that fulfilling Prop-
erty 8 is more constraining in terms of cost definition, espe-
cially in a binary setting where it means that the expected cost
of the (only) indeterminate prediction does not depend at all
on the values of p(n) and p(h). While this certainly makes
easier the determination of those costs, it may not always be
a desirable value, as illustrated in Example 7.

3) Upper boundedness: Similarly to Property 4, it may be
desirable to bound the cost of indeterminate predictions by
above:

Property 10 (Upper bounded). An indeterminate prediction
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is upper-bounded if for all Ŷ ∈ 2Ω \ ∅, we have

cŶ (y) ≤ max
ŷ∈Ŷ

cŷ(y).

That this property is as desirable as Property 4 is not
always obvious. Indeed, in the filtering setting, the cost of the
additional procedure may go beyond the maximal cost, as in
case of mistake we may want to give a very strong penalty to
avoid using the procedure for nothing. Requiring this property,
however, makes perfect sense in the choice setting, as whatever
the final choice of the decision maker, the incurred cost cannot
be bigger than the maximal one, whatever the truth.

It should be noted that if one requires both Properties 4
and 10, then it implies that when cŷ(y) = cŷ′(y) for any ŷ, ŷ′

in some indeterminate prediction Ŷ , we must have cŶ (y) =
cŷ(y). For instance, in the matrix of Table II, this enforces
c{h,b}(n) = 2.

Table VIII provides a synthetic view about the different
properties discussed in this paper, as well as whether we
perceive their satisfaction as necessary, optional or even un-
warranted in some setting. Of course, this table should be
considered as indicative of a general case, and not in any way
mandatory, as some peculiar situations may require peculiar
cost definitions.

V. REVIEW OF RELATED WORKS

In this section, we will re-examine some existing proposals
in the light of our properties.

a) Utility-discounted accuracy : The proposal of Zaf-
falon et al. [18] is quite interesting, as it satisfies absolutely
all our proposed properties (apart from Property 9 which does
not happen in case of 0/1 costs), yet this is mostly due to
the inherent symmetry and constant values of the considered
costs.

Even if that was not needed (due to the strong theoretical
foundations of the initial proposal), this shows that this pro-
posal is very sensible in the case of 0/1 costs.

b) The optimum class-selective rejection rule: Ha [4]
elaborated an indeterminate classifier based on partial rejection
rules. Its goal is to find the optimal error-reject trade-off using
a specific loss structure (cost matrix) defined as follows :

cŶ (y) = LŶ (y) + Lip(Ŷ ),

where LŶ (y) = 0 if the true class y is included in the pre-
diction Ŷ , and otherwise LŶ (y) = η(y), with η(y) modelling
the loss of missing the true class y. Lip(Ŷ ) = δ(|Ŷ | − 1)
where δ is a constant parameter representing the cost of being
imprecise, with the condition that δ < 1/2η(y) for all y. The
obtained cost matrix when Ω = {a, b, c} is given by Table IX.
The condition δ < 1/2η(y) ensures that Properties 2 and 3
are satisfied. Furthermore, the proposal also satisfies basic
properties 4 and 5.

Regarding context-dependent properties, this proposal sat-
isfies Properties 8 and 6, and does not satisfy Property 10. In
the light of our discussion of those properties, it is clear that
this proposal is better fitted to the filtering than to the choice
setting, which is precisely the setting in which Ha [4] sets his
work.

It should however be noted that the proposal only considers
specific cost matrices where the misclassification cost only
depends on the true class, and not on the mistaken prediction.
As recalled in Section II-B, the main reason for this is that
such a constraint allows one to use efficient algorithms to find
the prediction having minimal expected cost.

c) Cost matrix defined using different assumptions:
Abellan and Masegosa [17] propose another measurement
for imprecise classifiers. Their main goal is to be able to
compare indeterminate classifiers, since the indeterminacy
of predictions follows in their case from using imprecise
probabilities. This means that they do not face the problem
of an exponentially increasing complexity when making the
predictions. The cost matrix they propose, once a linear change
is applied to have cy(y) = 0 (this is done to compare with
previous approaches), is as follows:
• if y ∈ Ŷ , then

cŶ (y) = log |Ŷ |;

• if y /∈ Ŷ , then

cŶ (y) = log |Ω|
(

maxŷ∈Ŷ cŷ(y)
|Ω| − 1 + 1

)
.

This satisfies basic Properties 4, 10 and 5, yet there are
no guarantee that Properties 2 and 3 will be satisfied, a clear
potential drawback. The proposal also does modify the initial
costs (values cŷ(y) are modified), another potential drawback.
It satisfies Properties 6 and 8, which seems to indicate that it
is more fitted to a filtering setting, yet it is not entirely clear
that Abellan and Masegosa [17] considered such a purpose,
as the paper only uses the costs for comparing cost-sensitive
indeterminate classifiers.

VI. GENERIC FORMULATION FOR COST OF
INDETERMINACY

In this section, we propose a general way of instantiating
costs for indeterminate classifiers from the initial determinate
costs cŷ , based on the notion of utility discounted cost intro-
duced in Section III, that we will call “p−discounted costs”.
Of course, as for usual costs, costs of indeterminacy should be
defined on a case-by-case basis in applications, with the help
of experts. The goal of the presented formula is to provide an
easy way to perform systematic investigation and comparison
of indeterminate classifiers. For instance, this can concern
problems where the space Ω possess a structure and where
costs are derived from this structure (e.g., multi-label, label
ranking, ordinal regression).

To make our proposal, we start from the simple observation
that discounted costs of the form

c̄Ŷ (y) =
∑
ŷ∈Ŷ cŷ(y)
|Ŷ |

provide a kind of “baseline” according to Property 1. As they
correspond to a simple arithmetic averaging, a natural way to
extend them is to use generalized mean, that is

c̄p
Ŷ

(y) =

 1
|Ŷ |

∑
ŷ∈Ŷ

cŷ(y)p
 1

p

, (12)
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TABLE VIII
SUMMARY OF PROPERTIES DESIRABILITY, ACCORDING TO THE SETTING. N=NECESSARY, D=DESIRABLE, A=ANALYST CHOICE/APPLICATION

DEPENDENT, U=UNDESIRABLE.

properties
1 2 3 4 5 6 7 8 9 10

Filtering N D N N D N U D U A
Choice N D N N D A A U D N

TABLE IX
COST MATRIX WHERE COSTS ARE BUILT ACCORDING TO HA’S DEFINITION

truth
cŶ (y) y = a y = b y = c

Ŷ = a 0 η(b) η(c)
Ŷ = b η(a) 0 η(c)
Ŷ = c η(a) η(b) 0

Ŷ = {a, b} δ δ η(c) + δ

Ŷ = {a, c} δ η(b) + δ δ

Ŷ = {b, c} η(a) + δ δ δ

Ŷ = {a, b, c} 2δ 2δ 2δ

with p ∈] − ∞,∞[. We retrieve c̄Ŷ (y) when p = 1. In our
case, an interesting feature of generalized means is that if
q < p, then c̄q

Ŷ
(y) ≤ c̄p

Ŷ
(y), with the two being equal if

and only if cŷ(y) = cŷ′(y) for any ŷ, ŷ′ ∈ Ŷ . Hence, if we
want something lower than c̄Ŷ , we just have to choose p < 1,
and p > 1 for something higher.

It should however be noted that we can not define c̄p
Ŷ

(y)
for p < 0 if we have cŷ(y) = 0 for some values of ŷ and
y, because of division by zero. In practice, there are ways to
solve this issue. As the formula is used mainly for comparing
classifiers, we can just add a translation ε to the cost matrix, so
that there is no more 0 in the matrix. As the translation affects
uniformly all classifiers, it will not impact on their comparison.
Moreover, it is not uncommon to have a cost matrix that has
no null element: in a problem involving money, choosing the
right class also has a cost (the basic cost of fabrication, the
minimum buying price,. . . ).

For p = 0, we adopt the convention that c̄0
Ŷ

(y) is the
geometric mean

c̄0
Ŷ

(y) =
( ∏
ŷ∈Ŷ

cŷ(y)
) 1

|Ŷ | . (13)

Therefore, choosing a positive real value r ∈ [0; 1], we
then propose the two following instantiations to introduce the
p−discounted costs
• Cautiousness seeking, where for all y, we define

cŶ (y) = c̄1−r
Ŷ

(y); (14)

• Mistake averse, where for all y ∈ Ŷ , we define

cŶ (y) = c̄1−r
Ŷ

(y), (15)

and for all y 6∈ Ŷ , we define

cŶ (y) = c̄1+r
Ŷ

(y). (16)

This naturally satisfies basic Properties 2, 3 and 5. Since we
have1 that c̄−∞

Ŷ
= min and c̄+∞

Ŷ
= max, Properties 10

1At least when there is no cŷ(y) = 0 for some values of ŷ and y.

and 4 are also naturally satisfied for any choice of r. With
respect to context-dependent properties, we satisfy Property 9
(in contrast with other solutions), and each instantiation either
satisfy Property 7 or 6. Given this, it seems that this proposal
is more adapted to a choice setting. Table X provides the costs
obtained for Table II when r = 0.5 and for the cautiousness
seeking version.

TABLE X
COST MATRIX WITH r = 0.5 AND CAUTIOUSNESS SEEKING APPROACH

truth
cŶ (y) y = h y = b y = n

Ŷ = {h} 0 1 2
Ŷ = {b} 1 0 2
Ŷ = {n} 4 4 0
Ŷ = {h, b} 0.25 0.25 2
Ŷ = {b, n} 2.25 1 0.5
Ŷ = {h, n} 1 2.25 0.5
Ŷ = {h, b, n} 1 1 0.89

The above formulation also has the advantage that the value
of r (a single parameter) should be able to calibrate how
“cautiousness-friendly” we are. Indeed, the higher r, the more
cautiousness is rewarded (and mistakes penalized, if we pick
the mistake-averse version), with no reward at all for r = 0.

VII. ILLUSTRATIVE APPLICATION: CALIBRATION AND
SELECTION OF AN IMPRECISE PROBABILISTIC CLASSIFIER

To visualize the behaviour of the formula proposed in Sec-
tion VI, we show in this section two experiments, respectively
dealing with the calibration and selection of an imprecise
probabilistic classifier. The first experiment has two main
goals: to experimentally confirm that the calibration of the r
parameter of p−discounted costs can truly reflect our aversion
for indeterminate predictions, and to show how p−discounted
costs can be used to adjust an imprecision parameter involved
when using an imprecise probabilistic classifier. The second
experiment illustrates a potential use of our framework.

As it is difficult to find data sets which comes naturally with
predetermined error costs, we use ordinal data sets for our
experiments. For these data, the finite set of possible labels
is naturally ordered. For instance, the rating of movies can
be done using the following labels: Very-Bad, Bad, Average,
Good, Very-Good that are ordered from the worst situation to
the best. This will give us an easy way to establish an ordering,
and therefore a metric, over the classes.

Experiments will be conducted on three ordinal data sets
of the UCI Machine Learning Repository, whose details are
given in Table XI. As our aim is not to validate numerically
any model, but to illustrate the behaviours and use of our
proposed formula, using three data sets seems sufficient.
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TABLE XI
DATA SETS DETAILS

Name #instances #features #classes
ERA 1000 5 9
ESL 488 5 9
LEV 1000 5 5

A. `1 norm as cost measurement and specificities of ordinal
data

As the classes in the data sets are ordered, we can use the `1
distance between the rank of classes as an initial cost function.
Let yi and yj be two classes in the space of possible ordinal
classes (y1, . . . , yK) (indexed according to their order). The
cost cyi(yj) of predicting yi when yj is the true class and the
cost cyj

(yi) of predicting yj when yi is true are both defined
as :

cyi
(yj) = cyj

(yi) = |i− j|.

Of course, any `k norm (k 6= 1) can also be used if there is a
specific reason to do so. In our experiments, we will use `1.

Due to this specific ordering of classes, we may also propose
a way to restrict the space of possible predictions to simplify
the decision-making process specified in Section II-B. For
instance, given the labels {Bad, Average, Good}, grouping Bad
and Good together and leaving Average aside is contradictory
to the given order, and it may be argued that only contiguous
classes should be predicted as indeterminate decisions. This
is for instance what is done by Alonso at al. [19]. While this
hypothesis seems intuitive and sensible, it may not always be
true. Indeed, for a controversial film, it is very likely that there
will be two major tendencies that contradict each other (for
example Very Bad and Very Good). Therefore, restricting to
contiguous classes may cause some loss of information, which
may be valuable especially when we try to build a reliable
classifier.

B. Naive Credal Classifier

We have chosen for our experiments to use the Naive
Credal Classifier (NCC) [5], which is an extension of the
Naive Bayesian Classifier (NBC) to the imprecise probability
framework. We summarize in this section the main features
of this credal classifier, and refer to Zaffalon [5] for further
details. The NCC preserves the main properties of the NBC,
i.e. the assumption of attribute independence conditionally on
the class, which can be written as:

p(x1, . . . , xm/y) =
m∏
i=1

p(xi/y),

where (x1, . . . , xm) ∈ (X1, . . . , Xm) are the input features
and y ∈ Ω. Using Bayes law, we can easily compute the
posterior probabilities:

p(y/x1, . . . , xm) = p(y, x1, . . . , xm)
p(x1, . . . , xm) (17)

=
p(y)

∏m
i=1 p(xi/y)∑

y′∈Ω p(y′)
∏m
i=1 p(xi/y′)

. (18)

In the NCC, each p(y) is supposed to belong to a set Py ,
and each conditional probability p(xi/y) to a set PyXi

(these
sets are referred to as local credal sets) so that the model is
characterized by the set P of joint distributions obtained from
all possible combinations of the local credal sets.

Using the Imprecise Dirichlet Model (IDM) [23], one can
then define the local credal sets by probability intervals [24].
These intervals can be computed using the training data by
simply counting occurrences:

p(xi/y) = occi,y
occy + s

, p(xi/y) = occi,y + s

occy + s
, (19)

p(y) = occy
occΩ + s

, p(y) = occy + s

occΩ + s
, (20)

where occi,y is the number of instances in the training set
where the attribute Xi is equal to xi and the class value is y.
occy is the number of instances in the training set where the
class value is in y. occΩ refers to the size of the training data
set. The hyper-parameter s sets the imprecision level of the
IDM, which means that the greater is s, the more indeterminate
the predictions of NCC will be, and vice versa. Note that to
use the IDM, a discretization of the attribute values is needed.
The data set LEV is natively discrete (each attribute is an
integer between 1 and 5). For the two other data sets ERA
and ESL, a discretization into five levels of equal frequencies
has been performed.

Rather than computing Equations (5) by spanning all pos-
sible marginals and conditional within Py and PΩ

Xi
, we will

simplify the problem2 by first computing bounds over each sin-
gletons of the posterior probability p(y|x1, . . . , xm). For this,
we need to solve the following minimization/maximization
problem over the local credal sets:

p(y/x1, . . . , xm) = min
p(y)∈Py

min
p(xi/ω)∈PΩ

Xi
,

i=1,...,m

p(y)
m∏
i=1

p(xi/y)∑
ω∈Ω

m∏
i=1

p(xi/ω)p(ω)
,

(21)

p(y/x1, . . . , xm) = max
p(y)∈Py

max
p(xi/ω)∈PΩ

Xi
,

i=1,...,m

p(y)
m∏
i=1

p(xi/y)∑
ω∈Ω

m∏
i=1

p(xi/ω)p(ω)
.

(22)

It can be shown that the former problems are equivalent to:

p(y/x1, . . . , xm) = min
p(y)∈Py

1 +

∑
y′ 6=y

p(y′)
m∏
i=1

p(xi/y′

p(y)
m∏
i=1

p(xi/y)


−1

,

(23)

2As our purpose is illustrative, using such an approximation is reasonable,
even if it may give more conservative predictions than solving the exact
problem.
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p(y/x1, . . . , xm) = max
p(y)∈Py

1 +

∑
y′ 6=y

p(y′)
m∏
i=1

p(xi/y′

p(y)
m∏
i=1

p(xi/y)


−1

,

(24)

which in turn can be solved by enumerating the extreme
points of Py . Computational details can be found in [5].
Finally, as shown in [24], since the probability intervals
are Choquet capacities of order 2, the computation of the
lower and upper expected costs can be simply obtained using
Choquet integrals.

C. Classifier calibration

r = 0.1
r = 0.5
r = 0.9

0 2 4 6 8 100.5

1

1.5

2

ERA

0 1 2 3 4 5 6 7

0.2

0.4

0.6

LEV

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

ESL

Fig. 3. p−discounted costs (cautiousness-seeking approach, y axis) of ERA,
LEV and ESL with different combinations of r and s (x axis)

In Figure 3, we show, for r ∈ {0.1, 0.5, 0.9}, the
p−discounted costs with s ranging from 0.001 to 10. A
first trivial remark is the respective position of the curves
which confirms that r can truly calibrate our aversion for
indeterminate predictions: the higher r, the lower is the cost
for indeterminate predictions, for a given level of imprecision.

More interestingly, we can notice that the evolution of
the p−discounted costs follows the same general behaviour.
That is, the curves are approximately concave: firstly the cost
decreases when we increase s, because the added imprecision
allows to obtain more correct predictions for “hard to classify”
instances, then, after a given value of s, the cost starts to
increase, as too many (unnecessary) imprecision is added.

This is particularly visible for r = 0.5 and r = 0.9, where
we can see clearly the inflection point (except for LEV where
the inflection point for r = 0.9 is beyond s = 10). For other
cases, the inflection point is still present but less remarkable
in the graphics. The same behaviour can be observed when
we use the mistake-aversed approach, the only difference is
that the value of s which minimize the score is smaller than
with the cautiousness-seeking approach.

We can also note that the range which makes indeterminate
predictions interesting is when r ∈]0; 1[. When r = 0, which
means that we give no reward for cautiousness, then the curves

TABLE XII
CLASSIFIER AVERAGE INDETERMINATE COSTS. RANKS ARE BETWEEN

PARENTHESIS.

NCC 2Tr Fo
ERA 3.79 (3) 2 (2) 1.93 (1)
ESL 2.2 (3) 0.87 (2) 0.81 (1)
LEV 3.43 (3) 1.18 (2) 0.88 (1)

of p−discounted costs are strictly increasing. Similarly for r =
1, which means that the cost is null each time the truth is
included in the prediction, the curve is strictly decreasing.

However, for a same level of r, the optimal s is not always
the same from one data set to another. So it is not possible to
state a direct relationship between the two. Once r is set, we
suggest techniques such as cross-validation to automatically
determine the optimal value of s from the data set.

D. Classifier comparison

Our next illustrative experiment concern the choice of a
particular classifier or method producing indeterminate pre-
dictions. Still using the ordinal data of Table XI, we fix the
value r = 0.5, and consider Equation (14) to complete the cost
matrix. However, we now consider the NCC of Section VII-B
with a fixed parameter s = 2, but in different settings:
• used as in the previous experiments (NCC)
• used as a base classifier in a binary-tree decomposition

approach (2Tr), detailed in [13]
• used as a base classifier in a forest of such binary trees

(Fo), also detailed in [13]
Results in terms of average indeterminacy costs are reported
in Table XII. They are obtained through a ten-fold cross
validation procedure. The forest of binary tree (Fo) is obtained
through a uniform sampling of 50 trees among all possible
decompositions, while the single binary tree (2Tr) is the
one obtaining the best result on the learning set among the
sampled ones. At least on the three considered data sets,
it seems that the binary tree methods outperform the NCC,
suggesting that using such trees is quite interesting for ordinal
regression problems. This would have to be confirmed by
complementary experiments, yet we remind that comparing
methods for imprecise ordinal regression is not our purpose
here, but an illustration of a possible use of Equation (12).

VIII. CONCLUSION

In this paper, we have addressed an important issue when
using indeterminate classifiers for deriving reliable and cau-
tious predictive models, which is how to deal with cost-
sensitive problems. We have proposed some generic properties
and guidelines that we thought are essential and/or relevant
for either producing or evaluating indeterminate predictions.
We have elaborated a sensible formula (p−discounted costs)
to compare determinate and/or indeterminate classifiers when
generic cost functions are involved. Experiments have shown
that this formula can be calibrated according to our risk
aversion to allow fair comparisons.

In practice, both our formula as well as a part of our
properties (e.g., Property 2) are inspired from the initial work
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of Zaffalon et al. [18] done in the simpler setting of 0/1
costs or accuracy. While our work is consistent with theirs,
it took a different way to discuss the relevance of defining
costs of indeterminacy, as we rely on properties to justify our
choices, not on a betting framework. Extending the results
of Zaffalon et al. [18] to cost-sensitive settings is clearly a
desirable complement to our and their work.
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