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This paper deals with the analysis of the asymptotic limit toward the derivation of macroscopic equations for a class of equations modeling complex multicellular systems by methods of the kinetic theory. After having chosen an appropriate scaling of time and space, a Chapman-Enskog expansion is combined with a closed, by minimization, technique to derive hyperbolic models at the macroscopic level. The resulting macroscopic equations show how the macroscopic tissue behavior can be described by hyperbolic systems which seem the most natural in this context. We propose also an asymptotic-preserving well-balanced scheme for the one-dimensional hyperbolic model, in the two dimensional case, we consider a time splitting method between the conservative part and the source term where the conservative equation is approximated by the Lax-Friedrichs scheme.

Introduction

The aim of this paper is the derivation of macroscopic hyperbolic models of biological tissues from the underlying description at the microscopic scale delivered by kinetic theory methods. We consider the hyperbolic asymptotic limit for microscopic system that connect the biological parameters, at the level of cells, involved in this level of description.

The first step of the derivation of macroscopic models in biology from the underlying description at the microscopic scale is arguably due to Alt [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF] and Othmer, Dunbar and Alt [START_REF] Othmer | Models of dispersal in biological systems[END_REF], who introduced 1 a new modeling approach by perturbation of the transport equation by a velocity jump-process, which appears appropriate to model the velocity dynamics of cells modeled as living particles. This method has been subsequently developed by various authors, among others, we cite [START_REF] Bellomo | Multicellular biological growing systems: Hyperbolic limits towards macroscopic description[END_REF][START_REF] Bellomo | Multiscale biological tissue models and fluxlimited chemotaxis for multicellular growing systems[END_REF][START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives[END_REF][START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF][START_REF] Bellouquid | From kinetic models of multicellular growing systems to macroscopic biological tissue models[END_REF][START_REF] Chalub | Kinetic models for chemotaxis and their drift diffusion limits[END_REF][START_REF] Dolak | Kinetic models for chemotaxis: Hydrodynamic limits and spatiotemporal mechanisms[END_REF][START_REF] Emako-Kazianou | Existence and diffusive limit of a two-species kinetic model of chemotaxis[END_REF][START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF][START_REF] Hwang | Drift-diffusion limits of kinetic models for chemotaxis: a generalization[END_REF][START_REF] Hillen | The diffusion limit of transport equations derived from velocityjump processes[END_REF][START_REF] Hillen | Hyperbolic models for chemosensitive movement[END_REF][START_REF] James | Chemotaxis: From kinetic equations to aggregate dynamics[END_REF][START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF][START_REF] Perthame | PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic[END_REF][START_REF] Stevens | The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems[END_REF][START_REF] Vauchelet | Numerical simulation of a kinetic model for chemotaxis[END_REF]. The survey on mathematical challenges on the qualitative and asymptotic analysis of Keller and Segel type models [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF] reports an exhaustive bibliography concerning different mathematical approach on the aforementioned topics. The interested reader can find a further updating of the research activity on the study of Keller-Segel models and their developments in [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to Keller-Segel models in a Navier-Stokes fluid[END_REF][START_REF] Hu | To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production[END_REF][START_REF] Lankeit | Long-term behaviour in a chemotaxis fluid system with logistic source[END_REF][START_REF] Winkler | Chemotactic cross-diffusion in complex frameworks[END_REF][START_REF] Winkler | The two-dimensional KellerSegel system with singular sensitivity and signal absorption: Global large-data solutions and their relaxation properties[END_REF], as well as on applications to population dynamics with diffusion [START_REF] Tello | Predator-prey model with diffusion and indirect prey-taxis[END_REF] and pattern formation in cancer [START_REF] Stinner | Global existence of a go-or-grow multiscale model for tumor invasion with therapy[END_REF].

Different time-space scalings lead to equations characterized by different parabolic or hyperbolic structures. Different combinations of parabolic and hyperbolic scales also are used, according to the dispersive or non-dispersive nature of the biological system under consideration. The parabolic (lowfield) limit of kinetic equations leads to a drift-diffusion type system (or reaction-diffusion system) in which the diffusion process dominate the behavior of the solutions [START_REF] Goudon | Low-field limit for a nonlinear discrete driftdiffusion model arising in semiconductor superlattices theory[END_REF][START_REF] Villani | Trend to equilibrium for dissipative equations, functional inequalities and mass transportation[END_REF]. On the other hand, in the hyperbolic (high-field) limit the influence of the diffusion terms is of lower (or equal) order of magnitude in comparison with other convective or interaction terms.

Possible applications refer to modeling cell invasion, as well as chemotaxis and haptotaxis phenomena and related pattern formation [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF][START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives[END_REF][START_REF] Emako-Kazianou | Existence and diffusive limit of a two-species kinetic model of chemotaxis[END_REF]. Models with finite propagation speed appear to be consistent with physical reality rather than parabolic models. This feature is also induced by the essential characteristics of living organisms who have the ability to sense signals in the environment and adapt their movements accordingly.

Our analysis is quite general as it can be applied to different species in response to multiple (chemo)tactic cues [START_REF] Corrias | A chemotaxis model motivated by angiogenesis[END_REF][START_REF] Dolak | Cattaneo models for chemosensitive movement: Numerical solution and pattern formation[END_REF][START_REF] Hillen | On the L 2 -moment closure of transport equations: The Cattaneo approximation[END_REF][START_REF] Patlak | Random walk with persistence and external bias[END_REF]. Therefore, the derivation of hyperbolic models can contribute to further improvements in modeling biological reality. In fact, it seems that the approach introduced by Patlak [START_REF] Patlak | Random walk with persistence and external bias[END_REF] and Keller-Segel [START_REF] Keller | Traveling bands of chemotactic bacteria: A theoretical analysis[END_REF] is not always sufficiently precise to describe some structures as the evolution of bacteria movements, or the human endothelial cells movements on matrigel that lead to the formation of networks interpreted as the beginning of a vasculature [START_REF] Perthame | PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic[END_REF]. These structures cannot be explained by parabolic models, which generally lead to pointwise blow-up [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF], moreover the numerical experiments show the predictability of the hyperbolic models in this context.

We now briefly describe the contents of this paper. Section 2, presents the kinetic model and the scaling deemed to provide the general framework appropriate to derive, by asymptotic analysis, models at the macroscopic scale. Section 3, referring to [START_REF] Bellomo | Multicellular biological growing systems: Hyperbolic limits towards macroscopic description[END_REF], presents the general kinetic framework to be used toward the asymptotic analysis. Section 4, shows how specific models can be derived by the approach of our paper. Section 5, presents some computational simulations to show the predictive ability of the models derived in this paper and looks ahead to research perspectives.

Kinetic mathematical model

Let us consider a physical system constituted by a large number of cells interacting in a biological environment. The microscopic state is defined by the mechanical variable {x, v}, where {x, v} ∈

Ω × V ⊂ R d × R d , d = 1, 2, 3. The statistical collective description of the system is encoded in the statistical distribution f = f (t, x, v) : [0, T ] × Ω × V → R + , which is called a distribution function.
We also assume that the transport in position is linear with respect to the velocity. In this paper, we are interested in the system of different species in response to multiple chemotactic cues. The model, for i = 1, • • • , m, reads:

   ∂ t f + v • ∇ x f = L(g, f ) + H(f, g), τ i ∂ t g i + v • ∇ x g i = l i (g i ) + G i (f, g), (2.1)
where f = f (t, x, v) and g i = g i (t, x, v) denotes respectively the density of cells and the density (concentration) of multiple tactic cues and g

= (g 1 , • • • , g m ) T .
The operators L and l i model the dynamics of biological organisms by velocity-jump process. The set of possible velocities is denoted by V , assumed to be bounded and radially symmetric. The operators H and G i describe proliferation/destruction interactions. The dimensionless time τ i ∈ R + indicates that the spatial spread of f and g i are on different time scales. The case τ i = 0 corresponds to a steady state assumption for g i .

The problem of studying the relationships between the various scales of description, seems to be one of the most important problems of the mathematical modelling of complex systems . Different structures at the macroscopic scale can be obtained corresponding to different spacetime scales. Subsequently, more detailed assumptions on the biological interactions lead to different models of pattern formation. However, a more recent tendency been the use hyperbolic equations to describe intermediate regimes at the macroscopic level rather than parabolic equations, for example [START_REF] Bellomo | Multicellular biological growing systems: Hyperbolic limits towards macroscopic description[END_REF][START_REF] Bellomo | Multiscale biological tissue models and fluxlimited chemotaxis for multicellular growing systems[END_REF][START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF][START_REF] Hillen | Hyperbolic models for chemosensitive movement[END_REF].

The next section deals with the derivation of macroscopic equations using a Champan-Enskog type perturbation approach for (2.1) 1 and a closure by minimization method for (2.1) 2 . Our purpose is to derive hyperbolic-hyperbolic macroscopic model. The first approach consists in expanding the distribution function in terms of a small dimensionless parameter related to the intermolecular distances (the space scale dimensionless parameter). In [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF], a hydrodynamic limit of such kinetic model was used to derive hyperbolic models for chemosensitive movements. While the closure method consists that the (m+1)-moments of the minimizer approximate the (m+1)-moments of the true solution.

3 Asymptotic analysis toward derivation of hyperbolic systems

The kinetic framework

Let us now consider the first equation in (2.1). We assume a hyperbolic scaling for this population it means that we scale time and space variables t → εt and x → εx, where ε is a small parameter which will be allowed to tend to zero, see [START_REF] Bellomo | Multicellular biological growing systems: Hyperbolic limits towards macroscopic description[END_REF] for more details. We deal also with the small interactions i.e H(f, g) = εH(f, g). Then, we obtain the following transport equation for the distribution function

f = f (t, x, v) ∂ t f + v • ∇ x f = 1 ε L(g, f ) + H(f, g), (3.2) 
where the position x ∈ Ω ⊂ R d and the velocity v ∈ V ⊂ R d . In addition, the analysis developed is based on the assumption that L admits the following decomposition:

L(g, f ) = L 0 (f ) + εL 1 (g, f ), (3.3) 
with L 1 in the form

L 1 (g, f ) = m i=1 L 1 i [g i ](f ). (3.4)
The operator L 0 represents the dominant part of the turning kernel modeling the tumble process in the absence of chemical substance and L 1 i is the perturbation due to chemical cues. The parameter ε is a time scale which here refers to the turning frequency. The equation (3.2) becomes

∂ t f + v • ∇ x f = 1 ε L 0 (f ) + m i=1 L 1 i [g i ](f ) + H(f, g). (3.5) 
The most commonly used assumption on the perturbation turning operators L 0 , L 1 i and l i is that they are integral operators and read:

L 0 (f ) = V T 0 (v, v )f (t, x, v ) -T 0 (v , v)f (t, x, v) dv , (3.6) 
L 1 i [g i ](f ) = V T 1 i (g i , v, v )f (t, x, v ) -T 1 i (g i , v , v)f (t, x, v) dv , (3.7) 
and

l i (f ) = V K i (v, v )f (t, x, v ) -K i (v , v)f (t, x, v) dv , (3.8) 
The turning kernels T 0 (v, v ), T 1 i (g i , v, v ) and K i (v, v ) describe the reorientation of cells, i.e. the random velocity changes from the previous velocity v to the new v.

The following assumptions on the turning operators are needed to develop the hyperbolic asymptotic analysis:

• Assumption H0: For all i = 1, • • • , m, the turning operators L 0 , L i and l i conserve the local mass:

V L 0 (f )dv = V L 1 i [g i ](f )dv = V l i (f ) = 0. (3.9)
• Assumption H1: The turning operator L 0 conserve the population flux:

V vL 0 (f )dv = 0. (3.10) 
• Assumption H2: For all n ∈ [0, +∞[ and u ∈ R d , there exists a unique function

F n,u ∈ L 1 (V, (1+ |v|)dv) such that L 0 (F n,u ) = 0, V F n,u dv = n and V vF n,u dv = nu. (3.11)
It is clear, from (3.6)-(3.8), that L 0 , L i and l i satisfy the assumption H0.

The following lemma, whose proof can be found in [START_REF] Hillen | On the L 2 -moment closure of transport equations: The Cattaneo approximation[END_REF], will be used a few times, Lemma 3.1 Assume that V = sS d-1 , s > 0, which corresponds to the assumption that any individual of the population chooses any velocity with a fixed norm s(speed). Then,

V vdv = 0, V v i v j dv = |V |s 2 d δ ij and V v i v j v k dv = 0, where v = (v 1 , • • • , v d
) and δ ij denotes the Kronecker symbol, and the notation S d-1 corresponds to the unit sphere in dimension d.

Hydrodynamic limit

In this subsection, we use the last assumptions to derive an hyperbolic system on macroscopic scale for small perturbation parameter.

Let f be solution of the equation (3.5) and consider the density of cells n and the flux u defined by:

n(t, x) = V f (t, x, v)dv and n(t, x)u(t, x) = V v f (t, x, v)dv.
(3.12)

To derive the equations for the moments in (3.12), we multiply (3.5) by 1 and v respectively, and integrate over V to obtain the following system

           ∂ t n + div x (nu) = V H(f, g)dv, ∂ t (nu) + div x V v ⊗ vf (t, x, v)dv = m i=1 V vL 1 i [g i ](f )dv + V vH(f, g)dv.
(3.13)

Now let g i be a solution of the following (i)-equation

τ i ∂g i ∂t + v • ∇ x g i = l i (g i ) + G i (f, g), (3.14) 
and set

N i (t, x) = V g i (t, x, v)dv and N i (t, x)U i (t, x) = V vg i (t, x, v)dv. (3.15)
To derive the equations for moments in (3.15), we multiply the equation (3.14) by 1 and v respectively and integrate over V to obtain the following system

       τ i ∂ t N i + div x (N i U i ) = V G i (f, g)dv, τ i ∂ t (N i U i ) + div x V v ⊗ vg i (t, x, v)dv = V vl i (g i )dv + V vG i (f, g)dv. (3.16) 
Finally, (3.13) and (3.16) yield the following system

                                     ∂ t n + div x (nu) = V H(f, g)dv, ∂ t (nu) + div x V v ⊗ vf (t, x, v)dv = m i=1 V vL 1 i [g i ](f )dv + V vH(f, g)dv, τ i ∂ t N i + div x (N i U i ) = V G i (f, g)dv, τ i ∂ t (N i U i ) + div x V v ⊗ vg i (t, x, v)dv = V vl i (g i )dv + V vG i (f, g)dv.
(3.17)

In the following, we are interested to close the system (3.17). We start by two first equations of (3.17), we introduce f 1 such that

εf 1 (t, x, v) = f (t, x, v) -F n(t,x),u(t,x) (v),
where the equilibrium distribution F n,u is defined by (3.11). Then, we deduce

V f 1 (t, x, v)dv = 0, V vf 1 (t, x, v)dv = 0.
Then, we assume the following asymptotic expansion in order 1 in ε,

H(φ + εψ, θ) = H(φ, θ) + O(ε) and G i (φ + εψ, θ) = G i (φ, θ) + O(ε). (3.18) 
Replacing now f by its expansion f (t, x, v) = F n(t,x),u(t,x) (v) + εf 1 (t, x, v) and using the first equality of (3.18), yields

             ∂ t n + div x (nu) = V H(F n,u , g)dv + O(ε), ∂ t (nu) + div x V v ⊗ vF n,u (v)dv = m i=1 V vL 1 i [g i ](F n,u )dv + V vH(F n,u , g)dv + O(ε). (3.19) Therefore V v ⊗ vF n,u (v)dv = V (v -u) ⊗ (v -u)F n,u (v)dv + nu ⊗ u = P + nu ⊗ u,
where the pressure tensor P is given by

P (t, x) = V (v -u(t, x)) ⊗ (v -u(t, x))F n(t,x),u(t,x) (v)dv. (3.20)
Since L 1 i conserves the local mass (3.9), the system (3.19) becomes

                 ∂ t n + div x (nu) = V H(F n,u , g)dv + O(ε), ∂ t (nu) + div x (P + nu ⊗ u) = m i=1 V (v -u)L 1 i [g i ](F n,u )dv + V vH(F n,u , g)dv + O(ε). (3.21) 
Remark 3.2 It is easy to see that the influence of the turning operator L 0 on the macroscopic equations (3.21) only comes into play through the stationary state F n,u in the computation of the right-hand side of the second equation in (3.21) and the pressure tensor P . While the structure of the turning operator L 1 i determines the effect of the chemical cues. Taking into account the system (3.21) and using the second equality of (3.18) the system (3.17) reads now

                                     ∂ t n + div x (nu) = V H(F n,u , g)dv + O(ε), ∂ t (nu) + div x (P + nu ⊗ u) = m i=1 V (v -u)L 1 i [g i ](F n,u )dv + V vH(F n,u , g)dv + O(ε), τ i ∂ t N i + div x (N i U i ) = V G i (F n,u , g)dv + O(ε), τ i ∂ t (N i U i ) + div x (Q(g i )) = V vl i (g i )dv + V vG i (F n,u , g)dv + O(ε), (3.22) 
with

Q(g i ) := V v ⊗ vg i (t, x, v)dv = V v k v l g i (t, x, v)dv 1≤k,l≤d .
It can be observed that system (3.22) is not yet closed. Indeed, it can be closed by looking for an approximate expression of Q(g i ). The approach consists in deriving a function a i (t, x, v) which minimizers the L 2 (V )-norm under the constraints that it has the same first moments, N i and N i U i , as g i . Once a i this function has been found, we replace Q(g i ) by Q(a i ), and g by a in the others terms.

Toward this aim, we consider the set of velocities V = sS d-1 with s > 0 and S d-1 the unit sphere of R d . Let us introduce Lagrangian multipliers η i and

- → ξ i = (ξ 1 i , • • • , ξ d i
) respectively scalar and vector, and define the following operator:

M (a i ) = 1 2 V a 2 i (t, x, v)dv -η i ( V a i (t, x, v)dv -N i (t, x, v)) - - → ξ i .( V va i (t, x, v)dv -N i (t, x, v)U i (t, x, v)).
The Euler-Lagrange equation (first variation) of M (a i ) reads

a i = η i + - → ξ i .v.
We use the constraints to define η i and -→ ξ i . First, from the first equality in (3.15) one gets easily

η i = N i |V | . Next, from Lemma 3.1 one obtains N i (t, x)U i (t, x) = V va i (t, x, v)dv = |V | s 2 d - → ξ i , then - → ξ i = d |V |s 2 N i (t, x)U i (t, x). Therefore, a i (t, x, v) = 1 |V | N i (t, x) + d s 2 N i (t, x)U i (t, x).v . (3.23) 
Consequently, using again lemma 3.1, the pressure tensor Q(a i ) is

Q(a i ) = V v ⊗ va i (t, x, v)dv = 1 |V | V v ⊗ vN i dv = s 2 d N i I d ,
where I d denotes the d × d identity matrix. Thus, the following nonlinear coupled hyperbolic model is derived:

                                     ∂ t n + div x (nu) = V H(F n,u , a)dv + O(ε), ∂ t (nu) + div x (P + nu ⊗ u) = m i=1 V (v -u)L 1 i [a i ](F n,u )dv + V vH(F n,u , a)dv + O(ε), τ i ∂ t N i + div x (N i U i ) = V G i (F n,u , a)dv + O(ε), τ i ∂ t (N i U i ) + s 2 d ∇ x N i = V vl i (a i )dv + V vG i (F n,u , a)dv + O(ε), (3.24) 
with a = (a 1 , • • • , a m ).

Remark 3.3 The second variation of M is δ 2 M (a i ) = 1, then the extremum a i (t, x, v) is a mini- mum.

Derivation of models

This section shows how the tools reviewed in the preceding section can be used to derive models.

Let us consider the model defined by choosing the stationary state and the turning kernels. Consider F n,u as follows:

F n,u (v) = 1 |V | (n + d s 2 nu.v), (4.25) 
It is easy to check that F n,u satisfies the assumptions (3.10)- (3.11).

We take the turning kernel T 0 in (3.6) in the form

T 0 (v, v ) = µ 0 |V | (1 + d s 2 v • v ),
with µ 0 a real constant, and consider that the turning kernel T 1 i in (3.7) depends on the velocity v , on the population g i , and on its gradient, defined by:

T 1 i [g i ](v, v ) = µ 1 |V | - µ 2 d |V |s 2 v • α(< g i >),
where α is a mapping R -→ R d , µ 1 , µ 2 are real constants and < • > stands for the (v)-mean of a function, i.e < h >:

= V h(t, x, v)dv for h ∈ L 2 (V ).
Therefore, the turning operator L 0 is given by:

L 0 (f ) = V T 0 (v, v )f (t, x, v ) -T 0 (v , v)f (t, x, v) dv = µ 0 1 |V | (n + d s 2 nv • u) -f (v) = µ 0 (F n,u (v) -f (v)) , (4.26) 
then, L 0 is a relaxation operator to F n,u . While, the turning operator L 1 i [g i ] can be computed as follows:

L 1 i [g i ](f ) = V T 1 i (g i , v, v )f (t, x, v ) -T 1 i (g i , v , v)f (t, x, v) dv = µ 1 |V | n - µ 2 d |V |s 2 nu.α(< g i >) -µ 1 f (v) + µ 2 d s 2 vf (v) • α(< g i >) = µ 1 n |V | -f (v) - µ 2 d s 2 nu |V | -vf (v) • α(< g i >).
Thus,

V (v -u)L 1 i [g i ](F n,u )dv = µ 1 V v n |V | -F n,u (v) dv - µ 2 d s 2 V v nu |V | -vF n,u (v) • α(< g i >)dv = -µ 1 nu + µ 2 nα(< g i >).
Consequently,

m i=1 V (v -u)L 1 i [g i ](F n,u )dv = -µ 1 mnu + m i=1 µ 2 nα(< g i >). (4.27)
Finally, take the turning kernel K i in (3.8) as follows:

K i (v, v ) = σ i |V | , with σ i is a real constant.
Then, the turning operator l i is computed as follows:

l i (h) = V K i (v, v )h(t, x, v ) -K i (v , v)h(t, x, v) dv = σ i < h > |V | -h .
Therefore,

V vl i (h)dv = -σ i V vhdv.
Consequently,

V vl i (a i )dv = -σ i N i U i . (4.28)
Now we compute the pressure tensor P . By using lemma 3.1, we have

V v ⊗ vF n,u dv = V v ⊗ v 1 |V | (n + d s 2 nu.v) = s 2 d nI d .
Thus,

P + nu ⊗ u = s 2 d nI d . (4.29)
Finally, the system (3.24) becomes, at first order with respect to ε,

                               ∂ t n + div x (nu) = V H(F n,u , a)dv, ∂ t (nu) + s 2 d ∇ x n = -µ 1 mnu + µ 2 m i=1 nα(N i ) + V vH(F n,u , a)dv, τ i ∂ t N i + div x (N i U i ) = V G i (F n,u , a)dv, τ i ∂ t (N i U i ) + s 2 d ∇ x N i = -σN i U i + V vG i (F n,u , a)dv, (4.30) 
where a and F n,u are defined in (3.23) and (4.25).

Theorem 4.1 If we consider for all

i = 1, • • • , m, α(N i ) = α i (N i )∇ x N i , H
and G i satisfy the assumption (3.18) then, we obtain the following system at first order with respect to ε, This theorem leads to some specific models which are presented in the next subsection.

                               ∂ t n + div x (nu) = V H(F n,u , a)dv, ∂ t (nu) + s 2 d ∇ x n = -µ 1 mnu + µ 2 m i=1 nα i (N i )∇ x N i + V vH(F n,u , a)dv, τ i ∂ t N i + div x (N i U i ) = V G i (F n,u , a)dv, τ i ∂ t (N i U i ) + s 2 d ∇ x N i = -σ i N i U i + V vG i (F n,u , a)dv. 

A Cattaneo type model for chemosensitive movement

Taking m = 1 in (4.31), one can derive the corresponding hyperbolic system for chemosensitive movement, at first order with respect to ε, as follows

                     ∂ t n + div x (nu) = Ψ(F n,u , a 1 ), ∂ t (nu) + s 2 d ∇ x n = -µ 1 nu + µ 2 nα 1 (N 1 )∇ x N 1 + Ψ(F n,u , a 1 ), τ 1 ∂ t N 1 + div x (N 1 U 1 ) = Φ 1 (F n,u , a 1 ), τ 1 ∂ t (N 1 U 1 ) + s 2 d ∇ x N 1 = -σ 1 N 1 U 1 + Φ 1 (F n,u , a 1 ), (4.32) 
where

Ψ(F n,u , a 1 ) := V H(F n,u , a 1 )dv, Ψ(F n,u , a 1 ) := V vH(F n,u , a 1 )dv and Φ 1 (F n,u , a 1 ) := V G 1 (F n,u , a 1 )dv, Φ 1 (F n,u , a 1 ) := V vG 1 (F n,u , a 1 )dv.
In absence of interactions, the authors in [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF] and [START_REF] Hillen | On the L 2 -moment closure of transport equations: The Cattaneo approximation[END_REF] derived, respectively, the first two equations for (n, nu) by asymptotic analysis and moment closure. The system composed by the first two equations with H = 0 is called the Cattaneo model for chemosensitive movement with density control [START_REF] Dolak | Cattaneo models for chemosensitive movement: Numerical solution and pattern formation[END_REF][START_REF] Hillen | Hyperbolic models for chemosensitive movement[END_REF].

Derivation of Keller-Segel models

The approach proposed can be applied to derive a variety of models of Keller-Segel type. Indeed, by taking the system (4.31) and with different scalings this approach allows to derive various models.

From (3.23) and (4.25), we have

F n,u = 1 |V | (n + d s 2 nu • v) and a 1 = 1 |V | (N 1 + d s 2 N 1 U 1 •v).
To get our aim, we assume moreover in this subsection the following assumption,

H(F n,u , a 1 ) = H n |V | , N 1 |V | + O( 1 s 2 ) and G 1 (F n,u , a 1 ) = G 1 n |V | , N 1 |V | + O( 1 s 2 ), (4.33) 
and we set

H(n, N 1 ) = |V |H n |V | , N 1 |V | and G 1 (n, N 1 ) = |V |G 1 n |V | , N 1 |V | .
Consequently, we have the following proposition, Proposition 4.2 For m = 1, the system (4.31) becomes, with above assumptions (3.18) and (4.33), which are satisfied if H and G 1 are bilinear

                         ∂ t n + div x (nu) = H(n, N 1 ) + O( 1 s 2 ), ∂ t (nu) + s 2 d ∇ x n = -µ 1 nu + µ 2 nα 1 (N 1 )∇ x N 1 + O( 1 s 2 ), τ 1 ∂ t N 1 + div x (N 1 U 1 ) = G 1 (n, N 1 ) + O( 1 s 2 ), τ 1 ∂ t (N 1 U 1 ) + s 2 d ∇ x N 1 = -σ 1 N 1 U 1 + O( 1 s 2 ). (4.34) Let now σ 1 → ∞ and s → ∞ such that s 2 dσ 1 → D N 1 .
Dividing the fourth equation of system (4.34) by σ 1 and taking last limits, yields

D N 1 ∇ x N 1 = -N 1 U 1 , therefore the third equation of (4.34) writes τ 1 ∂N 1 ∂t -D N 1 ∆ x N 1 = G 1 (n, N 1 ). (4.35)
Thus, we get the following system

               ∂ t n + div x (nu) = H(n, N 1 ) + O( 1 s 2 ), ∂ t (nu) + s 2 d ∇ x n = -µ 1 nu + µ 2 nα 1 (N 1 )∇ x N 1 + O( 1 s 2 ), τ 1 ∂ t N 1 -D N 1 ∆ x N 1 = G 1 (n, N 1 ) + O( 1 s 2 ). (4.36)
Consequently, if we take:

τ 1 = 1, α 1 (N 1 ) = 1 and H = O( 1 s 2 ) = 0 and we define G 1 (n, N 1 ) = g(n, N 1 ),
then we recover the system ( 16) in [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF].

In addition we apply an other scaling for the two first equations of (4.36) we can derive some K-S type models. Indeed, we take µ1 = µ2 and s → ∞ such that

s 2 dµ 1 → D n . (4.37)
Next, dividing the second equation in (4.36) by µ 1 and taking last limits, yields

D n ∇ x n = -nu + α 1 (N 1 )n∇ x N 1 , then, nu = α 1 (N 1 )n∇ x N 1 -D n ∇ x n,
replacing in the first equation of system (4.36), with S := N 1 , χ(S) := α 1 (S), yields 

   ∂ t n = div x (D n ∇ x n -nχ(S)∇ x S) + H(n, S), τ 1 ∂ t S = D S ∆ x S + G 1 (n, S).
                     ∂ t n + div x (nu) = 0, ∂ t (nu) + s 2 d ∇ x n = -µ 1 nu + µ 2 nα 1 (N 1 )∇ x N 1 , ∂ t N 1 + div x (N 1 U 1 ) = n, ∂ t (N 1 U 1 ) + s 2 d ∇ x N 1 = -σ 1 N 1 U 1 .
(5.39)

To compute numerical solutions of (5.39) in one space dimension we use a well-balanced scheme adapting the method developed by Gosse and Toscani [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF]. Well-balanced schemes have been developed in order to guarantee good behaviour of numerical solutions for large time [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws: Exponential-Fit, Well-Balanced and Asymptotic-Preserving[END_REF]. Moreover, we show that the resulting scheme is asymptotic preserving for the limit in (4.37), in the sense that it is asymptotically equivalent to a well-balanced numerical scheme for the Keller-Segel model. The two-dimensional case referring to [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF], where the numerical method is based on time splitting scheme between the conservative part and the source term of system (5.39) where the conservative equation is approximated by the Lax-Friedrichs scheme [START_REF] Vázquez-Cendón | Solving Hyperbolic Equations with Finite Volume Methods[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF].

One dimensional well-balanced and asymptotic-preserving scheme

In this section we present a well-balanced discretization of system (5.39) in one-dimensional setting subject to the scaling of Section 4.2. The scheme obtained is asymptotic preserving in the sense that when (4.37) holds, the limiting scheme is asymptotically equivalent to the well-known Scharfetter-Gummel scheme for the Keller-Segel equations (4.38).

Let us first give an other presentation of system (5.39). We are in the setting of Section 4.2, so we set

µ 1 = µ 2 = s 2 D n , and 
σ 1 = s 2 D N 1 .
(5.40) System (5.39) in one dimension, replacing µ 1 , µ 2 and σ 1 by their expressions in (5.40), yields

                     ∂ t n + ∂ x (nu) = 0, ε 2 ∂ t (nu) + ∂ x n = an - nu D n , ∂ t N 1 + ∂ x (N 1 U 1 ) = n, ε 2 ∂ t (N 1 U 1 ) + ∂ x N 1 = - N 1 U 1 D N 1 ,
(5.41) with ε = 1 s and a = α 1 Dn ∂ x N 1 . Following the ideas of [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], we write (5.41) as

                           ∂ t v + 1 ε ∂ x w = 1 2ε (a - 1 εD n )v + (a + 1 εD n )w , ∂ t w - 1 ε ∂ x v = - 1 2ε (a - 1 εD n )v + (a + 1 εD n )w , ∂ t V + 1 ε ∂ x W = - 1 2ε 2 D N 1 (V -W ) + n 2 , ∂ t W - 1 ε ∂ x V = 1 2ε 2 D N 1 (V -W ) + n 2 , (5.42) 
where v = 1 2 (n + ε(nu)), V = 1 2 (N 1 + ε(N 1 U 1 )), (5.43) 
w = 1 2 (n -ε(nu)), W = 1 2 (N 1 -ε(N 1 U 1 )). (5.44) 
We are now ready to deduce a numerical discretization of system (5.39) based in the representation (5.42). We discretize [0, T ] × [-L, L], T, L > 0, by a uniform Cartesian computational grid determined by ∆x and ∆t, standing for the space and time steps respectively. Let x i and t k such that x i = -L + i∆x and t k = k∆t, i = 0, • • • , N x , k ∈ N. The approximations of v(x, t), w(x, t), V (x, t) and W (x, t) at the spatial point x i and at the time step t k are denoted by

v k i ≈ v(t k , x i ), w k i ≈ w(t k , x i ), V k i ≈ V (t k , x i ) and W k i ≈ W (t k , x i )
respectively. We will recover approximations of n(x, t), nu(x, t), N 1 (x, t) and N 1 U 1 (x, t) by setting

n k i = v k i + w k i , (nu) k i = 1 ε (v k i -w k i ), N 1 k i = V k i + W k i , (N 1 U 1 ) k i = 1 ε (V k i -W k i ).
Following the ideas in Gosse-Toscani [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], we discretize (5.42) by

                       v k+1 i = v k i - ∆t ε∆x (v k+1 i -v k+ 1 2 i- 1 2 
),

w k+1 i-1 = w k i-1 - ∆t ε∆x (w k+1 i-1 -w k+ 1 2 i- 1 2 
),

V k+1 i = V k i - ∆t ε∆x (V k+1 i -V k+ 1 2 i-1 2 ) + ∆t 2 n k+1 i , W k+1 i-1 = W k i-1 - ∆t ε∆x (W k+1 i-1 -W k+ 1 2 i-1 2 ) + ∆t 2 n k+1 i , (5.45) 
with i = 0, • • • , N x . In order to update the values v k i , w k i-1 , V k i , W k i-1 , we need expressions for the numerical flux v i-1 2 , w i-1 2 , V i-1 2 and W i-1 2
. For that purpose we solve in [x i-1 , x i ], the stationary problem composed of the four equations of (5.42)

                         ∂ x v = 1 2 (a i-1 2 - 1 εD n )v + (a i-1 2 + 1 εD n )w , ∂ x w = 1 2 (a i-1 2 - 1 εD n )v + (a i-1 2 + 1 εD n )w , ∂ x V = - 1 2εD N 1 (V -W ), ∂ x W = - 1 2εD N 1 (V -W ),
where, a i-

1 2 = α 1 Dn N 1,i -N 1,i-1 ∆x , i = 0, • • • , N x .
We complete this system with the incoming boundary conditions

v(x i-1 ) = v i-1 , V (x i-1 ) = V i-1 , w(x i ) = w i , W (x i ) = W i ,
and we look for the unknowns:

v i-1 2 = v(x i ), V i-1 2 = V (x i ), w i-1 2 = w(x i-1 ), W i-1 2 = W (x i-1 ).
One can solve explicitely this system of differential equations. After straightforward but tedious computations, one finds

v i-1 2 = w i + f i-1 2 , V i-1 2 = W i + F i-1 2 , i = 0, • • • , N x (5.46) w i-1 2 = v i-1 -f i-1 2 , W i-1 2 = W i-1 -F i-1 2 , i = 0, • • • , N x , (5.47) 
where

f i-1 2 = 2εa i-1 2 D n v i-1 -e -a i-1 2 ∆x w i εa i-1 2 (1 + e -a i-1 2 ∆x ) -(e -a i-1 2 ∆x -1) ,
and

F i-1 2 = 2εD N 1 2εD N 1 + ∆x (V i-1 -W i ).
Now the approximations of the numerical fluxes v

k+ 1 2 i-1 2 , w k+ 1 2 i-1 2 , V k+ 1 2 i-1 2 and W k+ 1 2 i-1 2
are computed from (5.46), (5.47) as

v k+ 1 2 i-1 2 = w k+1 i + f k i-1 2 , V k+ 1 2 i-1 2 = W k+1 i + F k+1 i-1 2 , i = 0, • • • , N x (5.48) w k+ 1 2 i-1 2 = v k+1 i-1 -f k i-1 2 , W k+ 1 2 i-1 2 = V k+1 i-1 -F k+1 i-1 2 , i = 0, • • • , N x , (5.49) 
with

f k i-1 2 = 2εa k i-1 2 D n (v k i-1 -e -a k i-1 2 ∆x w k i ) εa k i-1 2 (1 + e -a k i-1 2 ∆x ) -(e -a k i-1 2 ∆x - 1) 
, (5.50)

F k+1 i-1 2 = 2εD N 1 2εD N 1 + ∆x (V k+1 i-1 -W k+1 i
), and , which is of order ε, is treated explicitly. From (5.45), (5.46) and (5.47) we obtain, for i = 0, • • • , N x , the following well-balanced scheme of system (5.42) This yields

a k i-1 2 = α 1 D n N k 1,i -N k 1,i-1 ∆x . ( 5 
                       (1 + ∆t ε∆x )v k+1 i - ∆t ε∆x w k+1 i = v k i + ∆t ε∆x f k i-1 2 , (1 + ∆t ε∆x )w k+1 i - ∆t ε∆x v k+1 i = w k i - ∆t ε∆x f k i+ 1 2 , (1 + ∆t ε∆x )V k+1 i - ∆t ε∆x W k+1 i = V k i + ∆t ε∆x F k+1 i-1 2 + ∆t 2 n k+1 i , (1 + ∆t ε∆x )W k+1 i - ∆t ε∆x V k+1 i = W k i - ∆t ε∆x F k+1 i+ 1 2 + ∆t 2 n k+1 i , ( 5 
n k -1 = n k 1 , n k Nx+1 = n k Nx-1 , (5.55) 
q k -1 = q k 1 , q k Nx+1 = q k Nx-1 .
(5.56)

Next, we will prove that (5.52) is asymptotic preserving scheme, more precisely we will prove that when ε is small (i.e s is large) (5.52) is asymptotically equivalent to the Scharfetter-Gummel scheme, discussed in bellow, for the Keller-Segel model.

We first recall Scharfetter-Gummel method [START_REF] Scharfetter | Large signal analysis of a silicon read diode oscillator[END_REF] adapted to the Keller-Segel model. It has been shown in section 4.2 that problem (4.31) is "asymptotically" equivalent to the following Keller-Segel type model

   ∂ t n = ∂ x (D n ∂ x n -nχ(S)∂ x S), ∂ t S = D S ∂ xx S, (5.57) 
with S = N 1 and χ(S) = α 1 (S).

We rewrite the first equation of (5.57) as

∂ t n + ∂ x J = 0, with J = -D n ∂ x n + nα 1 ∂ x S.
(5.58)

In standard notation, the discretization of the equation (5.57) writes

n k+1 i -n k i ∆t + J k i+ 1 2 -J k i-1 2 ∆x = 0, (5.59) 
Here, the flux J k i+ 1 2 is given by the local boundary-value problem

     J k i-1 2 = -D n ∂ x n + α 1 S k i+1 -S k i ∆x n, n(0) = n k i , n(∆x) = n k i+1 .
(5.60)

This differential system can be solved explicitely, one gets

J k i+ 1 2 = α 1 ∂ (c) x S k i n k i -exp(-α 1 ∆x Dn ∂ (c) x S k i )n k i+1 1 -exp(-α 1 ∆x Dn ∂ (c) x S k i ) , (5.61) 
where, ∂

x

S k i = S k i+1 -S k i ∆x , i = 0, • • • , N x .
On the other hand the second equation of system (5.57) is approximated by the classical second order finite difference scheme [26]

S k+1 i -S k i ∆t = D S S k+1 i-1 -2S k+1 i + S k+1 i+1 (∆x) 2 + n k+1 i , (5.62) 
with i = 0, • • • , N x . On the boundaries, we again use (5.55).

The next proposition show that the well-balanced scheme (5.52) is asymptotic preserving scheme.

Proposition 5.1 Formally, when ε → 0, the numerical discretization (5.52) converges to the discretization (5.59), (5.61), (5.62) of Keller-Segel system (5.57) (with S = N 1 and χ = α 1 ).

Proof. By summing the first and second equations of (5.52) and the third and fourth equations, one can drive, for every i = 0, • • • , N x , the two following equations

n k+1 i = n k i + ∆t ∆x f k i-1 2 ε - f k i+ 1 2 ε , (5.63) 
S k+1 i = S k i + ∆t ∆x F k+1 i-1 2 ε - F k+1 i+ 1 2 ε + ∆tn k+1 i . (5.64) But the expressions of f k i-1 2 and F k+1 i-1 2
, in Eqs. (5.50) and (5.51), implies

f k i-1 2 ε = 2a k i-1 2 D n εa k i-1 2 1 + exp(-a k i-1 2 ∆x) -exp(-a k i-1 2 ∆x) -1 × 1 2 (n k i-1 + ε(nu) k i-1 ) - exp(a k i-1 2 ∆x) 2 (n k i -ε(nu) k i )
and

F k+1 i-1 2 ε = D S 2εD S + ∆x S k+1 i-1 + ε(SU 1 ) k+1 i-1 -S k i + ε(SU 1 ) k+1 i . It follows that for every i = 0, • • • , N x lim ε→0 + f k i-1 2 ε = α 1 ∂ (c) x S k i-1 1 -exp(-α 1 ∆x Dn ∂ (c) 
x S k i-1 )

n k i-1 -exp(- α 1 ∆x D n ∂ (c) x S k i-1 )n k i , (5.65) 
and, lim

ε→0 + F k+1 i-1 2 = D S ∆x (S k+1 i-1 -S k+1 i
).

(5.66)

Passing to the limit, in (5.63)-(5.64), and using the relations (5.65)-(5.66) yields the discretization (5.59), (5.61), (5.62).

Two dimensional numerical method

In this section we will solve numerically the model (5.39) in the two dimensional case. Since the extension of the techniques proposed in previous section to higher dimension is still not complete, we choose a discretization based on the Lax-Friedrichs scheme [START_REF] Vázquez-Cendón | Solving Hyperbolic Equations with Finite Volume Methods[END_REF][START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF]. Following the idea of [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF] we write (5.39) in the following form

∂ t U + ∂ x F 1 (U ) + ∂ y F 2 (U ) = R(U ), (5.67) 
where

F 1 (U ) =          nu 1 s 2 n 2 0 N 1 U 1 1 s 2 N 1 2 0          , F 2 (U ) =          nu 2 0 s 2 n 2 N 1 U 2 1 0 s 2 N 1 2          , (5.68) and R(U ) =     0 -µ 1 nu + µ 2 nα 1 (N 1 )∇N 1 n -σ 1 N 1 U 1     , (5.69) with u = (u 1 , u 2 ), U 1 = (U 1 1 , U 2 1 ) and U =     n nu N 1 N 1 U 1     .
(5.70)

We use a Cartesian discretization of the rectangular domain [-L x , L x ] × [-L y , L y ] with steps ∆x and ∆y. The nodes of the mesh are denoted (x i , y j ) with x i = -L x + i∆x, y j = -L y + j∆y, for i = 0, . . . , N x and j = 0, . . . , N y . The time step is denoted ∆t and t k = k∆t, for k ∈ N.

For each time step the equation (5.67) is solved using a time splitting method where the approximation U k+1 i,j is updated from U k i,j in two steps: first we approximate the solution of equation (5.39) without the source term (R = 0), using the following scheme 

U k+ 1 2 i,j = U k i,j - ∆t ∆x F k+ 1 2 1,i+
+ F 1 U k+ 1 2 i+1,j - α x 2 U k+ 1 2 i+1,j -U k+ 1 2 i,j , F k+ 1 2 1,i-1 2 ,j = 1 2 F 1 U k+ 1 2 i-1,j + F 1 U k+ 1 2 i,j - α x 2 U k+ 1 2 i,j -U k+ 1 2 i-1,j , F k+ 1 2 2,i,j+ 1 2 = 1 2 F 2 U k+ 1 2 i,j + F 2 U k+ 1 2 i,j+1 - α y 2 U

(4. 38 )

 38 System (4.38) consists of two coupled reaction-diffusion equations, which are parabolic equations. Moreover, this model is one of the simplest models to describe the aggregation of cells by chemotaxis.5 Numerical methodsNow, we present some numerical tests in the hyperbolic model(4.31) with the choice m = 1, H = 0, G 1 = n |V | , and τ 1 = 1:

  .51) Since in (5.45) the numerical fluxes are multiplied by a factor of order 1 ε , we use in (5.48)-(5.49) a semi-implicit discretization in time where the term f i-1 2

1 2

 1 are given in(5.50) and (5.51) respectively.The ghost-points, points with index i = -1 or i = N x +1, are computed from the boundary conditions where we impose Neumann boundary conditions for the density n and for the concentration N 1 stand for the inward unit normal at x ∈ ∂Ω. The boundary conditions for the flux q := nu are the Dirichlet conditions:q| ∂Ω = 0.(5.54)

1 .-µ 1 (-σ 1 (N 1 U 1 Figure 1 :

 111111 Figure 1: Time dynamics of the cell density n(t, x) obtained from the WB scheme with s = 5 9 on the domain [-2, 2]. Parameter values: α 1 = 0.33, D n = 1, D S = 0.001.

Figure 2 :

 2 Figure 2: Time dynamics of the cell density n(t, x) obtained from the WB scheme with s = 5 k , k = 0, 1, 2, 5, 7, 9 and comparison with KS on the domain [-2, 2]. Parameter values: α 1 = 0.33, D n = 1, D S = 0.001.

Figure 3 :

 3 Figure 3: Time dynamics of the cell density n(t, x) obtained from the two-dimensional scheme LF with s = 100 on a square domaine [-0.4, 0.4] × [-0.4, 0.4]. Parameter values: α 1 = 0.33, D n = 1, D S = 0.001.

  

  

  

  

As in the one space dimensional case we complete the system with Neumann boundary conditions ∇n • η ∂Ω = 0, and ∇N 1 • η ∂Ω = 0 (5.74) for the density n and for the concentration N 1 and we impose Dirichlet boundary conditions for the flux q := nu and q 1 := N 1 U 1 : q • η ∂Ω = 0, and q 1 • η ∂Ω = 0.

(5.75)

Numerical tests

We present here some numerical experiments in both cases: in one space dimension and in the two dimensional case. For all numerical tests carried out below, we take α 1 (N 1 ) = 0.33, D n = 1, and D S = 0.001.

For the initial conditions we consider an initial datum for the chemical concentration S (=N 1 ) and for the flux nu which are at rest, S(0) = 0, and (nu)(0) = 0.

Concerning the density of cells n, we take

in one space dimension, where n 0 = 5, x 0 = 0.5 and σ = 3.10 -1 . In two space dimension we consider [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF] n(0, x, y) = n 0 2πσ 2 exp -

where n 0 = 0.25, (x 0 , y 0 ) = (3σ, 3σ) and σ = 3.10 -2 .

In the following, we denote by

• WB: the well-balanced asymptotic preserving scheme (5.52);

• KS: the scheme (5.59), (5.62) for the Keller-Segel system;

• LF: the Lax-Friedrichs scheme (5.71)-(5.72).

We illustrate in Figure 1. the behavior of the WB scheme at successive times (t = 0.01, 0.02, 0.06, 0.08). It can be seen that with the evolution of time we observe the union of the two initial high density regions of n. In Figure 2. we plot at successive times (t = 0.03, 0.04, 0.05, 0.07) the density of cells obtained from the WB scheme for different values of ε (ε = 5 -k , k = 0, 1, 2, 3, 7, 9). We also compare with the numerical result obtained with the KS scheme. Clearly the WB scheme converge as ε -→ 0 to the KS limit. It illustrate the result of in Proposition 5.1.

The behavior of the model (5.39) in the two-dimensional case is illustrated in the Figure 3. where we plot the density of cells obtained from LF scheme at different times (t = 0.001, 0.002, 0.004). As in the one-dimensional case we observe the union of the two initial high density regions of n.