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Abstract: In this report, the fundamental limits of decentralized information transmission in
the K-user Gaussian multiple access channel (G-MAC), with K > 2, are fully characterized. Two
scenarios are considered. First, a game in which only the transmitters are players is studied. In
this game, the transmitters autonomously and independently tune their own transmit configura-
tions seeking to maximize their own information transmission rates, R1, R2, . . . , RK , respectively.
On the other hand, the receiver adopts a fixed receive configuration that is known a priori to
the transmitters. The main result consists of the full characterization of the set of rate tuples
(R1, R2, . . . , RK) that are achievable and stable in the G-MAC when stability is considered in the
sense of the η-Nash equilibrium (NE), with η > 0 arbitrarily small. Second, a sequential game
in which the two categories of players (the transmitters and the receiver) play in a given order is
presented. For this sequential game, the main result consists of the full characterization of the set
of rate tuples (R1, R2, . . . , RK) that are stable in the sense of an η-sequential equilibrium, with
η > 0.
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Transmission décentralisée et simultanée d’information et
d’énergie dans les canaux à accès multiple

Résumé : Dans le présent-rapport, les limites fondamentales de la transmission décentralisée
d’information dans le canal Gaussien à accès multiple (G-MAC) à K utilisateurs où K > 2
sont déterminées. Deux scénarios sont considérés. Premièrement, un jeu où seuls les transmet-
teurs jouent est étudié. Dans ce jeu, les transmetteurs règlent leurs configurations d’émission
d’une manière autonome et indépendante dans le but de maximiser leurs débits individuels de
transmission d’information R1, . . . , RK , respectivement. En contrepartie, le récepteur adopte
une configuration de réception qui est fixe et connue au préalable de tous les transmetteurs. Le
résultat principal est la caractérisation de l’ensemble des débits (R1, R2, . . . , RK) atteignables et
stables dans le G-MAC quand la stabilité est considérée au sens du η-équilibre de Nash, pour
un η > 0 arbitrairement petit. Deuxièmement, un jeu séquentiel est présenté dans lequel deux
catégories de joueurs jouent dans un ordre donné. Pour ce jeu séquentiel, le résultat principal
est la caractérisation de l’ensemble des débits (R1, R2, . . . , RK) qui sont stables au sens d’un
η-équilibre séquentiel, pour un η > 0 arbitrairement petit.

Mots-clés : Stabilité, région de capacité, canal Gaussien à accès multiple, équilibre de Nash,
équilibre séquentiel.
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Decentralized K-User G-MACs 4

1 Problem Formulation
This section describes first the channel model, the K-user (centralized) Gaussian Multiple Ac-
cess Channel (G-MAC) and then provides an game-theoretic formulation of the decentralized
information transmission in this channel.

1.1 K-User Centralized Gaussian Multiple Access Channel

...

Transmitter 1M1

h1X1,t

hKXK,t

Transmitter KMK

Zt

(M̂
(n)
1 , · · · , M̂ (n)

K )Receiver
Yt

⊗

⊗
⊕

Figure 1: K-user memoryless Gaussian MAC.

Consider the K-user memoryless G-MAC with K > 2 users as shown in Fig. 1. Let n ∈ N be
the blocklength. At each time t ∈ {1, 2, . . . , n} and for any i ∈ {1, 2, . . . ,K}, let Xi,t denote the
real input symbol sent by transmitter i. The receiver observes the real channel output

Yt =

K∑
i=1

hiXi,t + Zt, (1)

where hi, for all i ∈ {1, 2, . . . ,K}, is a constant nonnegative real channel coefficient. The noise
terms Zt are independent and identically distributed realizations of a zero-mean unit-variance
real Gaussian random variable.

Let Ri denote the information transmission rate at transmitter i, for all i ∈ {1, 2, . . . ,K}.
The goal of the communication is to convey the message indexMi, uniformly distributed over the
setMi , {1, 2, . . . , b2nRic}, from transmitter i, with i ∈ {1, 2, . . . ,K} to the common receiver.
The message indices (M1,M2, . . . ,MK) are independent of each other and of the noise terms
Z1, Z2, . . . , Zn.

At each time t, the t-th symbol of transmitter i, for all i ∈ {1, 2, . . . ,K}, depends solely on
its message index Mi, i.e.,

Xi,t = f
(n)
i,t (Mi), t ∈ {1, 2, . . . , n}, (2)

for some encoding functions f (n)i,t : Mi → R.
The receiver produces an estimate (M̂

(n)
1 , M̂

(n)
2 , . . . , M̂

(n)
K ) = Φ(n)(Y1, Y2, . . . , Yn) of the

message-tuple (M1,M2, . . . ,MK) via a decoding function Φ(n) : Rn → M1 ×M2 × · · · ×MK ,
and the average probability of error is given by

P (n)
error(R1, R2, . . . , RK) , Pr

{
(M̂

(n)
1 , M̂

(n)
2 , . . . , M̂

(n)
K ) 6= (M1,M2, . . . ,MK)

}
. (3)

The symbols Xi,1, Xi,2, . . . , Xi,n satisfy an expected average input power constraint

1

n

n∑
t=1

E
[
X2
i,t

]
6 Pi,max, i ∈ {1, 2, . . . ,K}, (4)
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where the expectation is over the message indices and where Pi,max denotes the maximum average
power of transmitter i in energy units per channel use.

This channel is fully described by the signal to noise ratios (SNRs): SNRi, with i ∈ {1, 2, . . . ,K},
which are defined as follows:

SNRi , |hi|2Pi,max. (5)

1.2 Achievable Rates and Capacity Region
The K-tuple (R1, R2, . . . , RK) ∈ RK+ is said to be achievable if there exists a sequence of encod-
ing and decoding functions

{
{f (n)1,t }nt=1, {f (n)2,t }nt=1, . . . , {f (n)K,t}nt=1,Φ

(n)
}∞
n=1

such that the average
error probability tends to zero as the blocklength n tends to infinity. That is,

lim sup
n→∞

P (n)
error(R1, R2, . . . , RK)=0. (6)

The closure of the union of all achievable rate tuples is called the capacity region and is
denoted by C(SNR1, SNR2, . . . ,SNRK). From [1, 2], it follows that

C(SNR1, SNR2, . . . ,SNRK) =(R1, R2, . . . , RK) ∈ RK+ :
∑
j∈U

Rj 6
1

2
log2

1 +
∑
j∈U

SNRj

 ,∀U ⊆ {1, 2, . . . ,K}

. (7)

Note that C(SNR1, SNR2, . . . ,SNRK) is a K-dimension polyhedron with K! corner points. Each
corner point corresponds to a decoding order among the users.

1.3 K-User Decentralized Gaussian Multiple Access Channel
In a decentralized K-user G-MAC, the aim of transmitter i, for all i ∈ {1, 2, . . . ,K}, is to au-
tonomously choose its transmit configuration si in order to maximize its information rate Ri. The
transmit configuration si can be described in terms of the information rates Ri, the block-length
n, the channel input alphabet Xi, the encoding functions {f (n)1,t }nt=1, {f (n)2,t }nt=1, . . . , {f (n)K,t}nt=1,
etc. The receiver autonomously chooses a receive configuration s0 in view of maximizing the
sum-rate. Let PK denote the set of all permutations (all possible decoding orders) over the set
{1, 2, . . . ,K}. For any π ∈ PK , the considered decoding order π(1), π(2), . . . , π(K) is such that
user π(1) is decoded first, user π(2) is decoded second, etc. The receive configuration can be
described in terms of the decoding function Φ(n), which in this report is restricted to single-user
decoding (SUD), successive interference cancelation (SIC(π)) with a given order π ∈ PK , or any
time-sharing (TS) combination of the previous schemes. However, the choice of the transmit
configuration of each transmitter depends on the choice of the other transmitters as well as the
decoding scheme at the receiver. The input signal of one transmitter is interference to the others.
Thus, the rate achieved by transmitter i depends on all transmit configurations s1, s2, . . . , sK as
well as the configuration of the receiver s0.

The utility function of transmitter i, for all i ∈ {1, 2, . . . ,K}, is ui : A0×A1×· · ·×AK → R+

and it is defined as its own rate,

ui(s0, s1, . . . , sK) =

{
Ri(s0, s1, . . . , sK), if P

(n)
error(R1, R2, . . . , RK) < ε

0, otherwise,
(8)

where ε > 0 is an arbitrarily small number and Ri(s0, s1, . . . , sK) denotes a transmission rate
achievable with the configurations (s0, s1, . . . , sK). Often, the information rate Ri(s0, s1, . . . , sK)

RR n° 8949



Decentralized K-User G-MACs 6

is written as Ri for simplicity. However, every nonnegative achievable information rate is associ-
ated with a particular transmit-receive configuration (s0, s1, . . . , sK) that achieves it. It is worth
noting that there might exist several transmit-receive configurations that achieve the same tuple
(R1, R2, . . . , RK) and distinction between the different transmit-receive configurations is made
only when needed.

The utility function of the receiver is u0 : A0 ×A1 × · · · ×AK → R+ and it is defined as the
sum-rate,

u0(s0, s1, . . . , sK) =

{ ∑K
i=1Ri(s0, s1, . . . , sK), if P

(n)
error(R1, R2, . . . , RK) < ε

0, otherwise.
(9)

In the absence of a central controller which dictates the transmit and receive configurations
to the various network components, only stable rate tuples are possible operating points of the
network. Within this context, stability is considered in the sense that none of the network
components is able to increase its utility by unilaterally changing its own transmit/receive con-
figuration. From this perspective, in the capacity region C(SNR1, SNR2, . . . ,SNRK), any rate
tuple (R1, R2, . . . , RK) for which

Ri <
1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
, (10)

at least for one i ∈ {1, 2, . . . ,K} is not stable. This is true when the receiver is constrained to
choose among the decoding strategies mentioned above (SUD, SIC, or TS) because the considered
transmitter can always increase its information rate and achieve

Ri =
1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
− δ, (11)

with δ > 0 arbitrarily small.
The remaining achievable rate tuples (R1, R2, . . . , RK) ∈ C(SNR1, SNR2, . . . ,SNRK) which

satisfy

Ri >
1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
, ∀i ∈ {1, 2, . . . ,K}, (12)

can be stable or not, depending on the actions of the receiver.
In the following, two games are considered. First, a game in which only the transmitters are

players is studied in Sec. 2. For this game, the set of stable rate tuples is fully characterized when
stability is considered in the sense of η-Nash equilibrium [3], with η > 0 arbitrarily small. Second,
a sequential game in which the two categories of players (the transmitters and the receiver) play
in a given order. For this sequential game, the set of stable rate tuples in the sense of the
η-sequential equilibrium, with η > 0 arbitrarily small, is derived in Sec. 3.

2 Game I: Only the Transmitters are Players
Under the assumption that the receiver adopts a fixed receive configuration s̃0 that is known
a priori to all terminals, the competitive interaction of the K transmitters in the decentralized
G-MAC can be modeled by the following game in normal form:

G1 =
(
K, {Ak}k∈K , {uk}k∈K

)
. (13)

RR n° 8949



Decentralized K-User G-MACs 7

The set K = {1, 2, . . . ,K} is the set of players, i.e., the transmitters. For all i ∈ K, the set Ai is
the set of actions of player i. An action si ∈ Ai of player i is basically its transmit configuration
as described above. The utility function of transmitter i, for all i ∈ {1, 2, . . . ,K}, is ui defined
in (8). Note that since the receiver is not a player, its action s̃0 is kept fixed, but it remains
being an argument of the utility function.

A formal definition of an η-NE is provided below.

Definition 1 (η-NE [3]). In the game G1, under the fixed receive configuration s̃0, an action
profile (s̃0, s

∗
1, . . . , s

∗
K) is an η-NE if for all i ∈ K and for all si ∈ Ai, it holds that

ui(s̃0, s
∗
1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
K)6ui(s̃0, s

∗
1, . . . , s

∗
i−1, s

∗
i , s
∗
i+1, . . . , s

∗
K) + η. (14)

Under the fixed receive configuration s̃0, from Def. 1, it becomes clear that if (s̃0, s
∗
1, . . . , s

∗
K)

is an η-NE, then none of the transmitters can increase its own rate by more than η bits per
channel use by unilaterally changing its own transmit configuration while keeping the average
error probability arbitrarily close to zero. Thus, at a given η-NE, every transmitter achieves a
utility that is η-close to its maximum achievable rate given the transmit configuration of the
other transmitters. Note that if η = 0, then the definition of NE is obtained [4].

Remark 1. Note that the definition of the utilities in (8) and (9) is parametrized by the choice
of the error probability threshold ε. Within this context, considering NE instead of η-NE with an
arbitrary slack η > 0 would require the difficult task of deriving a coding scheme that achieves the
optimal rate with exactly ε error probability. The slack η > 0, which can be made arbitrarily small,
allows to remove this difficulty [5] and [6]. Note also that there is a slight abuse of notation in the
equalities defining the utilities. Here it is assumed that the blocklength is chosen to be sufficiently
high to neglect the asymptotically small slack due to the fixed blocklength.

The following investigates the rate region that can be achieved at an η-NE. This set of rate
tuples is known as the η-NE region.

Definition 2 (η-NE Region). Let η > 0 be arbitrarily small. An achievable rate tuple (R1, R2, . . . ,
RK) ∈ C(SNR1, SNR2, . . . ,SNRK) is said to be in the η-NE region of the game
G1 =

(
K, {Ak}k∈K , {uk}k∈K

)
under the fixed receive configuration s̃0, if there exists an action

profile (s̃0, s
∗
1, . . . , s

∗
K) ∈ A0 ×A1 × · · · × AK that is an η-NE and the following holds:

ui(s̃0, s
∗
1, . . . , s

∗
K)=Ri, ∀i ∈ {1, 2, . . . ,K}. (15)

The following section studies the η-NE region of the game G1, with η > 0 arbitrarily small,
for several decoding strategies adopted by the receiver.

2.1 η-NE Region With Single User Decoding (SUD)
The η-NE region of the game G1 when the receiver uses SUD, denoted by
NSUD(SNR1, SNR2, . . . ,SNRK), is described by the following theorem.

Theorem 1 (η-NE Region With SUD). Let η > 0 be arbitrarily small. Then, the set
NSUD(SNR1, SNR2, . . . ,SNRK) of η-NEs of the game G1 contains only the nonnegative rate tuple
(R1, R2, . . . , RK) that satisfies

Ri =
1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
,∀i ∈ {1, 2, . . . ,K}. (16)

Proof: The proof of Theorem 1 is provided in Appendix A.
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Decentralized K-User G-MACs 8

2.2 η-NE Region With Successive Interference Cancelation (SIC)
The η-NE region of the game G1 when the receiver uses SIC(π) with a fixed decoding order
π ∈ PK , denoted by NSIC(π)(SNR1, SNR2, . . . ,SNRK), is described by the following theorem.

Theorem 2 (η-NE Region of the Game G1 With SIC(π)). Let η > 0 be arbitrarily small and let
π ∈ PK be a fixed decoding order. Then, the set NSIC(π)(SNR1, SNR2, . . . ,SNRK) contains only
the nonnegative rate tuple (R1, R2, . . . , RK) satisfying:

Rπ(i) =
1

2
log2

(
1 +

SNRπ(i)
1 +

∑K
j=i+1 SNRπ(j)

)
,∀i ∈ {1, 2, . . . ,K}. (17)

Proof: The proof of Theorem 2 is provided in Appendix B.

Remark 2. Note that for every decoding order π ∈ PK , the region contains a unique rate tuple.
When considering SIC at the receiver under any decoding order, the η-NE region
NSIC(SNR1, SNR2, . . . ,SNRK) is given by

NSIC(SNR1, SNR2, . . . ,SNRK) =
⋃

π∈PK

NSIC(π)(SNR1, SNR2, . . . ,SNRK), (18)

and it contains K! rate tuples.

2.3 η-NE Region With Time-Sharing (TS)
Let N (SNR1, SNR2, . . . ,SNRK) denote the η-NE region of the game G1 when the receiver might
use any time-sharing between the previous decoding techniques. This region is described by the
following theorem.

Theorem 3 (η-NE Region of the Game G1). Let η > 0 be arbitrarily small. Then, the set
N (SNR1, SNR2, . . . ,SNRK) is

N (SNR1, SNR2, . . . ,SNRK) =

Conv. hull

(
NSUD(SNR1,SNR2, . . . ,SNRK) ∪

( ⋃
π∈PK

NSIC(π)(SNR1, SNR2, . . . ,SNRK)

))
. (19)

Proof: The proof is based on Theorem 1, Theorem 2, and a time-sharing argument. The
details are omitted.

If the receiver performs any time-sharing combination between any of the considered decoding
strategies, then the transmitters can use the same time-sharing combination between their corre-
sponding η-NE strategies to achieve any point inside N (SNR1, SNR2, . . . ,SNRK). Note that ev-
ery time-sharing strategy of the receiver induces a unique rate tuple inside
N (SNR1, SNR2, . . . ,SNRK). However, several time-sharing schemes might achieve the same
rate tuple.

3 Game II: A Sequential Game
In this section, the decentralized information transmission in the K-user G-MAC is modeled as
a sequential game in which there are two groups of players: one group, the leaders, in which all
players play simultaneously before the players of the other group, the followers. The followers,

RR n° 8949



Decentralized K-User G-MACs 9

simultaneously play after the leaders under the assumption that the actions of the leaders are
perfectly known by all the followers. Let {K21,K22} be a partition of K ∪ {0}, such that K21 is
the set of leaders and K22 is the set of followers.

The competition between the different users (the transmitters and the receiver) in the G-MAC
can be modeled as follows:

G2 =
(
K ∪ {0}, {K21,K22}, {Ak}k∈K , {uk}k∈K

)
. (20)

Backward induction is used in order to characterize a sequential equilibrium of this game, .
First, the leaders simultaneously play knowing that the followers will simultaneously play their
best responses.

In the game G2, instead of seeking an exactly optimal solution, each player allows a tolerance
η > 0 and seeks a strategy that is η-close to the optimal reward. The set of these η-close optimal
strategies of player k is given by its best η-response set defined as follows:

Definition 3 (Set of Best η-Response of Player k). For a given player k ∈ {0, 1, . . . ,K}, the set
of best η-responses is

BR
(η)
k (s−k) =

{
sk ∈ Ak : uk(sk, s−k) > max

s̃k∈Ak

uk(s̃k, s−k)− η
}
. (21)

Note that even when η = 0, the best η-response set does not necessarily reduce to a unitary
set.

Definition 4 (η-Sequential Equilibrium (η-SE)). Let η > 0 be arbitrarily small. In the game
G2, an action profile (s†0, s

†
1, , . . . , s

†
K) is an η-SE if it satisfies the following two conditions:

1. ∀i ∈ K21, s
†
i ∈ BR

(η)
i

(
s†K21\{i}

)
with

BR
(η)
i

(
s†K21\{i}

)
,

{
si ∈ Ai : ui(si, s

†
K21\{i}, sK22

) > max
s̃i∈Ai

ui(s̃i, s
†
K21\{i}, s̃K22

)− η

subject to sK22 ∈ BR
(η)
K22

(
si, s

†
K21\{i}

)
and s̃K22 ∈ BR

(η)
K22

(
s̃i, s

†
K21\{i}

)}
,

with
BR

(η)
K22

(
si, s

†
K21\{i}

)
,
∏
j∈K22

BR
(η)
j

(
sK22\{j}, si, s

†
K21\{i}

)
.

2. ∀j ∈ K22, s†j ∈ BR
(η)
j

(
s†K22\{j}, s

†
K21

)
.

Note that when η = 0 and when for all the action profile sK21
∈ AK21

of the leaders, the set
BR(0)
K22

(sK21
) is unitary, the definition of a Stackelberg equilibrium [7] is obtained. Note also that

the η-sequential equilibrium in Def. 4 can be seen as a generalization of the sequential Stackelberg
equilibrium concept presented in [8] for two-person games and it results in a two-stage η-NE.
That is, a first η-NE is established among the leaders under the assumption that the followers
are playing their η-best responses. A second η-NE is observed among the followers under the
assumption that the actions played by the leaders are perfectly known by the followers.
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Decentralized K-User G-MACs 10

Definition 5 (η-Sequential Equilibrium Region). An achievable rate tuple (R1, R2, . . . , RK) is
said to be in the η-SE region of the game G2, if there exists an action profile (s†0, s

†
1, . . . , s

†
K) ∈

A0 ×A1 × · · · × AK that is an η-SE and such that

ui(s
†
0, s
†
1, . . . , s

†
K) = Ri, ∀i ∈ {1, 2, . . . ,K}, (22)

u0(s†0, s
†
1, . . . , s

†
K) =

K∑
i=1

Ri. (23)

3.1 η-Sequential Equilibrium Region With the Receiver as a Leader
Consider the game in which the receiver chooses first a receive configuration (is the leader) and
the transmitters adapt their transmit configurations to the choice of the decoding rule in order
to maximize their utilities (are the followers), i.e., K21 = {0} and K22 = {1, 2, . . . ,K}.

Let SR(SNR1, SNR2, . . . ,SNRK) denote the η-SE region of the game G2 when the receiver is
the leader. This region is described by the following theorem.

Theorem 4 (η-SE Region of the Game G2 With the Receiver as a Leader). The set
SR(SNR1, SNR2, . . . ,SNRK) contains all nonnegative rate tuples (R1, R2, . . . , RK) satisfying

K∑
i=1

Ri =
1

2
log2

(
1 +

K∑
i=1

SNRi

)
. (24)

Proof: The proof of Theorem 4 is provided in Appendix C.

3.2 η-Sequential Equilibrium Region With Transmitter i as a Leader
Consider the game in which transmitter i, for a given i ∈ {1, 2, . . . ,K}, chooses first its transmit
configuration and the receiver and the remaining transmitters follow, i.e., K21 = {i} and K22 =
{0, 1, . . . ,K}\{i}. Let η > 0 be arbitrarily small and let Si(SNR1, SNR2, . . . ,SNRK) denote the
η-SE region of the game G2 when the transmitter i is the leader. This region is described by the
following theorem.

Theorem 5 (η-SE Region of the Game G2 With Transmitter i as a Leader). The set
Si(SNR1, SNR2, . . . ,SNRK) contains all nonnegative rate tuples (R1, R2, . . . , RK) satisfying

Ri =
1

2
log2 (1 + SNRi) , (25)

K∑
j=1;j 6=i

Rj =
1

2
log2

1 +

K∑
j=1

SNRj

− 1

2
log2 (1 + SNRi) . (26)

Proof: The proof of Theorem 5 is provided in Appendix D.

4 Example and Observations
In the two-user G-MAC, the regions described in Theorems 1-5 are illustrated in Fig. 2, with the
capacity region plotted as a reference. Namely, the η-Nash equilibrium regionsNSUD(SNR1, SNR2),
NSIC(π1)(SNR1, SNR2), NSIC(π2)(SNR1,SNR2), and N (SNR1,SNR2) in Theorems 1-3 are plot-
ted in red, with πi the decoding order in which transmitter i is decoded first, for all i ∈ {1, 2}.
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R1 [bits/ch.use]

R2 [bits/ch.use]

R1 [bits/ch.use]

R2 [bits/ch.use]

1

2
log2(1 + SNR2)

1

2
log2(1 + SNR1)

1

2
log2(1 +

SNR1

1 + SNR2
)

1

2
log2(1 +

SNR2

1 + SNR1
)

SR(SNR1, SNR2)

C(SNR1, SNR2)

S1(SNR1, SNR2)

NSUD(SNR1, SNR2)

NSIC(⇡1)(SNR1, SNR2)

NSIC(⇡2)(SNR1, SNR2)

S2(SNR1, SNR2)

Figure 2: η-Nash and η-sequential equilibria regions, with η > 0 arbitrarily small, for the consid-
ered games in the two-user G-MAC with SNRs: SNR1 and SNR2. Here πi refers to the decoding
order in which transmitter i is decoded first, for all i ∈ {1, 2}.

The η-sequential equilibrium regions SR(SNR1, SNR2), S1(SNR1, SNR2), and S2(SNR1, SNR2)
in Theorems 4 and 5, respectively, are plotted in green.

Existence of η-NE and η-SE: For any nonnegative SNR1, SNR2, . . . ,SNRK , the existence
of an η-NE and an η-SE, with η arbitrarily small, is always guaranteed. This statement follows
immediately from the fact that the regions in Theorems 1-5 are nonempty. Note in particular that
NSUD(SNR1, SNR2, . . . ,SNRK) 6= ∅ and NSIC(π)(SNR1, SNR2, . . . ,SNRK) 6= ∅ for any π ∈ PK .
Thus, N (SNR1,SNR2, . . . ,SNRK) 6= ∅, which ensures the existence of at least one action profile
(s̃0, s

∗
1, . . . , s

∗
K) that is an η-NE, under any fixed receive strategy s̃0.

Cardinality of η-NE and η-SE:: In both games G1 and G2 described in Secs. 2 and 3, the
unicity of a given η-NE or η-SE of the considered game is not ensured even in the case in which
the cardinality of the equilibrium region is one. This is mainly due to the fact that a given rate
tuple can be achieved by various transmit and receive configurations. When the set of actions is
more restricted, i.e., power control, then the unicity is ensured [9].

Optimality: In the first game in which only the transmitters are players, depending on the
choice of the receiver, the η-NE rate tuples are not necessarily Pareto-optimal. On the other hand,
in both sequential games, the η-SE rate tuples are Pareto-optimal. This suggests that, under
the assumption that the players are able to properly choose the operating equilibrium action
profiles for instance via learning algorithms, there is no loss of performance in the decentralized
G-MAC case with respect to the fully centralized case. Furthermore, in both sequential games,
the utility of the leader is always maximized, and thus it is always better to move first. Note
that the definition of the sequential games in this report allows for a non-unitary set of leaders.
Even though the analysis here is restricted only to the game with unitary sets of leaders, the
above statement continues to hold for non-unitary sets of leaders.

Potential Games: The definition of the utilities of the transmitters and the receiver in (8)
and (9), respectively, does not impose any restriction on the action sets, which can be complex
objects. From this perspective, it is hard to cast the games presented here as potential games.
If the actions of the players are restricted for instance to power allocation policies, the results on
power allocation games in [9, 10, 11, 12, 13] can be seen as special cases of the results presented
in this report.
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A Proof of Theorem 1
Consider the set of all rate tuples that can be achieved under the assumption that the re-
ceiver performs SUD to recover the messages M1,M2, . . . ,MK and let s̃0 denote the corre-
sponding receive configuration that is fixed and known to everyone. This set is denoted by
CSUD(SNR1, SNR2, . . . ,SNRK) and is given by:

CSUD(SNR1,SNR2, . . . ,SNRK) ={
(R1, R2, . . . , RK)∈C(SNR1,SNR2, . . . ,SNRK):Ri 6

1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
,∀i ∈ K

}
.

(27)

Let the subset VSUD(SNR1,SNR2, . . . ,SNRK) contain all nonnegative rate tuples
(R1, R2, . . . , RK) ∈ CSUD(SNR1, SNR2, . . . ,SNRK) satisfying

Ri =
1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
, ∀i ∈ K. (28)

Let also the subset V̄SUD(SNR1, SNR2, . . . ,SNRK) be defined by
V̄SUD(SNR1, SNR2 . . . ,SNRK) , CSUD(SNR1, SNR2, . . . ,SNRK)\VSUD(SNR1,SNR2, . . . ,SNRK).
Note that the sets VSUD(SNR1, SNR2, . . . ,SNRK) and V̄SUD(SNR1, SNR2, . . . ,SNRK) form a
partition of CSUD(SNR1,SNR2, . . . ,SNRK).

Following this notation, the proof of Theorem 1 is established by Propositions 1 and 2.

Proposition 1. Any rate tuple (R1, R2, . . . , RK) ∈ V̄SUD(SNR1,SNR2, . . . ,SNRK) is not an
η-NE with η arbitrarily small. That is,

NSUD(SNR1,SNR2, . . . ,SNRK) ⊆ VSUD(SNR1, SNR2, . . . ,SNRK). (29)

Proof: The proof of Proposition 1 is provided in Section A.1.

Proposition 2. Any rate tuple (R1, R2, . . . , RK) ∈ VSUD(SNR1, SNR2, . . . ,SNRK) is achievable
at an η-NE with an arbitrarily small η > 0. That is,

VSUD(SNR1, SNR2, . . . ,SNRK) ⊆ NSUD(SNR1, SNR2, . . . ,SNRK). (30)

Proof: The proof of Proposition 2 is provided in Section A.2.

A.1 Proof of Proposition 1
Any rate tuple (R1, R2, . . . , RK) ∈ V̄SUD(SNR1, SNR2, . . . ,SNRK) satisfies at least for one i ∈
{1, 2, . . . ,K} the following condition:

Ri <
1

2
log2

(
1 +

SNRi
1 +

∑K
j=1;j 6=i SNRj

)
. (31)

Let (R∗1, R
∗
2, . . . , R

∗
K) be an η-NE for any η > 0 arbitrarily small, achievable by an action

profile (s̃0, s
∗
1, . . . , s

∗
K) ∈ A0 ×A1 × · · · × AK . Denote by X∗i,1, X∗i,2, . . . , X∗i,n the channel inputs

generated by transmitter i, for i ∈ {1, 2, . . . ,K}, corresponding to the equilibrium action s∗i and
denote by P ∗i , 1

n

∑n
t=1 E

[
(X∗i,t)

2
]
their average power.
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From the assumption that (R∗1, R
∗
2, . . . , R

∗
K) is achievable, P (n)

error(R∗1, R
∗
2, . . . , R

∗
K) can be made

arbitrarily small. Thus, from (8) it follows that

ui(s̃0, s
∗
1, . . . , s

∗
K) = R∗i , ∀i ∈ {1, 2, . . . ,K}. (32)

Using this notation, a necessary condition for η-NE action profiles is provided by Lemma 1.

Lemma 1 (IID Gaussian Inputs With Maximum Power). A necessary condition for the action
profile (s̃0, s

∗
1, . . . , s

∗
K) to be an η-NE action is that the input symbols X∗i,t, with i ∈ {1, 2, . . . ,K},

must be generated i.i.d. following a zero-mean Gaussian distribution with variance P ∗i = Pi,max.

Proof: Without loss of generality, consider transmitter 1 and let R̃1 denote the infor-
mation rate that can be achieved by transmitter 1 when the input symbols are generated i.i.d.
following a Gaussian distribution with maximum power P1,max and where the channel inputs of
all transmitters are uncorrelated.

Assume that in the action s∗1, the input symbols are not generated i.i.d. following a Gaussian
distribution with variance P ∗1 . As the Gaussian distribution maximizes the entropy and as the
information rates are increasing in the input power, using non-Gaussian inputs or using less
power results in a loss in the achievable rate. Thus, in the action s∗1 the utility of transmitter
1 is u1(s̃0, s

∗
1, . . . , s

∗
K) = R∗1 = R̃1 − ζ, where ζ > 0 quantifies the loss in transmitter 1’s rate.

From the assumption that the receiver implements SUD, independently of the actions s∗2, . . . , s∗K
of transmitters 2, 3, . . . ,K, there always exists an alternative action s1 in which transmitter 1
uses i.i.d. Gaussian codebooks with variance P ∗1 = P1,max, which achieves an information rate
(and thus a utility) u1(s̃0, s1, s

∗
2, . . . , s

∗
K) = R̃1. Hence, it follows that

u1(s̃0, s1, s
∗
2, . . . , s

∗
K)− u1(s̃0, s

∗
1, s
∗
2, . . . , s

∗
K) = ζ > 0. (33)

The utility improvement is bounded away from zero, thus the action profile (s̃0, s
∗
1, s
∗
2, . . . , s

∗
K)

cannot be an η-NE (Def. 1), with an arbitrarily small η > 0.
Without loss of generality, consider transmitter 1 and assume that in the action profile

(s̃0, s
∗
1, . . . , s

∗
K), the rate R∗1 satisfies (31) with i = 1. From Lemma 1, a necessary condition for

the action s∗1 to be an η-NE action is to have i.i.d. Gaussian channel inputs with maximum power

P1,max. This condition implies that any rate R1 satisfying 0 6 R1 6 1
2 log2

(
1 + SNR1

1+
∑K

j=2 SNRj

)
,

can be achieved with arbitrarily small probability of error. Assume that in the action s∗1 trans-
mitter 1’s utility satisfies

u1(s̃0, s
∗
1, . . . , s

∗
K) = R∗1 =

1

2
log2

(
1 +

SNR1

1 +
∑K
j=2 SNRj

)
− ξ, (34)

with ξ > 0. Regardless of the action of the other transmitters, transmitter 1 can always choose
an alternative action s′1 in which it has a utility

u1(s̃0, s
′
1, s
∗
2, . . . , s

∗
K) = R̃1 =

1

2
log2

(
1 +

SNR1

1 +
∑K
j=2 SNRj

)
. (35)

From (34) and (35), it holds that

u1(s̃0, s
′
1, s
∗
2, . . . , s

∗
K)− u1(s̃0, s

∗
1, s
∗
2, . . . , s

∗
K) = ξ > 0. (36)

The utility improvement is bounded away from zero, thus the action profile (s̃0, s
∗
1, . . . , s

∗
K) cannot

be η-NE (Def. 1), with an arbitrarily small η > 0, which establishes the proof of Proposition 1.
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A.2 Proof of Proposition 2
Let η > 0 be arbitrarily small and assume that the decoder performs SUD. To achieve the
rate tuple (R∗1, R

∗
2, . . . , R

∗
K) satisfying (28), transmitters 1, 2, . . . ,K can use the action profile

(s̃0, s
∗
1, . . . , s

∗
K) in which independent Gaussian codebooks are used with powers P1,max, P2,max,

. . . , PK,max, respectively, as in [1] or [2]. The messages M1,M2, . . . ,MK are encoded at the
information rates R∗1, R∗2, . . . , R∗K , respectively. From the assumption that the receiver performs
SUD, the probability of error P (n)

error(R∗1, R
∗
2, . . . , R

∗
K) can be made arbitrarily small as the block-

length tends to infinity. Hence, the resulting utilities are given by ui(s̃0, s∗1, . . . , s∗K) = R∗i , i ∈
{1, 2, . . . ,K}. Assume that the action profile (s̃0, s

∗
1, . . . , s

∗
K) is not an η-NE. Then, from Def. 1,

there exist at least one player i ∈ K and at least one strategy si ∈ Ai such that the utility ui is
improved by at least η bits per channel use when player i deviates from s∗i to si. Without loss of
generality, let transmitter 1 be the deviating player and denote by R̃1 its new information rate.
Hence,

u1(s̃0, s1, . . . , s
∗
K) = R̃1 > u1(s̃0, s

∗
1, . . . , s

∗
K) + η, (37)

and thus, it holds that R̃1 >
1
2 log2

(
1 + SNR1

1+
∑K

j=2 SNRj

)
+ η. As the rate tuple (R∗1, R

∗
2, . . . , R

∗
K)

already saturates the decoding capability of the receiver, the new rate tuple (R̃1, R
∗
2, . . . , R

∗
K)

cannot be achieved and will result in a probability of error bounded away from zero and conse-
quently the corresponding utility will be u1(s̃0, s1, s

∗
2, . . . , s

∗
K) = 0, which contradicts the initial

assumption (37) and establishes that the action profile (s̃0, s
∗
1, . . . , s

∗
K) is an η-NE.

B Proof of Theorem 2
The proof of Theorem 2 follows along the same lines as the proof of Theorem 1 when considering
the set CSIC(π)(SNR1, SNR2, . . . ,SNRK). This set contains all rate tuples (R1, R2, . . . , RK) which
can be achieved if the receiver performs SIC(π). It is given by

CSIC(π)(SNR1, SNR2, . . . ,SNRK) ={
(R1, R2, . . . , RK)∈C(SNR1, SNR2, . . . ,SNRK) :Rπ(i)6

1

2
log2

(
1 +

SNRπ(i)
1 +

∑K
j=i+1 SNRπ(j)

)
,∀i ∈ K

}
.

(38)

C Proof of Theorem 4
Let the set WR(SNR1, SNR2, . . . ,SNRK) be defined as follows:

WR(SNR1, SNR2, . . . ,SNRK)

,

{
(R1, R2, . . . , RK) ∈ C(SNR1,SNR2, . . . ,SNRK) s.t.

K∑
i=1

Ri =
1

2
log2

(
1 +

K∑
i=1

SNRi

)}
.

(39)

Let also W̄R(SNR1, SNR2, . . . ,SNRK) be defined as

W̄R(SNR1, SNR2, . . . ,SNRK) , C(SNR1,SNR2, . . . ,SNRK)\WR(SNR1, SNR2, . . . ,SNRK). (40)

That is, WR(SNR1, SNR2, . . . ,SNRK) contains all rate tuples (R1, R2, . . . , RK) which saturate
the sum-capacity of the channel.
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The proof of Theorem 4 is established by Propositions 3 and 4.

Proposition 3 (Non-Equilibrium Points). Any rate tuple (R1, R2, . . . , RK) ∈ W̄R(SNR1, SNR2,
. . . ,SNRK) is not an η-SE with η arbitrary small. That is,

SR(SNR1, SNR2, . . . ,SNRK) ⊆ WR(SNR1,SNR2, . . . ,SNRK). (41)

Proposition 4 (Achievability). Any rate tuple (R1, R2, . . . , RK) ∈ WR(SNR1, SNR2, . . . ,SNRK)
is achievable at an η-SE with η arbitrary small. That is,

WR(SNR1, SNR2, . . . ,SNRK) ⊆ SR(SNR1,SNR2, . . . ,SNRK). (42)

C.1 Proof of Proposition 3
Let (R†1, R

†
2, . . . , R

†
K) be an η-SE for any η > 0 arbitrarily small, achievable by an action profile

(s†0, s
†
1, . . . , s

†
K) ∈ A0 ×A1 × · · · × AK .

Denote by X†i,1, X
†
i,2, . . . , X

†
i,n the channel inputs generated by transmitter i,

for i ∈ {1, 2, . . . ,K}, corresponding to the equilibrium action s†i and denote by
P †i , 1

n

∑n
t=1 E

[
(X†i,t)

2
]
their average power.

From the assumption that (R†1, R
†
2, . . . , R

†
K) is achievable, P (n)

error(R
†
1, R

†
2, . . . , R

†
K) can be made

arbitrarily small. Thus, from (8) and (9) it follows that

ui(s
†
0, s
†
1, . . . , s

†
K)=R†i , ∀i ∈ {1, 2, . . . ,K}, (43)

u0(s†0, s
†
1, . . . , s

†
K)=

K∑
j=1

R†j . (44)

Any action profile (s†0, s
†
1, . . . , s

†
K) in which the transmitters use information rates

(R†1, R
†
2, . . . , R

†
K) which do not saturate Rsum(s†0), i.e.

∑K
i=1R

†
i < Rsum(s†0), cannot correspond

to an η-SE. This is mainly due to the fact that at least one of the transmitters can always increase
its rate by a positive δ and ensure a utility improvement that is bounded away from zero, which
contradicts the assumption of an η-NE among the followers knowing the leader’s strategy, and
thus the action profile (s†0, s

†
1, s
†
2, . . . , s

†
K) cannot be an η-SE. Hence, the utility the receiver’s

utility at the η-SE action profile (s†0, s
†
1, . . . , s

†
K), is given by

u0(s†0, s
†
1, . . . , s

†
K)=Rsum(s†0). (45)

Assume now that in the action s†0, the receiver uses a decoding strategy under which the
maximum sum-rate that can be achieved, Rsum(s†0), satisfies

Rsum(s†0) =
1

2
log2

(
1 +

K∑
i=1

SNRi

)
− ξ, (46)

with ξ > 0. There always exists an alternative action of the receiver s̃0 for which

Rsum(s̃0) =
1

2
log2

(
1 +

K∑
i=1

SNRi

)
. (47)

The transmitters adapt to the leader’s action by transmitting at rates which saturate the new
sum-rate Rsum(s†0). Hence, it follows that

u0(s̃0, s
†
1, . . . , s

†
K)− u1(s†0, s

†
1, . . . , s

†
K) = ξ > 0. (48)

The utility improvement is bounded away from zero, thus the action profile (s†0, s
†
1, . . . , s

†
K) cannot

be η-SE (Def. 4), with an arbitrarily small η > 0.
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C.2 Proof of Proposition 4
Assume a given ordering of the permutations over {1, 2, . . . ,K} such that the set PK can be
written as PK , {πj}K!

j=1.
For all j ∈ {1, 2, . . . ,K!}, let Aj denote the rate point with coordinates

Rπj(i) =
1

2
log2

(
1 +

SNRπj(i)

1 +
∑K
`=i+1 SNRπj(`)

)
,∀i ∈ {1, 2, . . . ,K}. (49)

Any rate tuple (R1, R2, . . . , RK) ∈ WR(SNR1, SNR2, . . . ,SNRK) can be written as

Ri =

K!∑
j=1

λjRi,Aj
, i ∈ {1, 2, . . . ,K}, (50)

for some real nonnegative parameters (λ1, λ2, . . . , λK!) satisfying
∑K!
j=1 λj = 1 and where Ri,Aj

denotes the rate of transmitter i in the coordinates of Aj .
Fix a tuple (λ1,Q, λ2,Q, . . . , λK!,Q) satisfying

∑K!
j=1 λj,Q = 1 and consider the rate point Q

with coordinates

Ri,Q =

K!∑
j=1

λj,QRi,Aj
, i ∈ {1, 2, . . . ,K}. (51)

The point Q is achievable if the transmitters and the receiver use the action profile (s0,Q, s1,Q, . . . ,
sK,Q) described as follows. The receiver who is the leader chooses the action s0,Q in which
it performs a time-sharing between the successive interference cancellation decoding orders
SIC(π1),SIC(π2), . . . ,SIC(πK!) with time-sharing parameters λ1,Q, λ2,Q, . . . , λK!,Q. That is, dur-
ing the first nλ1,Q channel uses, it performs SIC(π1), during the following nλ2,Q channel uses it
performs SIC(π2), etc. The transmitters follow the receiver and use i.i.d. Gaussian codebooks
with the rates (R1,A1 , R2,A1 , . . . , RK,A1), as in [1] or [2], during the first nλ1,Q channel uses,
and with rates (R1,A2

, R2,A2
, . . . , RK,A2

) during the following nλ2,Q channel uses, etc. Since the
overall probability of error P (n)

error(R1,Q, R2,Q, . . . , RK,Q) is less than the sum of the probabilities
of error of each of the K! segments, P (n)

error(R1,Q, R2,Q, . . . , RK,Q) can be made arbitrarily small
as the blocklength goes to infinity and the resulting utilities are given by

ui(s1,Q, s2,Q, . . . , sK,Q)=Ri,Q, i ∈ {1, 2, . . . ,K}, (52)

u0(s1,Q, s2,Q, . . . , sK,Q)=

K∑
i=1

Ri,Q, (53)

Assume that the action profile (s0,Q, s1,Q . . . , sK,Q) is not an η-SE. Then, from Def. 4, there
exist at least one player i ∈ {0, 1, . . . ,K} and at least one strategy si ∈ Ai such that the utility
ui is improved by at least η bits per channel use when player i deviates from si,Q to si.

Two cases are to be considered. Either the deviating player is one of the transmitters or the
deviating player is the receiver.

Consider first the case in which the deviating player is one of the transmitters. Assume
without loss of generality that the deviating player is transmitter 1 and denote by R̃1 its new
information rate in the new action s1. Hence,

u0(s0,Q, s1, . . . , sK,Q) = R1 > u0(s0,Q, s1,Q, . . . , s2,Q) + η. (54)
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Since the rate tuple (R1,Q, R2,Q, . . . , RK,Q) already saturates the decoding capability of the re-
ceiver, the new rate tuple (R1, R2,Q, . . . , RK,Q) cannot be achieved and will result in a probability
of error bounded away from zero. Consequently, the corresponding utility will be
u1(s0,Q, s1, . . . , sK,Q) = 0, which contradicts the initial assumption (54).

Now consider the case in which the deviating player is the receiver. Let s0 denote its new
action and assume that its corresponding utility is

u0(s0, s1,Q, . . . , sK,Q) = Rsum(s0) > u0(s0,Q, s1,Q, . . . , sK,Q) + η. (55)

As the action profile (s0,Q, s1,Q . . . , sK,Q) already saturates the sum-capacity, for all possible
s0 ∈ A0, the utility of the receiver satisfies

u0(s0, s1,Q, . . . , sK,Q) 6 u0(s0,Q, s1,Q, . . . , sK,Q) + η. (56)

which contradicts the assumption (55) and establishes the proof.

D Proof of Theorem 5
Let the set Wi(SNR1, SNR2, . . . ,SNRK) be defined as follows:

Wi(SNR1,SNR2, . . . ,SNRK)

,

{
(R1, R2, . . . , RK) ∈ C(SNR1,SNR2, . . . ,SNRK) s.t. Ri =

1

2
log2 (1 + SNRi) and

K∑
j=1;j 6=i

Rj =
1

2
log2

1 +

K∑
j=1

SNRj

− 1

2
log2 (1 + SNRi)

}
. (57)

Let also W̄i(SNR1, SNR2, . . . ,SNRK) be defined as

W̄i(SNR1, SNR2, . . . ,SNRK) , C(SNR1, SNR2, . . . ,SNRK)\Wi(SNR1, SNR2, . . . ,SNRK). (58)

The proof of Theorem 5 is established by Propositions 5 and 6.

Proposition 5 (Non-Equilibrium Points). Any rate tuple (R1, R2, . . . , RK) ∈ W̄i(SNR1, SNR2,
. . . ,SNRK) is not an η-SE with η arbitrary small. That is,

Si(SNR1, SNR2, . . . ,SNRK) ⊆ Wi(SNR1, SNR2, . . . ,SNRK). (59)

Proposition 6 (Achievability). Any rate tuple (R1, R2, . . . , RK) ∈ Wi(SNR1, SNR2, . . . ,SNRK)
is achievable at an η-SE with η arbitrary small. That is,

Wi(SNR1, SNR2, . . . ,SNRK) ⊆ Si(SNR1, SNR2, . . . ,SNRK). (60)

D.1 Proof of Proposition 5
Let (R†1, R

†
2, . . . , R

†
K) be an η-SE for any η > 0 arbitrarily small, achievable by an action profile

(s†0, s
†
1, . . . , s

†
K) ∈ A0 ×A1 × · · · × AK .

Denote by X†i,1, X
†
i,2, . . . , X

†
i,n the channel inputs generated by transmitter i,

for i ∈ {1, 2, . . . ,K}, corresponding to the equilibrium action s†i and denote by
P †i , 1

n

∑n
t=1 E

[
(X†i,t)

2
]
their average power.
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From the assumption that (R†1, R
†
2, . . . , R

†
K) is achievable, the probability of error

P
(n)
error(R

†
1, R

†
2, . . . , R

†
K) can be made arbitrarily small, and thus from (8) and (9) it follows that

ui(s
†
0, s
†
1, . . . , s

†
K)=R†i , ∀i ∈ {1, 2, . . . ,K}, (61)

u0(s†0, s
†
1, . . . , s

†
K)=

K∑
j=1

R†j . (62)

Consider transmitter i and assume that in the action s†i , the rate R†i satisfies

R†i 6
1

2
log2 (1 + SNRi)− δ, (63)

with δ > 0.
There always exist an alternative action s̃i of transmitter i which achieves a rate

Ri =
1

2
log2 (1 + SNRi) . (64)

Hence, for sufficiently large n, the leader’s utility improvement is bounded away from zero and
the action profile (s†0, s

†
1, . . . , s

†
K) cannot be η-SE (Def. 4), with an arbitrarily small η > 0.

Following a similar reasoning as in the proof of Theorem 4, a necessary condition for an action
profile to be an η-SE, with η > 0 arbitrarily small, is to have a decoding strategy at the receiver
which allows the achievability of the sum-capacity. That is,

Rsum(s†0) =

K∑
j=1

R†j =
1

2
log2

1 +

K∑
j=1

SNRj

 . (65)

Now assume that in the action profile (s†0, . . . , s
†
K),

R†i =
1

2
log2 (1 + SNRi) , (66)

and
K∑

j=1;j 6=i

R†j −
1

2
log2

1 +

K∑
j=1

SNRj

− 1

2
log2 (1 + SNRi)− ξ. (67)

In this case, at least one transmitter j, with j 6= i, can always increase its information rate, and
thus its utility by a µ > 0 while guaranteeing the achievability of the rate-tuple (R†j + µ,R†−j)
as long as

µ6min

{
ξ,

1

2
log2 (1 + SNRj)−R†j

}
. (68)

The utility improvement for this player is bounded away from zero; and thus the action profile
(s†0, . . . , s

†
K) cannot be η-SE (Def. 4), with an arbitrarily small η > 0.

D.2 Proof of Proposition 6
Let Pi,K be a set of containing all permutations κ ∈ PK such that κ(K) = i. The cardinality of
this set is (K − 1)!. Assume a given ordering of these permutations such that the set Pi,K can
be written as Pi,K , {κj}(K−1)!j=1 .
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For all j ∈ {1, 2, . . . , (K − 1)!}, let Bj denote the rate point with coordinates

Ri =
1

2
log2 (1 + SNRi) (69)

Rκj(k) =
1

2
log2

(
1 +

SNRκj(k)

1 +
∑K
`=k+1 SNRκj(`)

)
,∀k ∈ {1, 2, . . . ,K} \ {i}. (70)

Any rate tuple (R1, R2, . . . , RK) ∈ Wi(SNR1,SNR2, . . . ,SNRK) can be written as

Ri =
1

2
log2 (1 + SNRi) (71)

Rk =

(K−1)!∑
j=1

βjRk,Bj , k ∈ {1, 2, . . . ,K} \ {i}, (72)

for some real nonnegative parameters (β1, β2, . . . , β(K−1)!) satisfying
∑(K−1)!
j=1 βj = 1 and where

Rk,Bj
denotes the rate of transmitter k in the coordinates of Bj .

Fix a tuple (β1,Q′ , β2,Q′ , . . . , λ(K−1)!,Q′) satisfying
∑(K−1)!
j=1 βj,Q′ = 1 and consider the rate

point Q′ with coordinates

Ri,Q′ =
1

2
log2 (1 + SNRi) , (73)

Rk,Q′ =

(K−1)!∑
j=1

βj,Q′Rk,Bj , k ∈ {1, 2, . . . ,K} \ {i}. (74)

The pointQ′ is achievable if the transmitters and the receiver use the action profile (s0,Q′ , s1,Q′ , . . . ,
sK,Q′) described as follows. Transmitter i who is the leader chooses the action si,Q′ in which it
transmits information at its maximum rate Ri = 1

2 log2 (1 + SNRi) using an iid Gaussian code-
book with power Pi,max. In order to adapt to the leader’s choice, the receiver chooses a time-
sharing between SIC(κ1),SIC(κ2), . . . ,SIC(κ(K−1)!) with time-sharing parameters β1,Q′ , β2,Q′ ,
. . . , β(K−1)!,Q′ . The remaining transmitters use i.i.d. Gaussian codebooks with their maximum
powers and with the adequate time-sharing rates to achieve the point Q′. As the overall proba-
bility of error P (n)

error(R1,Q′ , R2,Q′ , . . . , RK,Q′) is less than the sum of the probabilities of error of
each of the (K − 1)! segments, P (n)

error(R1,Q′ , R2,Q′ , . . . , RK,Q′) can be made arbitrarily small as
the blocklength goes to infinity and the resulting utilities are given by

uk(s1,Q′ , s2,Q′ , . . . , sK,Q′)=Rk,Q′ , k ∈ {1, 2, . . . ,K}, (75)

u0(s1,Q′ , s2,Q′ , . . . , sK,Q′)=

K∑
k=1

Rk,Q′ , (76)

Assume that the action profile (s0,Q′ , s1,Q′ . . . , sK,Q′) is not an η-SE. Then, from Def. 4, there
exist at least one player k ∈ {0, 1, . . . ,K} and at least one strategy sk ∈ Ak such that the utility
uk is improved by at least η bits per channel use when player k deviates from sk,Q′ to sk. Two
cases are to be considered. The first case is to have the leader, Transmitter i, deviating from
si,Q′ . Let s̃i denote its new strategy in which it achieves a rate, and thus utility

ui(s0,Q′ , . . . , si−1,Q′ , s̃i, si+1,Q′ , . . . , sK,Q′) = R̃i >

ui(s0,Q′ , . . . , si−1,Q′ , si,Q′ , si+1,Q′ , . . . , sK,Q′) + η. (77)
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In the action si,Q′ , transmitter i saturates its maximum individual rate and any information rate
that is strictly larger cannot be achieved and would result in an error probability bounded away
from zero, and thus the corresponding utility is zero, which contradicts (77).

The second case to be considered here is to have one of the followers deviating. If the deviating
player is the receiver, using a similar argument as in the proof of Proposition 4, any unilateral
deviation of the receiver will result in a loss in the sum-rate and cannot be an η-NE among the
followers, and thus it cannot be an η-SE. If the deviating follower is transmitter j, as the rate
tuple already saturates the sum-capacity, any deviation will result in an error probability that
is bounded away from zero and thus a zero utility. This contradicts the assumption of an η-SE
and establishes the proof of Proposition 6.
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