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Abstract:          Emotion classification using physiological sensors can be used for a wide range of 
applications in the areas of wellness, medicine, entertainment, sport, learning, advertising, human computer 
interfaces among other. The associated technologies need to be improved in order to be really efficient in real 
life applications. The sensors should be less obtrusive as possible, and the algorithms that estimate emotion 
most accurate as possible. The knowledge of the most relevant features for classifying emotions is crucial for 
both objectives by allowing to select a reduced set of sensors and by optimizing classification algorithms 
performances. In this paper we analyze the relevance of several features extracted from peripheral 
physiological sensors by using two databases freely available to the research community. The use of two 
separate databases allow to analyze if some features are relevant independently from the way the emotions are 
elicited and from the material used for experiments. We find features extracted from galvanic skin response 
(GSR) to be relevant for both databases. Eye closing rate and variance of zygomatic electromyography (EMG), 
only available in one database, are relevant for respectively arousal and valence. The hearth rate variability 
(HRV) is relevant but only for one of the databases, using an electrocardiogram (ECG) whereas for the other 
database photopletismography (PPG) was used. Only with a few set of well selected feature and sensors we 
reach classification performances similar to literature classifiers using more features.    

 

 

1 INTRODUCTION 

Emotion estimation is a topic of interest for 

intelligent interaction. If a machine is able to 

recognize the emotional state of its user, it will be 

possible, for example, to adapt the way the machine 

interacts with the user so as to enhance the user 

experience (André et al., 2004). There are several 

ways to recognize emotional states (Mauss and 

Robinson, 2009). Emotion is perceptible in  facial 

expression, in the sound of voice and also in motions 

(Zeng et al., 2009), which are measurable using a 

camera or a microphone. It is also well known that 

emotions imply specific brain activities and changes 

in activity of  heart, muscles and sweet glands 

(Ekman et al., 1983). Hence, sensors measuring 

physiological activity can be used in order to 

estimate emotions (Picard et al., 2001). In this study 

we decided to focus on physiological signals in 

order to address ambulatory applications. From a 

theoretical perspective, emotional ambulatory 

monitoring has the potential to qualify and quantify 

real-life emotions, discover new emotional 

phenomena, model real life stimuli (Wilhelm and 

Grossman, 2010). From a medical perspective, 

emotion sensing systems could be used for example 

for personalized psychotherapy (Gaggioli et al., 

2014), mental health monitoring (Ertin et al., 2011). 

Designers could use such systems in order to assess 
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the customer reactions when discovering a new 

product. They also could be used from a self-

improvement perspective to increase emotional self-

awareness of the user during his daily activities.  
 In literature, several studies to estimate emotions 

are reported. These studies differ in many ways. 

Emotions can be induced  by various activities :  

driving (Healey and Picard, 2005), looking at a 

movie (Fleureau et al., 2012), playing a video game 

(Yannakakis et al., 2014). The way to characterize 

emotional states is also different. In some studies, 

emotions are considered to be discrete states 

(Healey, 2000) according to discrete emotion theory 

(Ekman, 2005). In other studies, they are classified 

using a space in 2 or 3 dimensions such as valence, 

arousal, dominance (Chanel et al., 2007) according 

to  dimensional theory (Posner et al., 2005). The 

same physiological signal can be acquired using 

different kind of sensors (commercial or homemade 

ones). Different signal processing techniques can 

also be used in order to extract features from 

physiological signals and classify emotions. All 

these differences make it difficult to compare the 

results of those studies.  Comparison between 

databases is all the more difficult given that most of 

them are not available to the research community. 

Yet, a few research teams have made their 

database available, with the goal to provide the 

scientific community with a common basis. Let us 

cite “Eight emotion” (Healey and Picard, 2002), 

“Driver”(Healey and Picard, 2005), “DEAP” 

(Koelstra et al., 2012) and “MAHNOB-HCI” 

(Soleymani et al., 2012). In all the studies using 

these databases, feature selection and classification 

algorithms were used, but the relevance of each 

physiological sensor and each extracted feature to 

emotion assessment was not analyzed in depth. Yet, 

selecting the right sensors and the right features is 

important if one wants to design a device that 

minimizes the number of sensors and the power 

consumption. Moreover it is well known that the 

choice of features contributes to the performance of 

the classifiers (Janecek et al., 2008). Finally, 

underlining which features are important for 

emotional assessment could contribute to a better 

understanding of physiological emotional processes.  

The goal of this paper is to evaluate the 

relevance of particular features to emotion 

classification. Furthermore, we will aim at 

identifying features that appear to be relevant 

whatever the database used (meaning those features 

could be used to classify emotions whatever the way 

emotions are induced). To achieve this goal, we 

explore and compare peripheral signals from the 

DEAP and MANHOB-HCI databases. Indeed, those 

two databases were recorded in a mainly similar 

way, the physiological signals recorded and the 

emotional representation being about the same.  

The outline of the paper is as follows. We will 

describe the content of each database in section 2, 

the pre-processing in section 3, the feature selection 

methods in section 4. The results presented in 

section 5, will be discussed in section 6. 

2 DATABASES 

DEAP and MANHOB-HCI (hereafter called 

MAHNOB) databases contain behavioral and 

physiological data measured in participants watching 

small videos (of around 1 min). A comparative 

analysis of their content is presented in Table 1.  

Their respective experimental protocol can be found 

in (Koelstra et al., 2012) and  (Soleymani et al., 

2012). Several differences observed between the two 

databases, on the video type, the number of 

participants, the number of videos per participant, 

and the kind of behavioral and physiological signals 

recorded.  

Table 1: content of the DEAP and MAHNOB-HCI 

databases (+=available, -= unavailable) 

 DEAP MAHNOB-HCI 

Video type video clip movie 

Duration 1min Approx. 1min 

P=Number of 

participant 

32 27 

V=Number of video 

per participant 

40 20 

Emotion assessment 

labels 

Arousal, 

Valence, 

Dominance, 

Liking, 

Familiarity 

Arousal, valence, 

dominance, 

predictability 

   

EEG + + 

GSR + + 

ECG - + 

PPG + - 

Respiration + + 

Temperature + + 

EMG + - 

EOG + - 

Other - Camera, eye gaze, 



 

sounds 

For both databases, emotions were assessed on 

basis of their arousal level, their valence and their 

dominance. The two first indicators are the most 

widely used to characterize emotions in a 

dimensional scale (Posner et al., 2005). Arousal 

reflects the emotional activation/intensity (from 

calm to excited/from low to high intensity), valence 

reflects pleasure associated with the emotion (from 

pleasant to unpleasant) and dominance the coping 

potential at the emotional situation (from low to high 

control). Each label is ranked from 0 to 10 by each 

subject after viewing the video. 

3 PRE-PROCESSING 

3.1 Normalization of the emotional 

assessments (labels) 

In our study, in order to minimize inter-individual 

variability, we normalized labels for each 

participant. For participant number  , for the video 

number   we considered the label given by: 

        
   

    
 
     

  (1) 

where the label can be           for valence, 

arousal and dominance,   
   

 is the label given in the 

database,     
 

 and    
  are respectively the mean and 

standard deviation of the label over the V videos for 

participant number  . In this paper, we consider only 

valence and arousal, the labels the most commonly 

used in literature.  

However, we noticed that in both databases 

dominance was highly correlated to valence 

(correlation score is 0.82 for DEAP and 0.9 for 

MAHNOB when we consider the labels and the 

features averaged by video over the participants). 

This could be due to a high link between emotion 

and motivation generated by both sets of videos.  

3.2 Emotion classes 

In most of the papers considering emotional state 

estimation, the labels levels are divided into classes 

of intensity. For each label (valence, arousal), two 

classes are considered in DEAP (Koelstra et al., 

2012) whereas three classes are used in MAHNOB 

(Soleymani et al., 2012). In order to have similar 

results for both databases, we consider two classes. 

The labels being normalized, we consider the video 

belongs to the low label class (H0) when        

and to the high label class (H1) when       . 

3.3 Physiological signal 

In this study, considering we want to target 

ambulatory applications, we have chosen to focus on 

peripheral physiological sensors that are wearable 

and non-obtrusive. From this perspective, EEG and 

other modalities (camera, eye gaze and sounds) are 

excluded. Then, we consider Galvanic Skin 

Responses (GSR), Electro-CardioGram (ECG) (for 

MAHNOB), Photo-Plethysmogram (PPG) (for 

DEAP), respiration amplitude, temperature, Electro-

MyoGram (EMG), and Electro-OcculoGram (EOG).  

 DEAP signals were acquired at 512Hz sampling 

frequency but were down sampled to 128Hz. In 

MANHOB, the acquisition sampling frequency was 

256Hz. In concordance with DEAP, we down 

sampled the signals to 128Hz.  

3.4 Extracted Features  

In (Koelstra et al., 2012) and  (Soleymani et al., 

2012), the authors propose a large list of potential 

features to characterize emotion. In a first approach, 

we used all the features proposed in both papers, for 

a total of a hundred parameters. We found that just a 

few parameters were relevant for modeling 

emotional state. In addition, a lot of proposed 

parameters were highly correlated (i.e. they 

represent redundant information), these features 

reflecting similar physiological mechanisms by 

definition. In this paper, we reduced the set of 

parameters to the list presented in table 2, in order to 

simplify the analysis. Each feature is identified by a 

feature number (given into brackets) which will be 

used afterwards. This leads to 15 parameters for 

MAHNOB and 20 parameters for DEAP (where 

EMG and EOG are recorded, contrary to 

MAHNOB-HCI). As for labels, in order to minimize 

the inter-individual variability, the measured 

features were normalized over the videos for each 

participant as follows: 

  
   

      
   

                 
   

 

(2) 

with          , N the number of features to be 

analyzed (N=15 for MAHNOB et N=20 for DEAP), 

    
   

 are the features extracted from the database 



 

before normalization,           and      
  their mean and 

standard deviation over the V videos for the 

participant number  . 

Table 2: features extracted from physiological measures. 

Modality Extracted features 

GSR (1) Average of the derivative, (2) % of neg. 

samples in the derivative, (3) number of local 

minima 

ECG/PPG (4) Average of heart rate, (5) average of 

inter-beat intervals, (6) standard deviation of 

heart rate, (7) Root Mean Square of 

Successive Differences (RMSSD), (8) 

Standard Deviation of Successive 

Differences (SDSD), (9) 

Heart Rate Variability (HRV) power in the 

bands VLF [0.01-0.04] Hz,  (10) LF [0.04-

0.15] Hz and (11) HF [0.15-0.5] Hz,  

Respiration (12) Standard deviation, (13) range (greatest 

breath), (14) average peak to peak time 

Temperature (15) Average skin temperature 

EMG (16) Zigomatic variance (17) trapezius 

variance 

EOG (18) Horizontal Variance (19) Vertical 

variance (20) Eye blinking rate 

4 FEATURE SELECTION 

A lot of feature selection methods are used in the 
literature (Guyon and Elisseeff, 2003), (Saeys et al., 
2007) in order to analyse a feature relevance and to 
select a subset of features. They are generally 
divided into filters and wrappers. Filter methods 
rank the features independently of a classifier by 
giving a score for each feature, estimating a class 
separability criteria. Wrapper methods are classifier 
dependent. They select the subset of features that is 
the most relevant for a given classifier. In this 
section, we describe the feature selection methods 
chosen and the way they are implemented in our 
analysis. 

4.1 Correlation 

Given labels are continuous values, correlation 
between features and labels appears to be a natural 
method to use. 

We use the correlation coefficient given by: 

     
     

   
   

    
        

 
   

 
   

     
   

   
  

           
  

   
 
   

 
(3) 

This coefficient reflects the linear dependence 
between the feature    and the label  . If those 

variables are perfectly linearly dependant (       , 
then        , the sign corresponding to the sign of 
 . If there is no linear link between label and 
feature,       . Feature relevance can then be 
ranked by sorting the computed absolute values of 
the coefficient in ascending order. 

4.2 Fisher score  

In classification tasks, the Fisher score is a 
traditional method for feature selection. The 
objective of this score is to evaluate the ratio 
between inter-class variability and intra-class 
variability. It is given by: 

 

      
   

 
            

 

   
 
       

 
 

(4) 

where   is the number of classes,    the number 
of samples of class c ,     is the mean value of 
feature    over the dataset,      and      are the mean 
and standard deviation of    on class c.  

The best feature is the one with the highest inter-
class variability and the lowest intra-class 
variability. Hence, the best features are ones which 
have the highest scores SC. 

We used this Fisher score in our study for the 
classification task by considering two classes for 
each label (C=2: low label, high label). 

We also considered the feature score obtained by 
considering each video as a separate class (C=V). 
Indeed, we observed for each video a very large 
variability in the labels between participants. This 
result suggests that it was not easy for the 
participants to rate the videos in the (arousal, 
valence, dominance) space.  The Fisher analysis 
with V classes was done in order to analyse the 
feature relevance independently of the way the 
labels have been assigned.  

4.3 Other feature selection methods 

We also test other feature selection methods 
extracted from (Zhao et al., 2010). Those methods 
are Chi-square Score (Liu and Setiono, 1995), Gini 
index (Gini, 1912), Information Gain (Cover and 
Thomas, 2012), CFS (Hall and Smith, 1999) and 
FCBF (Yu and Liu, 2003). In order to analyse the 
results, for each method we rank the features, the 
number 1 being the first selected feature and the 
number 20 the last one.     
 



 

4.4 Bayes classification 

Finally, we considered the binary classification task 
(low label, high label, C=2). 

We used a Naïve Bayes classifier. This classifier 
assumes that the features are independent and can be 
mapped for each class by a normal distribution. 
            . The first step of the classification 
consists in learning the parameters of the classifier. 
For the naïve Bayes classifier, the parameters to 
learn are the mean and variance of the features over 
each class (         ). Then in the evaluation phase, 
for each example, the probability of its membership 
to each class is computed. The class with the 
maximum probability is allocated to the example.  
The features are selected using a selective forward 
search using Bayes classifier. Beginning with an 
empty set of features, we add, at each step, the new 
feature that (combined with the previously selected 
features) results in the highest classification 
accuracy. 

In order to evaluate the performance of the 
classifiers, we use the accuracy and its 95% upper 
and lower bounds.  

To evaluate the generalization power of their 
classifier, (Koelstra et al., 2012) trained a classifier 
for each participant and performed a leave-one video 
out cross-validation. (Soleymani et al., 2012) trained 
a participant independent classifier by considering 
all the examples of their database and performed a 
leave one participant out cross-validation. In our 
opinion, the second approach is better suited when 
one wants to select features whose relevance does 
not depend of the databases used or of the 
participants. Our assessment criterion is the mean 
percentage of accuracy over all the participants 

5 RESULTS 

5.1 Features vias label relevance 

In this section, we analyse how features are related 
to labels (valence, arousal).  

In order to identify which feature should be 
relevant for the classification task, we use Fisher 
score introduced in 2.2. The results are illustrated in 
figure 1. Each bar graph represents the value of the 
score for each of the numbered features in both 
databases (DEAP in blue and MAHNOB in red). 
The highest bars represent the most relevant 
features. The absolute value of the correlation gives 
a new indicator about the feature’s relevance. The 
correlation’s sign indicate if an increase of the label 

is associated to an increase or a decrease of the 
feature. Correlation results are presented in figure 2. 

 

Figure 1: Fisher score of each feature for the 2 class 

problem for valence (high figure) and arousal (low figure).  

 

Figure 2: correlation values between features and valence 

(high figure) and arousal (low figure).  

For valence, the most relevant features for 
DEAP and MAHNOB are respectively the numbers 
16 (zygomatic EMG) and 11 (HRV in HF). For 
zigomatic, the sign of the correlation coefficient is 
positive, probably because a positive emotion 
generates smiles. In contrast, an inverse pattern is 
observed for the high frequency HRV, which 
appears higher for negative valence.  

For arousal, feature 20 (eye blinking rate) is 
relevant for DEAP and corresponds to a decrease of 
the eye blinking rate with arousal. The Fisher and 
correlation scores tend to show that features 9, 10, 
11, are relevant for MAHNOB also. The very low 
frequency HRV decreases whereas low and high 
frequencies increase with arousal. For both 
databases, features 1 and 15 (Average of the GSR 
derivative, skin temperature) appear to be relevant 
for arousal estimation. The correlation sign indicate 



 

that skin resistance and skin temperature decreases 
with arousal. However it should be noted that even 
the highest correlations and Fisher scores stay low. 
The tables below summarize the results obtained with the 

other feature selection methods from (Zhao et al., 
2010).  

Table 3: rank of each feature (line) with respect to each 

feature selection method (arrow) 

Valence DEAP 

 

N° FS X2 Gini 

Info 

Gain CFS FCBF 

1 11 3 3 3   

2 6 4 4 4   

3 3 5 5 5   

4 4 6 6 6   

5 2 7 7 7   

6 9 8 8 8   

7 19 9 9 9   

8 18 10 10 10   

9 8 11 11 11   

10 7 12 12 12   

11 20 13 13 13   

12 17 14 14 14   

13 16 15 15 15   

14 14 16 16 16   

15 5 17 17 17   

16 1 1 1 1 1 1 

17 13 18 18 18   

18 10 2 2 2 2 2 

19 15 19 19 19   

20 12 20 20 20   

 

Valence MAHNOB 

N° FS X2 Gini 
Info 
Gain CFS FCBF 

1 2 2 2 2   

2 6 3 3 3   

3 5 4 4 4   

4 4 5 5 5   

5 3 6 6 6   

6 8 7 7 7   

7 12 8 8 8   

8 13 9 9 9   

9 11 10 10 10   

10 7 1 1 1 1 1 

11 1 11 11 11   

12 15 12 12 12   

13 14 13 13 13   

14 9 14 14 14   

15 10 15 15 15   

 

 

Arousal DEAP 

 

N° FS X2 Gini 

Info 

Gain CFS FCBF 

1 4 2 2 2     

2 2 3 3 3     

3 11 4 4 4     

4 6 5 5 5     

5 5 6 6 6     

6 16 7 7 7     

7 14 8 8 8     

8 15 9 9 9     

9 9 10 10 10     

10 10 11 11 11     

11 12 12 12 12     

12 13 13 13 13     

13 19 14 14 14     

14 18 15 15 15     

15 7 16 16 16     

16 3 17 17 17     

17 8 18 18 18     

18 20 19 19 19     

19 17 20 20 20     

20 1 1 1 1 1 1 

 

Arousal MAHNOB 

N° FS X2 Gini 
Info 
Gain CFS FCBF 

1 5 2 2 2 1 2 
2 7 5 5 5   
3 3 6 6 6   
4 12 7 7 7   
5 8 8 8 8   
6 9 9 9 9   
7 14 10 10 10   
8 13 11 11 11   
9 4 4 4 4 2 3 
10 2 1 1 1 3 1 

11 1 3 3 3   
12 11 12 12 12   
13 10 13 13 13   
14 15 14 14 14   
15 6 15 15 15   

 
Feature 1 (GSR average of derivative) stays relevant 
for all the feature selection methods and for both 
valence and arousal. The most relevant features are 
not common between the databases. For DEAP they 
are feature 16 (EMG zygomatic) and 18 (EOG 
horizontal) for valence and 20 (eye blinking rate) for 
arousal not available for MAHNOB. For MANHOB 
they are feature 10 (HRV LF) and 11 (HRV HF) 
computed from ECG not available for DEAP. 
Those differences between MAHNOB and DEAP 
may be justified by the fact that MAHNOB does not 
contain EMG and EOG and by the fact that heart 
rate is measured via PPG in MAHNOB whereas it is 



 

measured by ECG in DEAP. The ECG signal allows 
a better localisation of R peaks than PPG signal. 

 

5.2 Fisher score of individual 

features on videos 

In the previous section, small values for correlation 
and Fisher scores were obtained suggesting a weak 
link between features and labels. The difficulty for 
the participant to choose a level of arousal and 
valence could justify this result. Indeed, for each 
video, we noted a large variability in rating between 
participants for each label: the average standard 
deviation of video’s valence and arousal, after 
normalization, are respectively 0.68 and 0.89 for 
DEAP and 0.51 and 0.76 for MAHNOB.  

One approach could be to consider that every 
participant reacts to a given video with the same 
emotion. In that case, each video could be 
considered as an emotional class. In order to analyse 
the relevance of each feature in this perspective we 
have computed the Fisher score of each feature by 
considering each video as an emotional class (videos 
classification task). The results are presented in 
figure 3. For a better visualization of the results, it 
should be noted that scores are plotted using a y 
logarithmic axis due to their large difference in 
range. 

For DEAP, the Fisher scores remain all very 
low, which suggests that emotional videos used in 
this database do not induce strong emotional 
reactions or that the reaction differs from one 
participant to another. We can also assume that HRV 
in frequency bands is not a relevant measure when 
PPG is used, due to a lack of precision in the 
identification of peaks R. Eye closing rate (feature 
number 20) remains the most relevant feature. 

In contrast, for MAHNOB, the scores are 
actually higher than those obtained with 2 classes 
and this more particularly for features 9, 10 and 11 
(HRV in frequency bands). This result suggests that 
individual physiological reactions are more related 
to the content of the videos than to the ratings of 
emotions using arousal and valence labels.  

 

Figure 3: Fisher scores, each video being considered as 

one class. 

5.3 Bayes Classification 

The results obtained by a selective forward search 
using Naïve Bayes classifier are presented in figure 
4 for each label and for each database. The x axis 
shows the number of features used by the classifier. 
The y axis presents the mean accuracy reached by 
the classifier and its 95% confidence bounds. As can 
be seen, the classification rates are low, only slightly 
higher than random classifiers, but they are 
comparable to those of (Koelstra et al., 2012), which 
were 62% for valence and 57% for arousal for 
DEAP, using 106 features. The same results are 
reached here with one carefully selected feature. 
Those of MAHNOB in (Soleymani et al., 2012) 
were 46% for arousal and 45% for valence for the 3 
class problem (low, medium, high label). They 
cannot be directly compared with our results, which 
are obtained for 2 classes only. Moreover in 
(Soleymani et al., 2012) they decided to establish the 
classes using emotional keywords instead of valence 
and arousal ratings. As our main purpose was to 
compare the feature relevance we chose to consider 
the same approach for both databases. 

As can be seen, the combination of several 
features does not strongly improve the results. In 
Table 3, the selected features are presented in their 
order of selection. The same relevant features as 
those observed in the previous analyses are selected. 
Feature 10 and 11 appear first and second in 
MAHNOB for arousal, and valence. Feature 6 
(standard deviation of heart rate) also seems to be 
interesting. For GSR we find again feature 16 
(zygomatic) for valence and feature 2 (related to 
GSR) for arousal.    



 

 

Figure 4: classification accuracy with 95% lower and 

upper bound for each database and each label (2 classes) 

with respect to the number of features (forward selection).  

Table 4: Features in selected order by forward search 

DEAP valence 16     2      

MAHNOB valence 10    11     1    14      

DEAP arousal  2    15    17    20    16 

MAHNOB arousal 10    11     6     

  
Figure 5 shows that better results are obtained 

for MAHNOB than for DEAP. This can be 
explained by the fact that MAHNOB’s films induced 
stronger emotions than DEAP’s video clips. Another 
reason can be that PPG was not good enough to 
estimate correctly HRV, which is the feature that 
obtains the best results for MAHNOB.  

6 DISCUSSION 

The objective of this work was to determine which 
features extracted from physiological peripheral 
sensors are relevant for emotion assessment. Two 
databases freely available to the research community 
were used. Several feature selection analysis were 
done.  

The first result is that the classification task 
using valence and arousal labels was not easy, for 
both databases. Indeed correlation coefficients, 
Fisher scores, and classification accuracies were 
low. One reason can be that valence and arousal 
labels are not representative enough of the 
participants’ physiological reaction. Participants 
may have found it difficult to rate their emotional 
state. This is confirmed by the high scores obtained 
by HRV power in three frequency bands on DEAP 
database, when videos are considered as emotional 
classes. This result presumes that better 
classification results could be obtained using other 

labels than labels based on self-evaluation, which 
are very subjective. In (Soleymani et al., 2012) they 
decided to use emotional keywords in order to create 
three classes for valence and arousal. However, 
classification rates were also relatively low. Another 
reason can be that the videos watched by the 
participants are not emotionally stimulating enough 
and that other reactions are superimposed on 
emotional reactions. 

A second result is that better results were 
obtained with the MAHNOB database than with the 
DEAP database, whatever the criteria used: 
correlation coefficients, classification accuracies and 
fisher scores. Several reasons can justify this result. 
Firstly, we assume that movies (in MAHNOB) 
induced more emotions and less emotional 
variability between participants than video clips (in 
DEAP).  This is coherent with the standard 
deviations of labels that were lower in MAHNOB. 
In addition, higher Fisher scores were observed for 
features HRV and (to a lesser extent) for features 
related to skin response, which are known to be 
sensitive to emotions (Lang et al., 1993).  However, 
it should be noted that HRV estimation in the three 
frequency bands is more accurate when R peaks are 
extracted from ECG signal (available in MAHNOB) 
than from PPG signal (available in DEAP). This 
may partially explain the differences between 
databases. Finally, it is possible that movies and 
video-clips differ by the nature of induced discrete 
emotions. 

It was also interesting to identify the relevant 
features for each label, their variation, and whether 
they correspond to well-known physiological 
reactions. The most important feature seems to be 
the HRV power in three frequency bands. Those 
features are commonly used in emotion estimation 
(Kreibig, 2010). It was shown that power in very 
low frequency band decreases whereas power in low 
and high frequencies band increases with arousal. 
This feature was only relevant for MAHNOB 
perhaps because it was not correctly estimated using 
PPG in DEAP. 

For DEAP, eye blinking rate for arousal and 
variance of zygomatic EMG for valence, were both 
well-known relevant features for respectively 
vigilance and attention (Wei and Lu, 2012; 
Campagne et al., 2005), and smiles (Fleureau et al., 
2012). Unfortunately eye blinking rate was not 
available in MANHOB-HCI database. One 
possibility would be to identify it from EEG frontal 
signal (Roy et al., 2014). Features extracted from 
GSR show a significant correlation with arousal for 
both DEAP and MANHOB databases. This result is 
not surprising given the close relationship found in 
the literature between the skin activity level and 
individual’s emotional state (Lang et al., 1993). 



 

Finally, in previous studies (Koelstra et al., 
2012) (Soleymani et al., 2012), the optimal size of 
the feature space for emotion classification had not 
been evaluated. Using a forward search algorithm 
associated with a Bayesian classifier, optimal 
accuracy was achieved only with a few set of 
features (from 1 to 5) and this accuracy is equivalent 
to previous study (Koelstra et al., 2012). 

7 CONCLUSION 

In this work, we aimed at identifying user and 
database independent features for emotional 
estimation, using wearable physiological sensors. 
The features related to GSR were found to be the 
only ones relevant and available for DEAP and 
MAHNOB databases (both freely available to the 
research community). Other features were found to 
be more relevant for one of the two databases, such 
as features extracted from ECG in MAHNOB or 
those extracted from EOG and zygomatic EMG in 
DEAP. Those results should be confirmed by new 
experiments, which should use the most complete 
set of sensors possible, including all the signals 
recorded in DEAP and MANHOB databases, in 
order to obtain result comparable with those 
databases.  It would also be interesting to measure 
both PPG and ECG in order to confirm our 
hypothesis that PPG is not precise enough for HRV 
spectral analysis.  
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