
HAL Id: hal-01378255
https://hal.science/hal-01378255v1

Submitted on 11 Oct 2016 (v1), last revised 14 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive numerical scheme for solving
incompressible two-phase and free-surface flows

Pascal Frey, Dena Kazerani, Thi Thanh Mai Ta

To cite this version:
Pascal Frey, Dena Kazerani, Thi Thanh Mai Ta. An adaptive numerical scheme for solving incom-
pressible two-phase and free-surface flows. International Journal for Numerical Methods in Fluids,
2018. �hal-01378255v1�

https://hal.science/hal-01378255v1
https://hal.archives-ouvertes.fr


An adaptive numerical scheme for solving incompressible
two-phase and free-surface flows

P. Frey, D. Kazerani, T. T. M. Ta∗

Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

SUMMARY

In this paper, we present a numerical scheme for solving two-phase or free surface flows. Here, the
interface/free surface is modelled using the level-set formulation. Besides, the mesh is anisotropic and
adapted at each iteration. This adaptation allows us to obtain a precise approximation for the interface/free-
surface location. In addition, it enables us to solve the time-discretized fluid equation only on the fluid
domain in the case of free-surface problems. Fluids here are considered incompressible. Therefore, their
motion is described by the incompressible Navier–Stokes equation which is temporally discretized using the
method of characteristics and is solved at each time iteration by a first order Lagrange–Galerkin method.
The level-set function representing the interface/free surface satisfies an advection equation which is also
solved using the method of characteristics. The algorithm is completed by some intermediate steps like
the construction of a convenient initial level-set function (redistancing) as well as the construction of a
convenient flow for the level-set advection equation. Finally, some numerical results are presented for both
bi-fluid and free-surface problems.

KEY WORDS: Two-phase flows; free surface flows; incompressible Navier–Stokes equations; level set
method; method of characteristics; finite element method; anisotropic mesh adaptation.

1. INTRODUCTION

Over the last decades, tremendous progress has been achieved on the development and the
analysis of numerical methods for one-phase incompressible Stokes and Navier-Stokes flows, as
emphasized by the vast literature on this topic. Open source and commercial software packages
are now readily available and can be used as black-box solvers for a large class of industrial
problems. However, challenging topics still require further investigation to reach the same level
of maturity. For instance, the work that has been done on numerical methods for incompressible
Navier-Stokes equations for one fluid is already a good starting point for dealing with two fluids
(or two-phase flow) as well as free-surface flow problems. Actually, research on these topics has
started in the last few years. However, there are several specific issues relevant to two-fluid and
free-surface flow problems that are not present in one-phase or one-fluid incompressible flow
problems. In this context, the numerical treatment of the interface between two immiscible fluids
ad well as the free surface, is certainly a difficult challenge that raises many related and yet mostly
unresolved problems: the coupling between the fluid dynamics and the interface (or free surface)
evolution, the conservation of mass, the treatment of singularities (geometrical and topological)
and the approximation of surface tension forces. Not surprisingly, given the level of difficulty of
mathematical analysis, most research results in these topics have been published in the engineering
literature; see nevertheless the noticeable monograph [GR11] on two-phase incompressible flows
and [AMW98] or [T+01] for an overview of numerical methods for the simulation of multiphase

∗Correspondence to: Dena KAZERANI, email: kazerani@ljll.math.upmc.fr; Pascal FREY, email: frey@ann.jussieu.fr



2

flows. Let us also mention that in most applications especially in oceanography, free-surface flows
are modeled by a shallow water approximation of incompressible Navier–Stokes or free surface
Euler equations (see for instance [BdSV71, GN76, GP01, Lan13]). These models are simpler to
analyze. Nevertheless, they are approximative and are valid only in the shallow water regime. We
try in this work to approach the free-surface problem by solving the free-surface Navier–Stokes
equation by adapting the algorithm we propose for two fluids problem. In other words, no shallow
water model is considered here. Nevertheless, as done in some test cases, the comparison between
numerical simulation of free-surface Navier–Stokes equation and analytical solution of shallow
water equations is an interesting issue.

Well-posedness results for the general weak formulation of the Navier–Stokes problem for two-
phase flows including the interface condition VΓ = u · n (see Section 2) have been analyzed only for
special cases, e.g. when the two fluid domain is unbounded (Ω = R3) with lim|x|→∞ u(x, t) = 0,
when the initial interface Γ(0) is a closed manifold [Den94] or when it is close to a half-
plane [PS10], or under suitable conditions on the viscosity [Des97]. The case of a bounded domain
Ω for arbitrary time intervals [0, T ], T > 0 is treated in [Tan93]; it provides a well-posedness
result for the Navier–Stokes problem in a weak formulation. Similarly, the well-posedness of the
free surface Navier–Stokes problem has been treated in [All85, All87, TT95, Tan96, XZZ13].
Most analysis apply to cases with sufficiently smooth data and do not apply when the regularity
of the interface drops down, like when bubbles collide, for example. In such cases, curvature is
no longer well-defined and weak alternatives have to be considered. These alternatives involve
different representations of the interface which in turn induce relevant numerical techniques for
the simulation of two-fluids flows.

1.1. Interface/free-surface representation

In this section, we briefly recall the two most important methods for representing the interface (or the
free surface) Γ(t). Broadly speaking, these methods can be classified as Lagrangian ODE techniques
and Eulerian PDE techniques. Authors often introduce the terminology interface tracking versus
interface capturing to characterize the treatment of the interface. In the remainder of this paper, we
will restrict our numerical investigation to only one of these, the level set representation.

1.1.1. Interface tracking. When the interface regularity is sufficient, then normal, curvature and
immiscibility condition are well-defined. Given a velocity field u ∈ V , where V a suitable functional
space, the trace u|Γ is well defined and the interface evolution can be described in Lagrangian
coordinates. Each and every infinitely small particle in the domain Ω is transported (advected) by
the flow field u(x, t) and we define the characteristic X(t) = X(x0, t0; t) as the path of this particle
with initial position x0. This trajectory is described by the following set of ordinary differential
equations: 

dX(x0, t0; t)

dt
= u(X(x0, t0; t), t) t ≥ 0

X(x0, t0; t0) = x0 .
(1)

For u(x, t) Lipschitz-continuous (with respect to x), this system has a unique solution and the
regularity of X is related to the regularity of u. For T > t0 sufficiently close to t0, there is a one
to one mapping between Ω× [t0, T ] and Ω in the sens that for all (x, t) ∈ Ω× [t0, T ], there exists a
unique x0 ∈ Ω such that x = X(x0, t0; t). Following the flow backwards in time starting from (x, t)
yields the equation:

x = x0 +

∫ T

t0

u(X(x0, t0; t))dt , (2)

which represents a transformation from Eulerian to Lagrangian coordinates. The Navier-Stokes
problem can be transformed accordingly into a non stationary problem with a stationary interface
Γ(0) [Tan93]. Likewise, the evolution of the interface Γ(t) can be described by using the Lagrangian

2



3

coordinates and Γ(t) is simply characterized as the set of x satisfying (2) for a x0 ∈ Γ(0). This class
of method is called interface tracking.

Practically, the Navier-Stokes problem is solved on a fixed grid or an unstructured mesh using
an Eulerian approach and a Lagrangian approach is used to solve the evolution of the interface.
Marker points are equidistributed along the interface Γ(t0) at time t0 and then advected by the
flow field u over a time period ∆t. Their final location mark the position of the interface at time
t0 + ∆t. After several time steps, the equidistribution property is usually lost and marker points
have to be redistributed along the new interface Γ(t0 + ∆t). Markers are usually connected to
define a piecewise affine interpolation of the interface and can coincide with the set of vertices of a
triangulation of Γ(t0). In addition, this method requires to transfer information between the interface
and the fixed grid once the interface has moved. Obviously, this approach is not very well-suited
for dealing with topology changes or severe displacements (distortion) of the interface between two
time steps. More details about this method and its implementation can be found in the references
[UT92, ET98, ET99, HAC97].

To partially overcome these problems, hybrid approaches like the arbitrary Lagrangian-Eulerian
(ALE) method have been proposed and revealed especially efficient for solving fluid-structure
interaction [E.n01, Beh01, GT09, GT94]. They consist in solving the interface using a grid or a
mesh and then the later is moved according to the flow velocity u. The mesh velocity in the interior
of the domain generally differs from the flow velocity field, in order to avoid strong distortions.

In Volume of Fluid methods (VOF), the treatment of the interface is based on a weak formulation
of the advection equation

∂χ1

∂t
+ u · ∇χ1 = 0 (3)

where χ1(·, t) is the characteristic function for the subdomain Ω1(t) representing one of the two
fluids if the system is bi-fluid and the fluid domain if the problem is free-surface. This domain is
delimited by the border of the support of this characteristic function i.e. ∂Ω1(t) = ∂supp(χ1(·, t)).
The function χ1 is discontinuous across the interface and the transport equation requires a specific
treatment. Given an arbitrary small elementary volume of fluid W and integrating leads to the
following equation:

∂χ1

∂t

∫
W

χ1 dx+

∫
∂W

χ1u · n ds = 0 , (4)

that can be interpreted as a weak formulation of (3) corresponding to volume conservation. The
method typically involves two steps: at first, the reconstruction of the interface (approximation of
the characteristic function) and then, the advection of the volume fraction function.

This VOF approach is widely used for the numerical simulation of two-fluid and free-surface
flows, mainly because it enjoys good mass (volume) conservation property and can handle topology
changes without difficulty [HN81, SZ99]. The main drawbacks are twofold: VOF methods are
tedious to implement on unstructured meshes and tend to lose accuracy. In addition, a CFL condition
must be satisfied that leads to severe limitations on the time step. Furthermore, obtaining accurate
intrinsic geometric properties, such as normals, tangents, curvatures, and hence surface tension,
reveals difficult in practice. Recent works focus on solving these problems and carry a lot of
promises [GTBD06, TFC+01, dSMN+04].

1.1.2. Interface capturing. As pointed out, in Volume Of Fluid methods, the discontinuous
characteristic function χ1 across the interface imposes specific numerical treatment of the transport
equation (3). An interesting alternative consists in introducing a continuous auxiliary function. The
level set method, introduced by [DT80, OS88] suggest to use the signed distance function to the
initial interface as auxiliary function φ:

φ(x, t) ≤ 0⇔ x ∈ Ω1(t), φ(x, t) ≥ 0⇔ x ∈ Ω2(t), φ(x, t) = 0⇔ x ∈ ∂Ω1(t) ∩ ∂Ω2(t) .

Assuming the velocity field u(x, t) is sufficiently smooth, then for t > 0 the level set values φ(x, t)
are defined by considering the values constant along characteristics, namely by writing:

φ(X(x0, t0; t), t) = φ(x0, 0) , x0 ∈ Ω(0), t ≥ 0 , (5)
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and when differentiate this equation with respect to t it becomes:

∂φ

∂t
+ u∇φ = 0 , for all x ∈ Ω , t ≥ 0 . (6)

This equation (similar to (3)) is well-defined in its current formulation given the velocity field u is
Lipschitz-continuous with respect to x. Furthermore, the interface (or the free surface) Γ(t) can be
defined by the values of the auxiliary function φ at any time t:

Γ(t) = {x ∈ Ω ; φ(x, t) = 0} . (7)

There is no uniqueness of a solution for a general continuous velocity field u in this strong
formulation. However, the notion of viscosity solutions of transport equations with a continuous
velocity field eventually applies here, which yields to sub- or supersolutions [CIL92].

The level set (6) is not only used for the mathematical analysis of well-posedness of two-fluid
flows but has also very attractive numerical features for representing and handling the interface
Γ(t). We consider the initialization of φ with the signed distance function φ0 = d(x,Γ(0)) to
the interface (equation (7)) at t = 0. The velocity field is the result of Navier–Stokes equation.
Moreover, the transport equation (6) is discretized using suitable numerical methods in space and
time (see Sections 2 and 3 for more details of our implementation). As the level set function is
continuous, its discretization is more accurate than that of the characteristic function considered in
VOF methods. As the iterations in time increase, so does the discrepancy between the numerical
solution φh(x, t) and the signed distance function. A reinitialization of the level set function is then
carried out when for example ‖∇φh(x, t)‖2 exceeds some given tolerance value.

Due to its simplicity and its ability to efficiently deal with topology changes, the level set method
has been extensively used in engineering applications. Additionally, the extension from two to three
dimensions can be achieved easily. Like the ALE method described above, variants of the level set
method can be considered, in which the interface is explicitely discretized (hence the terminology
interface capturing) by a mesh and this mesh is moved with the flow velocity. As will be seen,
intrinsic properties of the interface can be accurately computed using the level set function [Set99].

1.2. Proposed approach

In the present paper, we describe in details our work and propose a general strategy for solving two-
phase/free-surface flows which takes advantage of the flexibility of the level set method for capturing
and tracking evolution of the interfaces, including topological changes, and enjoys an exact and
accurate description of the interface using a conforming unstructured mesh. The idea of combining
an implicit method for dealing with the domain evolution and an explicit representation of the
manifold separating the two fluids is obviously not new. The numerical resolution of incompressible
Navier–Stokes equations using a Lagrange–Galerkin scheme was first introduced by [BIKL80] and
studied in [Pir82]. Nevertheless, unlike similar approaches that solve the flow problem and the
transport equation on Cartesian grids [ALTP98, GTBD06, EFFM02, MG07], our approach relies
on an adaptive unstructured mesh to carry out these computations. This allows us to solve the time-
discretized Navier–Stokes equation on the fluid domain only, in the case of free surface problems.

In [BFM10], authors proposed a former version of this method in two dimensions that required
much more computational effort to resolve the problem at each time step and proved to be difficult
to get extended in three dimensions. Our method has several things in common with this work: a
computational domain Ω is defined and discretized with an unstructured mesh which is modified
at each time iteration, in such a way that the interface/free surface Γ(t) is explicitly discretized in
the mesh. Nevertheless, Navier–Stokes equations and transport equation are solved using the same
mesh of the domain. In other words, our strategy has several assets: on the one hand, no projection
is needed between different meshes. On the other hand, the method does not present any theoretical
difficulty for the extension from the two-dimensional case to the three-dimensional case. This is a
tremendous feature insofar as mesh adaptation is concerned, since the mesh generation is known to
be more difficult to deal with in three dimensions. Most of the difficulty related to meshing is recast
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as a robust remeshing problem.

The paper is organized in five sections. The next section briefly presents the mathematical
model and the initial, boundary and interfacial conditions. Section 3 is the central section of
the paper and presents numerical tools used for the global algorithm. Especially, two variants of
the method of characteristics used to resolve the material derivative of Navier-Stokes problem,
corresponding to the non linear convection, and the advection of the interface, are presented.
Velocity extension/regularization, mesh adaptation and redistancing of the level-set function are
other tools described in this section. Then, the general scheme is summarized in Section 4 and
several numerical examples and test cases are presented in Section 5.

2. A MODEL FOR TWO-PHASE/FREE SURFACE FLOWS PROBLEM

In this paper, we are interested in two-phase or free surface flows, that is, we consider a bounded
open set Ω(t) ⊂ Rd, with at least Lipschitz regularity. This set is filled with two different immiscible
incompressible phases (i.e. liquid-liquid or liquid-gas) if the system is bifluid. Each phase has
different material properties, density ρi and dynamic viscosity µi, (i = 1, 2). We suppose that
both phases are chemically uniform, physically distinct and separable, and we assume isothermal
conditions. Therefore, at each time step t ∈ [0, T ], the computational domain Ω(t) is partitioned
into two open subdomains Ω1(t) and Ω2(t). Each subdomain contains at most one phase such that
Ω1(t) ∪ Ω2(t) = Ω, Ω1(t) ∩ Ω2(t) = ∅. The contact region between the two subdomains is called
the interface and is denoted by Γ(t) = Ω1(t) ∩ Ω2(t) (cf. Fig 1). The different phases as well as
the interface may move in time. Otherwise, if the problem is free-surface, Ω1(t) represents the fluid
domain at time t whereas Ω2(t) represents the vacuum. In this case, we simply denote by ρ the
density and by µ the dynamic viscosity of the fluid.

⌦1(t)

⌦2(t)

�(t)

@⌦(t)

n1

@⌦(t)

�(t)

⌦2(t)

n1

⌦1(t)

Figure 1. Illustration of a computational domain Ω(t) composed of two subdomains Ω1(t) and Ω2(t). These
subdomains are separated by an interface Γ(t) which may evolve in time.

2.1. A Navier-Stokes model for two-phase flows

In each phase, the conservation laws for mass and momentum hold, and we consider separate
Navier-Stokes equations in the two domains Ωi, i = 1, 2: ρi

(
∂u

∂t
+ (u · ∇)u

)
= divσi + ρif

divu = 0

in Ωi × [0, T ] (i = 1, 2) (8)

where σi = −pI + 2µiD(u) is the stress tensor and D(u) = (∇u +∇ut)/2 is the deformation
tensor, with p(x, t) the pressure, u = u(x, t) the velocity and f is the density of an external volume
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force exerted on the phases e.g. the gravity. The constants µi > 0 and ρi denote the dynamic
viscosity and the density of the phases in the subdomains Ωi, i = 1, 2, respectively.

The model needs to be endowed with suitable boundary and initial conditions for the velocity
u only. The initial condition is u(x, 0) = u0(x) where u0(x) is a divergence-free function, which
is relevant for the physical problem at hand. Boundary conditions come of two types: natural and
essential boundary conditions. We assume that the outer boundary ∂Ω(t) remains unchanged in
time, hence omitting the time dependency, and is partitioned into three possibly non connected
parts ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩS , such that ∂ΩD ∩ ∂ΩN ∩ ∂ΩS = ∅. In applications, we consider
conventionally as essential conditions Dirichlet boundary conditions u(x, t) = uD(x, t) for x on
∂ΩD for a given function uD, and use these to prescribe inflow velocity profile and conditions
along the outer boundaries, e.g. no-slip condition. On the other boundaries, we introduce natural
boundary conditions that allow to prescribe the outflow and slip conditions. Neumann conditions
are of the form

σn∂ΩN
= uN or σn∂ΩN

= −pen∂ΩN
, (9)

where pe denotes an external pressure function and n∂ΩN
is the unit normal pointing outward the

boundary ∂ΩN . Finally, slip conditions are prescribed by a combination of two conditions:

u · n∂ΩS
= 0 and αu · τ∂ΩS

+ τ∂ΩS
· σn∂ΩS

= 0. (10)

Here, n∂ΩS
is the unit outward normal vector to ∂ΩS whereas τ∂ΩS

is a unit tangent vector to ∂ΩS
In addition, the constant α is strictly positive and is called the friction coefficient.

In the weak formulation, the slip boundary conditions are interpreted by the integral term∫
∂ΩS

α(u · τ∂ΩS
) · (v · τ∂ΩS

) ds in the left-hand side (see Section 3). Slip without friction
corresponds to the case α = 0 which makes then the previous integral term to vanish. The condition
u · n∂ΩS

= 0 must be added to the functional space on which the weak formulation is defined.
Nevertheless, from the numerical point of view, this function space can get relaxed from this
constraint by using a penalization technique i.e. by adding the term

∫
∂ΩS
A∗(u.n).(v.n)ds in the

left-hand side of the weak form where A∗ is a penalization coefficient (large about 106).
Next, the model (8) is endowed with coupling conditions on the interface Γ(t). We assume that

there is no mass transfer and that no phase transition takes place, hence the velocity is continuous
across the interface:

[u]Γ(t) = 0 , (11)

where the notation [·]Γ(t) denotes the jump of a function across the interface in the direction of n1

which denotes the exterior normal to Ω1(t) on the interface, i.e. [·]Γ(t) = ·|Ω1
− ·|Ω2

. Due to the
momentum conservation law, the balance of the normal stress with the surface tension across Γ(t)
reads:

[σ]Γ(t) · n1 = −γ κn1 . (12)

The scalar function κ(x) is the algebraic mean curvature, for x on Γ(t), which is positive if the
interface curve/surface bends towards Ω1 and negative otherwise. The parameter γ > 0 is the surface
tension coefficient (i.e. the magnitude of the surface tension force), which is a material property of
the model and is assumed to be constant here for sake of simplicity.

Finally, the immiscibility assumption leads to introduce the normal velocity uΓ(t) = uΓ(t)(x, t),
which prescribes the magnitude of the velocity field of the interface Γ(t) in the normal direction.
This condition is meant to indicate that the normal velocity of the interface is equal to the normal
component of the flow field along Γ(t):

uΓ(t) = u · n1 . (13)

Gathering the Navier-Stokes equations (8), the initial and the boundary conditions (9), (10), (11),
(12) and the velocity condition on the interface (13) leads to the following model for two-phase
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flows: 

ρi

(
∂u

∂t
+ (u · ∇)u

)
= divσi + ρif in Ωi(t)× [0, T ] (i = 1, 2)

divu = 0 in Ωi × [0, T ] (i = 1, 2)

u(x, t) = uD(x, t) on ∂ΩD

σn∂ΩN
= −pen∂ΩN

on ∂ΩN

u · n∂ΩS
= 0 and αu · τ∂ΩS

+ τ∂ΩS
· σn∂ΩS

= 0 on ∂ΩS

u(x, 0) = u0(x) in Ωi (i = 1, 2)

[u]Γ(t) = 0 , [σ]Γ(t) · n1 = −γ κn1 on Γ(t)

uΓ(t) = u · n1 on Γ(t)

(14)

Let us mention that by introducing two scalar functions µ and ρ defined on the whole computational
domain Ω by

µ = χ1µ1 + χ2µ2 and ρ = χ1ρ1 + χ2ρ2,

with χi the characteristic function of the domain Ωi, the first equation of (14) can be written as

ρ

(
∂u

∂t
+ (u · ∇)u

)
= µ∆u + ρf in Ωi(t)× [0, T ] (i = 1, 2)

2.2. A Navier–Stokes model for free-surface flows

Similarly to the previous subsection, the model we consider for free-surface flows, is the
incompressible Navier–Stokes with essential and natural boundary conditions. The main difference
is that the Navier–Stokes equation is not considered on the whole computational domain Ω but on the
fluid domain Ω1(t) which moves in time. This means that the system (8) with boundary conditions
writes 

ρ

(
∂u

∂t
+ (u · ∇)u

)
= divσ + ρf in Ω1(t)× [0, T ]

divu = 0 in Ω1(t)× [0, T ]

u(x, t) = uD(x, t) on ∂ΩD ∩ ∂Ω1(t)

σn∂ΩN
= −pen∂ΩN

on ∂ΩN ∩ ∂Ω1(t)

u · n∂ΩS
= 0 and αu · τ∂ΩS

+ τ∂ΩS
· σn∂ΩS

= 0 on ∂ΩS ∩ ∂Ω1(t)

u(x, 0) = u0(x) in Ω1.

(15)

Since, no fluid is considered in part Ω2(t), the continuity condition on the interface disappear.
In other words, no constraint is considered on the values the velocity takes on the free surface.
Nevertheless, the normal stress on the free surface is balanced with the surface tension and
eventually the atmospheric pressure pa. Again, the normal velocity of the interface is equal to the
normal component of the flow along the free surface. Therefore, the free surface and the cinematic
boundary condition is written

σ · n1 = − (γ κ+ pa)n1 on Γ(t)

uΓ(t) = u · n1 on Γ(t)

Similarly to the bi-fluid problem, the position and the evolution of Γ(t) are both unknown.
However the coupling condition uΓ(t) = u · n1 determines its transport. Several approaches have
been devised to represent and to approximate the interface. In this article, we consider an interface
capturing method inspired by [C+96, S+98, Set99]. This method is described in the following
subsection.
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2.3. Level set representation of the interface Γ(t)

The computational domain Ω is implicitly defined by a scalar level set function φ : Ω→ R, such
that the following property holds:

∀x ∈ Ω ,


φ(x) < 0 in Ω1(t)

φ(x) = 0 on Γ(t)

φ(x) > 0 in Ω2(t)

(16)

and we set this level set function to be the signed distance function dΓ(t) to the interface Γ(t), i.e.
φ(x, t) = dΓ(t)(x,Γ(t)) with

∀x ∈ Rd , dΓ(t)(x) =


−d(x,Γ(t)) if x ∈ Ω1(t)

0 if x ∈ Γ(t)

d(x,Γ(t)) if x ∈ Ω2(t)

(17)

where d(·,Γ(t)) denotes the usual Euclidean distance function to Γ(t). This signed distance
function enjoys several properties. Especially its gradient is of unit norm wherever it is defined,
i.e. |∇dΓ(t)| = 1 almost everywhere on Rd. It is well known that dΓ(t) can be obtained as the steady-
state solution of the unsteady Eikonal equation [Set99, AA02]:

∂φ

∂s
(x, t) + sgn(ψ0)(|∇φ| − 1) = 0 for (x, s) ∈ Rd × (0,∞)

φ(x, 0) = ψ0(x) for x ∈ Rd
(18)

with ψ0 any level set function associated with Ω. A numerical scheme to compute the solution of
this problem is devised in [DF12]. This scheme relies on an explicit formula [AA02] and that has
been implemented as an iterative algorithm on unstructured meshes.

2.4. Level set formulation of two-phase/free-surface flows

The evolution of the implicitly defined interface Γ(t) is numerically carried out using the level set
method [OS88]. Suppose that the motion of Γ(t) over a time period [0, T ] is driven by a velocity
field ũ : Rd → Rd and follows the advection equation:

∂φ

∂t
(x, t) + ũ(x, t) · ∇φ(x, t) = 0 , on Rd × [0, T ) . (19)

Here, the normal velocity of the interface is equal to the normal component of the velocity of the
flow field along Γ(t).

Following this formulation, the cinematic boundary condition

uΓ(t) = ũ · n1 on Γ(t),

is replaced by an advection equation with Dirichlet boundary conditions on the computational
domain: 

∂φ

∂t
+ ũ · ∇φ = 0 on Ω× [0, T ),

φ(x, t) = φ0(x) on Ω,
(20)

where φ0 is a level set function for the initial interface/free-surface position. As mentioned
previously, from the numerical point of view, the level set function φ is adjusted at each iteration
of algorithm in a way such that it remains close to the signed distance function. This step of the
algorithm is called redistancing and is done by the algorithm suggested in [DF12].

In the next section, we will present different numerical tools that we need to solve our global
algorithm.
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3. NUMERICAL TOOLS

In this section, we present numerical techniques necessary to understand the global scheme of
Section 4. Some of these numerical tools let us advect the interface/free surface: Characteristic
methods for the resolution of the transport equation, velocity regularization and redistancing
whereas some others let us solve the times discretized equation on the fluid domain: characteristic
methods for the time discretization of the Navier–Stokes equation, mesh adaptation velocity
extension and finite element methods.

3.1. Method of characteristics for the advection equation

The method of characteristics [CR73, BB73, LR76, BIKL80] is known to be very efficient for
solving advection-diffusion problems, including the Navier-Stokes equations, see [Pir82, Pir89,
Pir10] for the mathematical and numerical method and its application to fluid mechanics problems.

Here, we consider the Cauchy problem for the advection equation (19): given a velocity field
ũ(x, t) defined on Ω, find a scalar solution φ(x, t) defined on Ω× [0, T ] solving the equation:

∂φ

∂t
(x, t) + ũ(x, t) · ∇φ(x, t) = 0 on Ω× [0, T ]

φ(x, 0) = φ0(x) for x ∈ Ω.
(21)

Under proper hypotheses on the regularity and the growth of ũ and φ0 [Pir89], the unique C1

solution φ of (21) is
φ(x, t) = φ0(X(x, t; 0)) (22)

with s 7→ X(x, t; s) the characteristic curve of ũ passing through x at time t and defined as the
solution of the ODE system:

dX(x, t; s)

ds
= ũ(X(x, t; s), t) for s ∈ R

X(x, t; t) = x.
(23)

This curve describes the trajectory of a particle at position x at time t and transported by the velocity
field ũ. The first equation of (21) implies that φ(x, t) is constant along the characteristics X(x, t; s).
Hence, the solution of the Cauchy problem (21) reads:

φ(x, t) = φ0(X(x, t; 0), 0) , on Ω× [0, T ] (24)

In the numerical setting of this work, we divide the time interval [0, T ] into a finite number of
subintervals of the form [tn−1, tn] with tn = tn−1 + ∆t, for a time step ∆t. Then, we denote
φ0(x) := φ0(x) and define φn, for all integer n ∈ [1, T∆t ], as the solution of

∂φn

∂t
(x, t) + ũ(x, t) · ∇φn(x, t) = 0 , (x, t) ∈ Ω× (tn−1, tn)

φ(x, tn) = φn−1(x) , ∀x ∈ Ω.
(25)

Again, we use the characteristic method to solve (25). In other words, the solution φn of this equation
is approximated by

φn(x) = φn−1(X(x, tn; tn−1)) , for all x ∈ Ω (26)

where X(x, tn; tn−1) is the position at the time tn−1 of the characteristic line emerging from x at
the time tn. This function is computed by

dX(x, tn; t)

dt
= ũ(X(x, tn; t), t) for all (x, t) ∈ Ω× (tn−1, tn)

X(x, tn; tn) = x for all x ∈ Ω.
(27)
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Let us also note that the first equation of (27) is equivalent to

X(x, tn; t) = x−
∫ tn

t

ũ(X(x, tn; t), t)dt. (28)

This integral can be approximated by any method used for solving ordinary differential equations.
For example, introducing a small sub-integration time step δt << ∆t and subdividing the interval
]tn−1, tn[= ∪Ll=0]tl, tl+1[ with tl = tn−1 + lδt, a fourth order Runge-Kutta schemes yields for all
x ∈ Ω to the following approximation X̃(x, tn, ·) of X̃(x, tn, ·), defined on {tl}l∈{0,..,L} computed
by: 

X̃(x, tn; tn) = x

X̃(x, tn; tl) = X̃(x, tn; tl+1)− δt

6
(v1 + 2v2 + 2v3 + v4),

with v1 = ũ(X̃(x, tn; tl))

v2 = ũ(X̃(x, tn; tl+1)− δt

2
v1)

v3 = ũ(X̃(x, tn; tl+1)− δt

2
v2)

v4 = ũ(X̃(x, tn; tl+1)− δtv3) .

We are now able to use (26) to approximate φn for all integer n ∈ [1, T∆t ]. This problem can be
solved by a Galerkin numerical scheme which involves resolution of a linear system with using
quadrature formulas for approximating integrals in the right hand side. Another alternative is the
Lagrange interpolation. In fact, both methods have been used in previous works. The first approach
in [BFM10] is more expensive than the second one in [CDF12]. Moreover, the second approach
leads to an estimate which enables us to control the geometric error on the interface by the
interpolation error. This is very interesting for the mesh adaptation step. Therefore, this second
approach is considered in the present work. Indeed, we endow here the computational domain Ω
with a mesh Th and we consider a suitable Lagrange finite element space V (e.g. P1 or P2). Then,
we denote by φ0

h the V projection of the initial level set function φ0. Moreover, at each degree of
freedom represented by x, we compute the approximation φnh of φn as following:

φnh(x) = φn−1
h (X̃(x, tn+1; tn)) (29)

As mentioned in [CDF12], this method requires the resolution of one ODE at each degree of freedom
of Th and is efficient since no matrix inversion nor quadrature formulas for approximating integrals
are considered. This first-order space approximation is sufficient here since in our frame work, only
values of the level set function in the vicinity of the free surface are of interest. Moreover, thanks to
a mesh adaptation step, mesh elements are very small in the vicinity of the interface. We also refer
the reader to the previous works in [Bui09], for more details on these schemes .

Remark

It is worth to forecast some difficulties: in the numerical framework, the characteristic curves
may go out of the computational domain specially when the computational mesh approximates
a computational domain with curvy boundaries. In such cases, we project the final point of the
characteristic curve, corresponding to X(x, tn; tn−1) for some n, on the mesh boundary. This is
done by identifying the edge (or the face) of the boundary such that the barycentric coordinate of
the final point with respect to this edge (or face) is strictly negative in the element to whom this edge
(or face) belongs.

3.2. Extension and regularization of the velocity field

Finally, we turn to a problem that has been left out so far, the definition of the velocity field ũ that
appears in the equation (19). The implicit embedding associated with the level set implies that the
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velocity field ũ that transports the interface Γ(t) needs to be defined and must be meaningful in
the whole domain and not only on the interface, in order to advance the neighboring level sets and
not only the zero level set [SS03]. In two-phase flow simulations, the velocity field has a physical
meaning on and away from Γ(t). However, the evolution of the interface Γ(t) depends only on the
flow field in its vicinity. On the other hand, large velocity discrepancies between neighboring points
may cause uncontrolled oscillations on the level sets and jeopardize the stability of the numerical
algorithm. For this reason, the regularization of the velocity field is a step of our numerical scheme
for two-flows problem. In addition, if the flow is free-surface, the velocity field is defined only on
the subdomain Ω1 of Ω representing the fluid domain whereas the transport equation needs to be
solved on the whole computational domain. Therefore, an extension of velocity is crucial for the
resolution of free-surface flows while using the level set formulation.

There are many approaches for regularizing the velocity field. The method suggested by
[SSO94, C+96] builds regularized velocities from the underlying fluid velocities. As mentioned
previously, the regularized velocity must be defined away from the interface, and that it smoothly
approaches the prescribed interface velocity as the zero level set is approached. To this end, we
extract the velocity values at all mesh vertices along the interface. Then, following [Bur03, dG06],
the regularized velocity denoted by ũ, is searched as the unique solution in a suitable Hilbert space
V to a Helmholtz problem of the form:{

−a∆ũ + ũ = 0 on Ω

∇ũ · n = 0 on ∂Ω and ũ = u|Γ(t) on Γ(t)
(30)

where a > 0 is the regularization lengthscale. This problem is equivalent to solving the variational
problem: Find ũ ∈ V such that:

a

∫
Ω(t)

∇ũ · ∇v +

∫
Ω(t)

ũv =

∫
Γ(t)

uv for all v ∈ V . (31)

The left hand side of equation (32) is a coercive bilinear form on V which is close to I (so that ũ is
expected to be close to u). Numerically, this weak form is solved using a finite element method.

Let us note that if in the case of free-surface flows, the flow velocity is smooth enough i.e. (if it
does not represent any large discrepancy between neighboring points), we only need to extend the
velocity in the subdomain corresponding to the vacuum. This means that we only need to solve the
Helmholtz equation on Ω2. In other words, we solve{

−a∆ũ + ũ = 0 on Ω2(t)

∇ũ · n = 0 on ∂Ω ∩ ∂Ω1 and ũ = u|Γ(t) on Γ(t)
(32)

In both cases, the extension regularization parameter a must be small enough such that large values
of ũ outside of the free surface do not interfere with other values on the other side of the free
surface. Indeed, if a is too large, some strictly positive level sets may cross the 0-level set during
the advection. Therefore, the level set function does not represent any more the fluid domain during
the advection. For this reason, it is important to consider a Helmholtz operator and not only a
Laplace operator. The identity part of the Helmholtz operator together with a conveniently small
a, guarantees a reasonable decrease for the extended velocity flow as the boundary of the domain
far from the free surface are approached. On the other hand, a must obviously not be too small,
since the solution ũ must be smooth enough such that the advection equation can be resolve by the
characteristic method. In our numerical tests, we set a = 0.5.

3.3. Resolution of the Navier–Stokes equations on the fluid domain

We are interested in this part in the numerical resolution of the free surface incompressible Navier–
Stokes equation on the fluid domain at some time t. In other words, we endow the time discretized
problem with essential and natural boundary conditions on the fluid domain. This time discretization
is done following the pioneering works [BIKL80, Pir82, Glo03]. More precisely, we consider the
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term

ρ

(
∂u

∂t
+ (u · ∇)u

)
which actually models the transport of the momentum ρu by the velocity field u with the idea of
taking advantage of the transport nature of the non linear term. Hence, we use here the backward
method of characteristics for the time discretization of the Navier–Stokes equations. Then, we will
use a convenient finite elements method for the spatial resolution of the time discretized equation
on the fluid domain.

3.3.1. Time discretization by the method of characteristics. In this section, we describe the time
discretization of the Navier–Stokes equations based on the method of characteristics. This is not
the only possible choice. Nevertheless, we use this scheme because it is unconditionally stable (see
[Pir82]). Moreover, this method is already implemented in our framework to solve the advection
equation (21). Therefore, we can use the same scheme for the resolution of the advection equation
and the time discretization of the Navier–Stokes equation. Moreover, we use obviously the same
time step ∆t for both advection and Navier–Stokes equation. Indeed, we have the same subdivision
[tn−1, tn], with tn = tn−1 + ∆t, of the time interval [0, T ].
The main idea is that the nonlinear convection part of Navier–Stokes equations can be hidden in the
Cauchy problem (23) i.e. the operator ∂

∂t + u.∇ may be turned into a total derivative (also called
Lagrange derivative) d

dt . Therefore, the first equation of (14) and (15) is recast into the following
form:

ρ
du(X(x, t; s), s)

ds
|s=t −µ∆u +∇p = ρf . (33)

Hence, we denote u(x, tn) by un(x) for all n and use the following explicit approximation

du(X(x, tn; s), s)

ds
|s=tn≈

u(X(x, tn; tn), tn)− u(X(x, tn; tn−1), tn−1)

∆t
,

since

du(X(x, tn; s), s)

ds
|s=tn=

u(X(x, tn; tn), tn)− u(X(x, tn; tn−1), tn−1)

∆t
+O(∆t).

This approximation is equivalent, using the latter notation together with the definition (23) of the
characteristic curve, to

du(X(x, tn; s), s)

ds
|s=tn≈

un(x)− un−1(X(x, tn; tn−1))

∆t
.

Therefore, denoting X(x, tn; tn−1) by Xn−1(x), the time discretized Navier–Stokes writesρu
n(x)− un−1 ◦Xn−1(x)

∆t
− µ∆un(x) +∇pn(x) = ρfn in Ωi(t

n)

divun(x) = 0 in Ωi(t
n)

(34)

or equivalentlyρu
n(x)

∆t
− µ∆un(x) +∇pn(x) = ρfn + ρ

un−1 ◦Xn−1(x)

∆t
in Ωi(t

n),

divun(x) = 0 in Ωi(t
n)

(35)

Indeed, un−1 ◦Xn−1(x) approximates the velocity at the point Xn−1(x) at the time tn−1. Here
i ∈ {1, 2} if the flow is bifluid and i = 1 is the flow is free-surface. We endow problem (35) with
slip boundary and free surface conditions. Indeed, the boundary condition of (14) writes here for

12
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two phase flows as ∗

un = 0 on ∂ΩD(tn),

σnn∂ΩN (tn) = −pen∂ΩN (tn) on ∂ΩN (tn),

un · n∂ΩS(tn) = 0 on ∂ΩS(tn),[
αun + µ (∇un + t∇un)n∂ΩS(tn)

]
tan

= 0 on ∂ΩS(tn),

[σ]Γ(tn) n1 = −γκn1 in Γ(tn).

(36)

Likewise, the boundary conditions of (15) for free-surface flow writes

un = 0 on ∂ΩD(tn) ∩ ∂Ω1(tn),

σnn∂ΩN (tn) = −pen∂ΩN (tn) on ∂ΩN (tn) ∩ ∂Ω1(tn),

un · n∂ΩS(tn) = 0 on ∂ΩS(tn) ∩ ∂Ω1(tn),[
αun + µ (∇un + t∇un)n∂ΩS(tn)

]
tan

= 0 on ∂ΩS(tn) ∩ ∂Ω1(tn),

(µ (∇un + t∇un)− pn)n1 = − (γκ+ pa)n1 in Γ(tn).

(37)

Obviously, at each time step, the Navier–Stokes problem becomes a Stokes problem plus a transport
of the previous solution on the characteristic. This problem is resolved in two steps:

1. Approximate the characteristic curves Xn−1(x).
2. Solve the resulting generalized Stokes system with the corresponding boundary conditions.

remark

- The approximation of characteristic curves Xn−1(x) in each time interval [tn−1, tn] for the
Navier-Stokes problem is implemented by the same way as in Subsection 3.1.

- Similarly to Subsection 3.1, the characteristic curves may cross some elements or go out
the computational domain. In this cases we identify the last element the characteristic curve
crossed and project the final point of this curve to the corresponding edge (or face). Let us
recall that in the case of free-surface problems, we intend to solve the Navier–Stokes equation
only on the fluid domain (Ω1). However, the flow we consider to solve the characteristic
equation is not the flow velocity u but the extended flow velocity ũ. This lets us handle
situations where the characteristic curves cross the free surface of the fluid but stay in the
computational domain D.

3.3.2. Variational formulation for bi-fluid problem. As mentioned previously, we intend to solve
the time discretized Navier–Stokes equation (35) together with boundary conditions (36) by finite
elements method for all integer n ∈ [0, T∆t ]. Equation (35) is nothing but a generalized Stokes
equation. The associated variational formulation is then obtained by the same method as for
generalized stokes problems. We assume in this part for sake of simplicity that the fluid satisfies
everywhere on ∂Ω, the Navier slip boundary conditions i.e. ∂Ω = ∂ΩS and ∂ΩD = ∂ΩN = ∅.
Indeed, this simplification is considered in this part, since the addition of Dirichlet or Neumann
boundary conditions reveals no mathematical or technical difficulty†. Therefore, Hilbert spaces we
consider here for the velocity flow and the pressure respectively Vn and Qn defined by (see for
instance [Ver85, Ver87, Ver91, DU15]):

Vn = {v ∈
(
H1 (Ω(tn))

)d
,v · n∂Ω(tn) = 0 on ∂Ω(tn)}, (38)

∗Let us mention that the curvature κ at the free surface as well as the normal vector n1 depends on time tn since they
correspond to the interface/free surface Γtn which travels by time. Nevertheless, for sake of simplicity, we do not use
any n superscript for these symbols in (35) either in the following section.
†Nevertheless, if the flow is bi-fluid and ∂ΩD = ∂Ω, the discrete space we consider for the pressure is the set of zero
mean square integrable function. This space is classically denoted by Qn = L2

0(Ω).
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Qn = L2(Ω(tn)). (39)

We are now able to find the variational formulation of the problem. We first take the scalar product
of a test function v ∈ Vn with the first equation of (35) and integrate on Ωtn to get:∫

Ω(tn)

ρ

∆t
un · v −

∫
Ω(tn)

µ∆un · v +

∫
Ω(tn)

∇pn · v =

∫
Ω(tn)

ρ

(
f +

un−1
?

∆t

)
· v, (40)

where un−1
? is set equal to un−1 ◦Xn−1(x). Then, we multiply the second equation of (35) with a

test function q ∈ Qn and integrate on Ω(tn) to get∫
Ω(tn)

divun q = 0. (41)

The following lemma is the next step to the variational formulation.

lemma

Let us consider the solution (un, pn) ∈ Vn ×Qn of system (35) with boundary conditions (36).
Then, we have for all v ∈ Vn∫

Ω(tn)

−µ∆un · v +∇pn · v =

∫
Ω(tn)

µ
(
∇un + t∇un

)
: ∇v −

∫
Ω(tn)

pndivv +

∫
Γ(tn)

γκn1 · v

+ α

∫
∂Ω(tn)

[un]tan · [v]tan.

Proof
The first step to prove the lemma is the following equality which holds true under the
incompressibility condition divun = 0,

∆un = div
(
∇un + t∇un

)
. (42)

Next, we use the Green’s formula [Gre70] to remark that

−µ
∫

Ω(tn)

∆un · v = µ

∫
Ω(tn)

(
∇un + t∇un

)
: ∇v − µ

∫
∂Ω(tn)

(
∇un + t∇un

)
n∂Ω(tn) · v

− µ
∫

Γ(tn)

[(
∇un + t∇un

)
n1

]
Γ(tn)

, (43)

where Symbol : denotes the usual square matrix product i.e. A : B = Σdi,j=1AijBij for all d-square
matrices A and B. Then we have by the free surface condition on Γ(tn) (the last equation of (36)):

µ

∫
Γ(tn)

[(
∇un + t∇un

)
n1

]
Γ(tn)

· v =

∫
Γ(tn)

(
[pn]Γ(tn) − γκ

)
n1 · v. (44)

On the other hand, we have

µ

∫
∂Ω(tn)

(
∇un + t∇un

)
n · v = µ

∫
∂Ω(tn)

((
∇un + t∇un

)
n · n

)
(v · n)

+ µ

∫
∂Ω(tn)

[(
∇un + t∇un

)
n
]
tan

[v]tan . (45)

The first integral of the right hand side of (45) vanishes since v ∈ Vn. Then, the slip boundary
conditions on ∂Ω(tn) (the third and fourth equations of (36)) leads us to

µ

∫
∂Ω(tn)

[(
∇un + t∇un

)
n
]
tan

[v]tan = −α
∫
∂Ω(tn)

[u]tan [v]tan (46)
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Hence, (45) becomes

µ

∫
∂Ω(tn)

(
∇un + t∇un

)
n · v = −α

∫
∂Ω(tn)

[u]tan [v]tan (47)

Gathering (43),(46) and (47), we find

− µ
∫

Ω(tn)

∆un · v = µ

∫
Ω(tn)

(
∇un + t∇un

)
: ∇v + α

∫
∂Ω(tn)

[u]tan [v]tan −
∫

Γ(tn)

(
[pn]Γ(tn) − γκ

)
n · v.

(48)
We now apply the Green’s formula to

∫
Ω(tn)

∇pn · v and get∫
Ω(tn)

∇pn · v = −
∫

Ω(tn)

pn divv +

∫
∂Ω(tn)

pnn · v +

∫
Γ(tn)

[pn]Γ(tn) n · v. (49)

Since the test function v belongs to Vn, we get∫
Ω(tn)

∇pn · v = −
∫

Ω(tn)

pn divv +

∫
Γ(tn)

[pn]Γ(tn) n · v. (50)

Adding the both sides of equalities (48) and (50) yields the result.

Now, we use the lemma to rewrite (40)-(41) as following:∫
Ω(tn)

ρ

∆t
un · v +

∫
Ω(tn)

µ
(
∇un + t∇un

)
: ∇v + α

∫
∂Ω(tn)

[un]tan · [v]tan −
∫

Ω(tn)

pndivv =∫
Ω(tn)

ρ

(
f +

un−1
?

∆t

)
· v −

∫
Γ(tn)

γκn1 · v, (51)∫
Ω(tn)

divun q = 0. (52)

Let us also remark that (
∇un + t∇un

)
: ∇v =

(
∇un + t∇un

)
: t∇v.

Therefore, (
∇un + t∇un

)
: ∇v = 2D(un) : D(v),

The variational formulation is then given in the following proposition.

Proposition

The variational formulation corresponding to (35) , (36) is:
Find (un, pn) in Vn ×Qn such that we have for all (v, q) ∈ Vn ×Qn{

a(un,v) + b(v, pn) = l(v),

b(un, q) = 0.
(53)

In this formulation, a(., .) is a continuous bilinear symmetric coercive operator defined on Vn by

a(u,v) =
ρ

∆t

∫
Ω(tn)

u · v + 2µ

∫
Ω(tn)

D(u) : D(v) + α

∫
∂Ω(tn)

[u]tan · [v]tan . (54)

Besides, the bilinear operator b(., .) is defined on Vn ×Qn by

b(u, q) = −
∫

Ω(tn)

divuq. (55)

The linear operator l(.) is continuous on Vn and given by

l(v) =

∫
Ω(tn)

ρ

(
f +

un−1
?

∆t

)
· v −

∫
Γ(tn)

γκn1 · v.
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Remark

Let us mention that the operator b satisfies the Babuska-Brezzi inf-sup condition and the variational
formulation (53) is well-posed (for instance, see [BF91]).

3.3.3. Variational formulation for free-surface problem. In order to obtain the variational
formulation for the time-discretized Navier–Stokes free-surface problem. We consider (35) together
with boundary conditions (37). Again, we assume that ∂ΩS = ∂Ω. The variational formulation for
this problem is obtained exactly by the same method as in the previous section for bi-fluid problems.
The only difference is that the Hilbert spaces we consider are defined on the fluid domain Ω1:

Similarly, integrations are done on Ω1. After similar computations, we get the following
formulation for the problem.

Proposition

The variational formulation corresponding to (35) , (37) is:

Vn = {v ∈
(
H1 (Ω1(tn))

)d
,v · n∂ΩS(tn) = 0 on ∂ΩS(tn)}, (56)

Qn = L2(Ω1(tn)). (57)

Find (un, pn) in Vn ×Qn such that we have for all (v, q) ∈ Vn ×Qn{
a(un,v) + b(v, pn) = l(v),

b(un, q) = 0.
(58)

In this formulation, a(., .) is a continuous bilinear symmetric coercive operator defined on Vn by

a(u,v) =
ρ

∆t

∫
Ω1(tn)

u · v + 2µ

∫
Ω1(tn)

D(u) : D(v) + α

∫
∂ΩS(tn)

[u]tan · [v]tan . (59)

Besides, the bilinear operator b(., .) is defined on Vn ×Qn by

b(u, q) = −
∫

Ω1(tn)

divuq. (60)

The linear operator l(.) is continuous on Vn and given by

l(v) =

∫
Ω1(tn)

ρ

(
f +

un−1
?

∆t

)
· v −

∫
Γ(tn)

(pa + γκ)n1 · v.

3.3.4. Penalization technique for slip boundary condition. Variational formulations (53) and (58)
are defined on the Hilbert spaces defined in two previous sections. However, in both cases, the
construction of a basis of the space denoted by Vn as well as its finite element approximation is a
challenge since Vn contains only functions whose velocity is tangent to ∂ΩS(tn). Therefore, it is a
strict subspace of

(
H1(Ω(tn))

)d
if the flow is two phase and a strict subspace of

(
H1(Ω1(tn))

)d
if it is free-surface. We use here the penalization technique to overcome with this difficulty
(see [DU15]). In this method, we do not consider any more a strict subspace of H1(Ω(tn))d

or H1(Ω1(tn))d but these entire spaces. The non-penetration condition
(
u · n∂ΩS(tn) = 0

)
is

considered by adding a penalization term to the first equation of the variational formulation. In fact,
we consider the following variational formulation:

Find (unε , p
n
ε ) in Kn ×Qn such that we have for all (v, q) ∈ Kn ×Qn{

aε(u
n
ε ,v) + b(v, pnε ) = l(v),

b(unε , q) = 0.
(61)
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where
Kn =

(
H1(Ω(tn))

)d
if the flow is two phase,

and
Kn =

(
H1(Ω1(tn))

)d
if it is free-surface.

In this technique, the bilinear form aε is defined on the entire Kn by

aε(u,v) =
ρ

∆t

∫
Ω(tn)

u · v + 2µ

∫
Ω(tn)

D(u) : D(v) + α

∫
∂ΩS(tn)

[u]tan · [v]tan +
1

ε

∫
∂ΩS(tn)

(u · n)(v · n),

for a two phase flow and by

aε(u,v) =
ρ

∆t

∫
Ω1(tn)

u · v + 2µ

∫
Ω1(tn)

D(u) : D(v) + α

∫
∂ΩS(tn)

[u]tan · [v]tan +
1

ε

∫
∂ΩS(tn)

(u · n)(v · n),

for a free-surface one.
The penalization technique is interesting since the solution (unε , p

n
ε ) of (61) converges (for the usual

norm Kn ×Qn) to the solution (un, pn) of (53) (or (58) if the flow is free-surface) when ε tends to
0 (see [DU15]).

Remark

Simple computations lead to

α

∫
∂ΩS(tn)

[u]tan · [v]tan = α

∫
∂ΩS(tn)

u · v − (u · n)(v · n).

Therefore, the bilinear operator aε can also write

aε(u,v) =
ρ

∆t

∫
Ω(tn)

u · v + 2µ

∫
Ω(tn)

D(u) : D(v) + α

∫
∂ΩS(tn)

u · v +
(

1

ε
− α

)∫
∂ΩS(tn)

(u · n)(v · n).

or

aε(u,v) =
ρ

∆t

∫
Ω1(tn)

u · v + 2µ

∫
Ω1(tn)

D(u) : D(v) + α

∫
∂ΩS(tn)

u · v +
(

1

ε
− α

)∫
∂ΩS(tn)

(u · n)(v · n).

if the flow is free-surface.

3.3.5. Resolution by finite element method. We use the Galerkin finite element approximation to
find the following discrete problem: Find (uh, ph) ∈ Kh

n ×Qhn such that :{
∀vh ∈ Kh

n aε(uh,vh) + b(vh, ph) = l(vh)

∀qh ∈ Qhn b(uh, qh) = 0
(62)

where Kh
n ⊂ Kn and Qhn ⊂ Qn represent two families of finite dimensional subspaces constructed

from a triangulation Th covering the fluid domain Ω(tn) (or Ω1(tn)). Symbol h denotes the space
discretization parameter which is nothing but the characteristic element size. The discrete border
of the triangulation Th is denoted by ∂Th. It can also be seen as a discrete approximation of the
boundary of Ω(tn) (or Ω1(tn) if it is free-surface). Symbol Γh represents the part of Th which
corresponds to a discrete approximation of the interface/free surface. Moreover, ∂STh represents
the part of ∂Th which corresponds to the discretization of the ∂SΩ(tn) part of the border of the fluid
domain.

Besides, aε(uh,vh), b(vh, ph), l(vh) are bilinear and linear forms defined on Kh
n ×Kh

n , Kh
n ×

Qhn and Kh
n respectively as follows:

aε(uh,vh) =
∑
K∈Th

ρ

∆t

∫
K

uh.vhdx+
∑
K∈Th

2µ

∫
K

D(uh) : D(vh)dx+ α
∑

E∈∂STh

∫
E

uh · vhdx

+

(
1

ε
− α

) ∑
E∈∂STh

∫
E

(uh · n(E)) (vh · n(E))dx;
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b(vh, ph) =
∑
K∈Th

∫
K

−phdivvh;

l(vh) =
∑
K∈Th

∫
K

ρfh · vhdx+
ρ

∆t

∑
K∈Th

∫
K

ρ
(
un−1
?

)
h
.vhdx+ lSurface(vh);

where n(E) is the exterior normal (with respect to Th) of the edge E for all edge E of Γh.
Moreover, the term lSurface(vh) is a discretization of the surface tension term −

∫
Γtn

γκn1.v if
the flow is two-phase and is a discretization of the surface tension and atmospheric pressure term
−
∫

Γtn
(γκ+ pa)n1.v if the flow is free-surface. This term will be concerned in the next section.

The existence and uniqueness of the weak formulation for generalized Stokes problem has been
proven, see [EG04], [Qua09] and [DU15]. This proof dues to: i. the ellipticity of the form aε(., .)
; ii. the compatibility of the spaces of velocity and pressure results satisfying the Babuska–Brezzi
condition, also called inf-sup condition on the form b(., .), i.e. there exists a positive constant C such
that:

inf
q∈Qn

sup
v∈Kn

b(v, p)

‖v‖1‖q‖0
≥ C > 0 (64)

where ‖v‖1 =
(

Σdi=1‖vi‖1
2
)1/2

and ‖.‖1, ‖.‖0 are standard notations of norms in the Sobolev

spaces H1(Ω), L2(Ω) (or H1(Ω1), L2(Ω1) if the problem is free-surface) respectively.
The approximative problem also requires a compatibility condition, meaning that the discrete spaces
of velocity needs to be ”rich” enough to compare with the one of pressure. For this reason we choose
mini elements (P1-bubble/P1) as discrete spaces‡. Hence, the problem (62) leads to solve the square
linear system: (

A Bt

B 0

)(
U
P

)
=

(
F
0

)
(65)

where the matrices A,B correspond to the bilinear forms aε and b respectively, and F corresponds
to the right hand side l of the first equation. The system (65) is sparse, symmetric but not positive
and its size is dimKh

n + dimQhn. In practice, this linear system is solved by classical Uzawa method
[AHU58] as recalled in the following paragraph.

Approximation of the surface tension term. Surface tension plays a crucial role in the regularization
of the free surface for incompressible fluids with small viscosity. The accurate computation of this
term is one of the critical stages in any interface tracking or capturing technique. Classically, the
level set function can be used to calculate the unit normal vector and the mean curvature at the
interface by following formulas:

n =
∇φ
|∇φ|

∣∣∣∣
φ=0

; κ = div
(
∇φ
|∇φ|

)
|φ=0.

It can be seen that these formulas require an approximation of the gradient, however, in our approach
the interface is explicitly discretized in the triangulation Th. This feature gives us an alternative
technique to approximate the interface via a set of connected segments (faces in three dimensions).
In 2-dimensional case, we denote by (xi)1≤i≤ns the set of ordered vertices along the discrete curve
Γh such that xi−1,xi,xi+1 represent its three consecutive points and x0 ≡ xns,x1 ≡ xns+1 if Γh is
a closed curve. Using quadrature formula along each edge E of Γh, it has been shown in [BFM10]

‡Other choices satisfying the inf-sup condition are possible. For instance, we can consider Taylor-Hood elements (P2/P1)
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that the surface tension term can be rewritten as follows, for all vh ∈ Kh
n :∫

Γh

γκn1.vhds =
∑
E⊂Γh

|E|
2

∑
xi∈E

γκ(xi)nh(xi).vh(xi)

=
∑

xi∈Γh

γκ(xi)nh(xi).vh(xi)
∑
E3xi

|E|
2

(66)

where the unit normal vector nh to Ω1 is computed from the approximation of unit tangent
vector τ = (τ1, τ2)t at each vertex xi ∈ Γh: τ(x)i = −−−−−−→xi+1xi−1/‖−−−−−−→xi+1xi−1‖, hence nh(xi) =
(τ2(xi),−τ1(xi))

t. The mean curvature κ(xi) is obtained as the inverse of the radius r(xi) which
can be computed via the following approximation [FG08]:

r(xi) =
1

4

(
〈−−−−→xixi−1,

−−−−→xixi−1〉
〈−nh(xi),

−−−−→xixi−1〉
+
〈−−−−→xixi−1,

−−−−→xixi+1〉
〈−nh(xi),

−−−−→xixi+1〉

)
Other formulas can be used to approximate r(x) or κ(x), see for instance [T+01].

The atmospheric pressure term can be then added with no difficulty:∫
Γh

(γκ+ pa)n1.vhds =
∑

xi∈Γh

(γκ+ pa) (xi)nh(xi).vh(xi)
∑
E3xi

|E|
2

This technique can be extended straightforwardly to three dimensions, where the unit normal
is then taken as the weighted average value of the unit normals of all triangles sharing vertex xi.
Moreover, the mean curvature is computed by approximating the discrete contour of the mesh at
each vertex by a quadratic surface. This means that for each vertex on the free surface, we intend
to find the quadratic surface which minimize the distance to discrete contour of the mesh at this
vertex. Therefore, this is done by a solving a polynomial minimization problem (see [Fre00] for
more details).

3.4. Redistancing

It is well-known, in the context of level set method, that the level-set function must usually satisfy:

|∇φ| = 1. (67)

Unfortunately, when φ is transported by a physical velocity field using equation (21), all the isolines
do not travel with the same speed. As a consequence, the level set does not preserve the property
(67). A natural choice to reinitialize the level-set function is the signed distance function to the
interface for all time iteration n ∈ N in the discrete approximation Th of the computational domain
Ω:

φ(x) =

 d(x,Γh) if x ∈ Ω1

0 if x ∈ Γh
−d(x,Γh) if x ∈ Ω2,

where Ω1 (resp. Ω2) represents parts of Th corresponding to Ω1 (resp. Ω2). In our scheme, this
signed distance function is approximated by redistancing procedure studied in [DF11], consists in
implementation the following two steps:
- Step 1: Initialization φ0 of φ: denoting TΓ the set of mesh elements intersected by the interface,
i.e. TΓ = {K ∈ Th : K ∪ Γh 6= ∅}, φ0(x) is defined as:

φ0(x) =

 φ(x) if x ∈ TΓ

+∞ if x ∈ Ω1 \ TΓ

−∞ if x ∈ Ω2 \ TΓ.

- Step 2: Numerical computation of φ as steady solution of so-called Eikonal equation:
∂φ

∂t
(x, t) + sgn(φ0)(|∇φ| − 1) = 0 ∀(x, t) ∈ Ω× (0, T )

φ(x, 0) = φ0(x) ∀x ∈ Ω.
(68)
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The long term solution of this equation keeps a similar behavior in ”vicinity” of the zero isoline
i.e. the position of interface Γ(tn) is preserved to ensure the constraint (67). The numerical
computation of the solution of this equation is based on the explicit expression of its unique
uniformly continuous viscosity solution, see [DF11] for more details.

3.5. Mesh adaptation

The key tool which lets us solve the time-discretized fluid problem on the fluid domain (in the
case of free-surface problem), is the anisotropic mesh adaptation of the computational domain Ω
based on the location of the free surface. In the case of two phase problems, this adaptation lets
us find an approximative solution satisfying given errors. The idea of this method is based on a
metric tensor to prescribe the characteristics (size, shape and orientation) of the mesh elements.
The definition of this metric tensor relies on the information related to numerical error estimates as:
geometric error, interpolation error, approximation error (see [FG08] and for details). The estimates
we consider here, are from [Pir82] for time-discretized Navier–Stokes problem and from [CDF12]
for the level set advection equation as well as for the discrete approximation of the smooth boundary
of the computational domain. More precisely, we intend to get a small approximation error based
on the error estimate given in [Pir82] for the Navier–Stokes equation with Dirichlet boundary
conditions. Indeed, let u be the smooth solution of the Navier–Stokes equations with Dirichlet
boundary condition. While uh is the solution of the associated problem discretized temporarily
by the characteristic method and spatially by the finite element method as described in the previous
section. Then, we have the following error estimate§

‖u− uh‖L2 ≤ c(h+ ∆t+ h2/∆t), (69)

where c is a strictly positive constant and h is the characteristic mesh element size. According to
this error estimate, there should be a coherence between the time step and space step in order to give
an interesting upper bound for the velocity L2 error. More precisely, if ∆t is too small compared to
the mesh elements’ size h, this upper bound is not interesting.

Then, we use the estimates of [CDF12] for the advection equation on the whole space conjecturing
that similar estimates holds true on bounded domains. In fact, we see that the approximation error
associated with the level set function is bounded by above by the interpolation error of the level set
function:

‖φ− φh‖L∞(Ω) ≤ ‖φ−Πhφ‖L∞(Ω) + ‖φ0 −Πhφ0‖L∞(Ω) + c1‖ũ−Πũ‖L∞(Ω) + c2e
δtδt, (70)

where c1, c2 are constants depending on initial data φ0 and velocity u while the operator Πh is the
P1 interpolate over the mesh T hn covering the computational domain Ω on the interval [tn, tn+1]. On
the other hand, we have the following geometric estimate. In other words, the Haussdorff distance
between the discrete 0-isoline contour Γh and the continuous one Γ satisfies

dH(Γt,Γ
h
n) ≤ sup

 sup
x∈Ω
|∇φ(x)|

inf
x∈Ω
|∇φ(x)|2

,

sup
K∈T h

n

|∇φh(x)|K |

inf
K∈T h

n

|∇φh(x)|K |2

 ‖φ− φh‖L∞(Ω) (71)

Therefore, we see that the geometric error is bounded by the level set function approximation error
which is itself bounded by the interpolation error of the solution of the problem. Using the result of
[FA05] on the L∞ error estimate for the Lagrange finite element P1-interpolation, we have for all

§Let us note that for more precision, we must find an error estimate for the free-surface Navier–Stokes problem with slip
boundary conditions which is the actual problem treated in this work. Nevertheless, we consider the result in [Pir82] on
time dependent Navier–Stokes equation with Dirichlet boundary conditions since in our knowledge, no error estimate
result is available on free surface Navier–Stokes equations.
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function defined on Ω and on all elements K of the mesh T hn :

||ϕ−Πhϕ||L∞(K) ≤ cdmax
x∈K

max−→v ⊂K
< −→v , |∇2ϕ(x)|−→v > (72)

≤ cdmax
x∈K

max−→e ⊂EK

< −→e , |∇2ϕ|−→e >

where ∇2ϕ is the Hessian of ϕ, EK is the set of edges of the element K and cd is a constant
depending on the dimension d. This estimate implies that we can control the interpolation error
on each element by controlling the size of edges of the element. This estimate lets us define an
anisotropic metric for each function on each element which leads to a small interpolation error
on the element (see [AF03] for details). According to (70) and (71), the geometric error and the
approximation error associated with the level set function are conveniently bounded if the mesh is
generated under the intersection of the metrics (see [FG08]) associated with φ, φ0 and u. Then, at
each step, the generation of the mesh from this metric is then obtained by using a Delaunay-based
local mesh modification procedure (see [DF08]).

Let us note that in the case of free-surface problems, we do not use a very sharp metric tensor
outside of the fluid far from the free surface. Nevertheless in both problems, since we are specially
interested in the behavior of the interface/free surface, the mesh elements in the vicinity of the free
surface are taken small enough to give a precise approximation of the interface/free surface.

4. GLOBAL NUMERICAL SCHEME

In this part, we will describe the general scheme used in this work on the time period [0, T ]. This
scheme is based on the numerical tool presented in the previous section. We suppose that [0, T ] is
divided byN interval [tn−1, tn]. The computational domain Ω is is covered here by a time depending
mesh T nh at iteration n. This mesh is adapted at each iteration based on the position of the fluids’
domain, particularly based on the location of the free surface. The subscript h is omitted here at
each iteration but let us remember that the characteristic element size of h holds important meaning
in our approach. As explained later, it is prescribed by anisotropic metric tensor and always adapted
at each time step, hence the mobile unstructured meshes are generated during the scheme.

4.1. Two-phase flows

The algorithm starts with an initial discretization of the computational domain T 0, an initial velocity
flow u0 defined on the whole computational mesh if the flow is two-phase Then, at each iteration
n = 0, · · · , N − 1, we first regularize the discrete velocity un and denote the regularized velocity by
ũn. Let us note that in the case of two phase flows, this step is necessary only if the flow’s velocity
represents large discrepancies. We then generate the signed distance function φn of the discrete
domain T n. Let us recall that this is a level set function for T n based on the discret approximation of
the interface. This function is then transported by the resolution of the level set advection equation
defined using the regularized velocity ũn or using un if no regularization is necessary. The new
level set function is called φ̃n+1. It is supposed to characterize the discrete fluid domain T n+1

at time tn+1. The mesh is then adapted according to this level set function. We now have a new
mesh T n+1. The velocity flow un is now interpolated on the new mesh T n+1. Finally the time-
discretized Navier-Stokes equation (35) (with boundary conditions (36)) is solved on T n+1. This
overall algorithm is recapitulated in the following table.
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Numerical scheme for bifluid flow over [0, T ]
1. Start with mesh T 0 and initialization u0,
2. For n = 0, ..., N-1 do:

Problem Input Output
2.1 Regularization (option) (Tn,un|Γ) ũn

2.2 Redistancing T n φ̃n

2.3 Solving Advection (T n, ũn, φ̃n) φn+1

2.4 Adaptation (T n, φn+1) Tn+1

2.5 Interpolation (un, T n+1) un

2.6 Solving Navier Stokes (T n+1,un) un+1

3. Return (uN , φN , TN )

In comparison with previous studies in [BFM10], this scheme has been much reduced. In that
approach, mesh adaptation needed two independent mesh, one for the resolution of the fluid equation
and another for the advection of the interface. Therefore, an interpolation is necessary to correspond
to each solving of the problem. The simplicity of the present scheme is due to the requirement of
only one adapted mesh at each time step.

4.2. Free-surface flows

The algorithm for free-surface flows is based on a similar algorithm as in the two fluid case. The
main difference here is that the fluid equation is solved on the fluid domain only and not on the
whole computational domain. Indeed, at each iteration the Navier–Stokes equation is solved only
on a strict sub-domain T n1 of T n which corresponds to the fluid domain. Besides, the velocity
extension step is necessary at each iteration. This step must be placed before the resolution of
the Navier–Stokes equation. The reason is the convection term and its numerical treatment with
the characteristic method. In fact, if the velocity extension step is placed after the fluid equation
resolution, the velocity considered for the flow when the characteristic curve crosses the free
surface and goes to the other side of the computational domain, will be 0. This is not coherent
with the physics of the system nor with the continuous mathematical model which represents it.
Indeed, one of the features of this work is to compare the free surface simulation with the bi-fluid
simulation where air represents on of the two phases. In other words, in the case of free-surface
flows, the action of the second fluid is describe by an atmospheric pressure. On the other hand,
according to the interface condition, the flow velocity is continuous through the bifluid interface.
This is why the consideration of a 0 value for velocity when the characteristic curve crosses the free
surface is not convenient. Of course, in these latter cases, we could also take the value of the last
point of the advection but since we may need to regularize the velocity for the advection equation,
it would be more elegant to use the extended velocity to solve the Navier–Stokes equation in the
fluid domain. This means that even though the Navier–Stokes equation is solved only on the fluid
domain, the velocity that the Navier–Stokes solver takes as entry is the extended velocity defined on
the whole computational mesh T n. However, only values of the extended velocity on the vicinity
of free surface and in the fluid domain which are used to construct the right hand side of the linear
system (65). As a confirmation, we can check by numerical simulations that the behavior of the
free surface is different if we give the non extended velocity to the Navier–Stokes solver. Let us
also mention that if we consider a Stokes flow, the placement of the velocity extension step before
the resolution of the fluid equation is not necessary. This is due to the absence of the convection
term and the absence of the characteristic function on the right hand side of the linear system in the
case of Stokes flow.

Let us also note that of the flow velocity represents too many discrepancies. A regularization of
velocity must be considered before the advection step. The algorithm is recapitulated as following:
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Numerical scheme for free-surface flows over [0, T ]

1. Start with T and u0.
2. For n = 0, ..., N − 1,

Smooth velocities Problem Input Output
2.1 Velocity extension (T n2 ,un) ũn

2.2 Redistancing T n φn

2.3 Solving advection (T n, ũn, φn) φ̃n+1

2.4 Mesh adaptation (T n, φ̃n+1) T n+1

2.5 Interpolation (T n+1, ũn) ũn

2.6 Solving Navier–Stokes (T n+1
1 , ũn) (un+1, pn+1)

Non-smooth velocities Problem Input Output
2.1 Velocity regularization (T n,un) ũn|adv
2.2 Velocity extension (T n2 ,un) ũn|NS
2.3 Redistancing T n φn

2.4 Solving advection (T n, ũn|adv, φn) φ̃n+1

2.5 Mesh adaptation (T n, φ̃n+1) T n+1

2.6 Interpolation (T n+1, ũn|NS) ũn|NS
2.7 Solving Navier–Stokes (T n+1

1 , ũn|NS) (un+1, pn+1)

3. We return uN , pN , φN , DN .

Here, T n1 (resp. T n2 ) represents the submeshes of the computational mesh T n which corresponds to
the fluid domain Ω1 (resp. to the vacuum part Ω2). Let us recall that during the velocity regularization
step, the Helmholtz equation (32) is solved on the whole computational mesh T n to get a regularized
velocity for the advection equation which coincides with the physical velocity in the vicinity of the
free surface. However, to solve the Navier–Stokes equations we need the physical velocity on the
whole fluid subdomain T n1 . For this reason, we also need to solve the Helmholtz equation (30) to
get an extended velocity to give to the time-discretized Navier–Stokes solver. Let us also mention
that the resolution of the problem (30) is not expensive since mesh elements of T n2 are quite large,
since the value of the physical quantities as well as the extended velocity far from the fluid part are
of few if no interest.

5. NUMERICAL RESULTS

In this section, we present several numerical results obtained with our method. The first part
contains numerical test cases entering the frame of bi-fluid problems. First, the Navier–Stokes
solver for monofluid has been validated by the Lid-driven cavity test (see Subsection 5.1). Next,
the test of a rising bubble and a Rayleigh–Taylor instability are investigated (see Subsections 5.2
and 5.3). In the second part, the free-surface algorithm is simulated. The first example is a viscous
fluid in a circular computational domain (see Subsection 5.4). Then, dam break examples for
shampoo and water are presented (see Subsection 5.5 and 5.6). The results in both two dimensions
(2D) and three dimensions (3D) of these simulations are given in comparison with some results in
other references. Let us note that here hmin and hmax are the prescribed minimal and maximal
edge size of the mesh whereas hgrad represents the graduation scale of neighboring mesh elements.

5.1. The Lid-driven cavity problem

The Lid-driven cavity problem is known as a standard benchmark for the Navier–Stokes solver
in the numerical literature. Therefore, there are many references that can be used to validate our
results. The problem corresponds to the flow confined in the unit domain Ω = [0, 1]d(d = 2; 3) (the
domain in three dimension is given by extending the two dimensional domain in z-direction with
a unit width) and the Dirichlet boundary conditions are imposed on all boundaries: zero-velocity
everywhere except on the upper one. The fluid motion is then generated by the upper lid that moves
in the x− direction with a constant velocity ux = 1m/s. The viscosity is adjusted to obtain the
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desired Reynolds number.

5.1.1. Two-dimensional lid-driven cavity
In two dimensions we investigated the simulations for Reynolds numbers from 100 up to 10000.
Four meshes have been used: a regular triangulation (carre2) with 2461 nodes, 5000 elements; an
uniform triangulation (carre3) with 2143 nodes and 4136 elements; another uniform triangulation
(carre4) with 8421 nodes,16544 elements; and a regular triangulation (carre7) with 10201 nodes,
20000 elements used for the test with high Reynolds numbers (Re = 10000). This problem involves
a primary vortex at the cavity center and the vortices in the corners as Re increases. It is known
that with the raise of Reynolds number, the number of vortices increases and the position of the
center of the primary vortex has the tendency to move from the right bottom corner towards the
center of cavity. In Table I, we resume the positions of the center of the primary vortices at the
steady-state (when the residual between the solutions reaches to 10−6) forRe = 100, 400, 1000. The
streamlines are presented in Figure 2 for higher Reynolds numbers. We also compute the profiles of
velocity along horizontal and vertical lines passing the geometric center of cavity, see Figure 3. Our
numerical computations in these cases are compared to the results obtained in the very well-known
references [UG82], in [GM99], and the benchmark result for cavity flow in [ECG05] obtained with
a fine uniform grid mesh of 601× 601.

Reynolds carre2 carre3 carre4 carre7 Ghia et al NSIKE
100 x = 0.595 x = 0.617 x = 0.610

y = 0.736 y = 0.734 y = 0.750
400 x = 0.544 x = 0.544 x = 0.552 x = 0.554 x = 0.580

y = 0.610 y = 0.615 y = 0.613 y = 0.606 y = 0.615
1000 x = 0.516 x = 0.515 x = 0.520 x = 0.521 x = 0.531 x = 0.545

y = 0.569 y = 0.564 y = 0.570 y = 0.570 y = 0.562 y = 0.560
Table I. Cavity in 2D: comparison between the positions of the main vortex for different Reynolds numbers.

Re = 1000 Re = 5000 Re = 10000

Figure 2. Cavity in 2D: Streamlines for different Reynolds number.

We have also obtained a good agreement between our pressure solution and the result showed in
[HRK+10], see Figure 4.

5.1.2. Lid-driven cavity in 3D
Two meshes are employed to simulate the 3D problem: the large one consists in 11037 vertices,
56244 tetrahedra used for the cases of Re = 100, Re = 400 and the other one consists in 35723
vertices, 193586 tetrahedra used for Re = 1000. In many references, the results in 3D are compared
with 2D results. Therefore, we simulate the 3D problem with the same Reynolds numbers as in
2D: Re = 100, Re = 400, Re = 1000. As expected, we observe that the streamlines at each plane
z = const corresponds to those in 2D, see Figure 5 for example.
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Figure 3. Cavity in 2D: velocity profile for ux and uy in the cases of Re=100 and Re =1000.

Figure 4. Cavity in 2D: Isolines of pressure with Re = 10000. Left: result in [GWR04]. Center: result in
[HRK+10]. Right: present result

Figure 5. Cavity in 3D: from left to right, streamlines in 2D and in the plane (z = 0.5) of 3D for Re = 400
(the first two), Re = 1000 (the last two).
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We also compare our numerical solutions with the results in [KHT87] since the Reynolds numbers
are exactly the same in our tests. However, no data for velocity profiles are available in [KHT87] .
For this reason, the comparison is based on the images (see Figure 6 which shows a good agreement
between our velocity profiles in 2D, 3D and those obtained in the given reference).
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Figure 6. Cavity in 3D: velocity profiles on the vertical centerline. The first and third rows: present results.
The second and fourth rows: results obtained in [KHT87]

5.2. Rising bubble

We consider the raise and the deformation of a single bubble under gravity in a fluid contained in a
vertical, rectangular domain. The density of the bubble is lower than the density of the surrounding
fluid.

5.2.1. Rising bubble in 2D
The initial configuration consists in a circular bubble of radius r = 0.5 centered at [2, 1.5] in a 4× 10
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domain of 2494 nodes. The boundary condition considered here is the no-slip condition (u=0) on
the horizontal walls and a free-slip (τ.σn = 0 and u.n = 0) on the vertical walls (See Fig 7).
In many references, different simulations are classified according to the Reynolds number and the

Figure 7. Rising bubble in 2D: initialization (left) and the evolution at times: t = 5.0s (center), t = 10.0s
(right)

Bond number (also called the Eotvos number) defined as follows:

Re =
ρ1
√
g(2r)3/2

µ1
, Bo =

4ρ1gr
2

γ
(73)

The problem has been set up with densities and viscosities given as : ρ1 = 100kg.m−3, µ1 =
0.1kg.m−1.s−1, ρ2 = 1.0kg.m−3, µ2 = 0.01kg.m−1.s−1. The gravity is g = 9.81e− 3m.s−2. The
surface tension constant is γ = 6.e− 3N.m−1 and the adapted mesh is such that hmin = 0.02 and
hmax = 1.0 (as shown in Figure 7). It can be seen that the bubble shape deforms during the raise
and the terminal bubble shape is slightly dimpled at the bottom.
In order to impress the effect of the surface tension, we consider this simulation with different
surface tension coefficients. It can be seen in the Fig 8 that when tension surface is rather small
here (γ = 6e− 5), the bubble bottom becomes more dimpled while it remains flat in the case
of more important coefficients (γ = 2.5e− 2) and the bubble remains almost circular for larger
coefficients(γ = 9.e− 2). This result is in good agreement with Figure 6 of [HSL07] representing
tests with low Reynolds number and Bond number (from 10 to 200) which correspond to our
simulations with different surface tension coefficient (see (73)).
We have known that during the long simulation, the mass of bubble can’t be guaranteed. The

advection of the bubble front and the interpolation at each iteration may lead to a loss of mass. We
measure the variation of mass at each time step and show it Figure 9. A mass variation of order
2× 10−3 is observed at each time step.

5.2.2. Rising bubble in 3D
We simulate here a 3D bubble rising under the gravity. We consider the problem with similar
conditions as in 2D: a bubble with a diameter of 0.5m centers initially at [0.75, 0.75, 1.0] in the
domain [0, 1.5]× [0, 1.5]× [0, 4.5]. The aim of this simulation is the validation of our code for
two-phase fluid in 3D by the examination of the bubble shapes during the evolution and the
correction of the volume at each time step. As the simulation with low Reynolds number, we
observe that the shape of the bubble deforms slowly from the beginning, it becomes a dimpled
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Figure 8. Rising bubble in 2D: interaction of the surface tension on the final bubble (at time t=10s) with
different surface tension coefficients, from left to right: γ = 6e− 5; γ = 6e− 3; γ = 2.5e− 2; γ = 9e− 2.
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Figure 9. Rising bubble in 2D: variation of mass correction with time evolution

ellipsoidal and gets more distorted over time. This result is similar to those in many references
with corresponding Reynolds and Bond numbers (see [LAB10], [HSL08] for instance). Figure 10
represents the evolution of the bubble from t = 0 to t = 10. It can be seen that when the bubble is
very close to upper wall of domain, its shape is rapidly distorted.

5.3. Rayleigh-Taylor instability

In this section, we carry out the simulation of a more interesting problem, named Rayleigh–
Taylor instability. This instability occurs along the interface of two phases when the heavy fluid
is superposed on the light one (ρ2 > ρ1) under the gravity field g. We compare our results with the
results in [Try88] and [FGQ01, CCG08]. The criteria we consider here to parametrize the problem
are the two following numbers
- The density difference represented by the Atwood number defined as:

At =
ρ2 − ρ1

ρ2 + ρ1

- The Reynolds number is defined by:

Re =
ρ1d

3
2 g

1
2

µ

where d is the width of the computational domain.

5.3.1. Rayleigh-Taylor instability in 2D
Firstly, we set up the problem in the rectangular domain with a width of d = 1 and a height of 4d.
The no-slip conditions are imposed on the upper and lower boundaries while free-slip conditions
are enforced on the vertical sides. The initial interface is set by:

tanh
y − 2− 0.1cos2πx

0.01
√

2
= 0
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t = 0 s t = 2.0 s t = 4.0 s

t = 6.0 s t = 8.0 s t = 10.0 s

Figure 10. Rising bubble in 3D: evolution of the interface over time.

Figure 11. Rising bubble in 3D: zoom of and adapted mesh at time t = 6.0 s

We observe that the results satisfies a good symmetry over time while the Atwood number is 0.3.
The results displayed in Figure 12 can be compared with Figure 8 of [LKK10]. Let us notice that
the mushroom shapes are not identical since their simulation is done with At = 0.5 and with higher
Reynolds number. We will investigate this test cas in a reduced domain where the computational
time is much less.
Figure 13 shows the results for to different Atwood numbers at the same Reynolds number. We

can observe that the mushroom is more roll-up if the Atwood number is higher. This results suggest
that the effect of this number on the ratio of the width of the bubble and the spike fluid is in good
agreement with the measures represented in Figure 9 of [LKK10]. Secondly, assuming that the
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t = 0 s t = 1.0 s t = 2.0 s t = 3.0 s t = 4.0 s

Figure 12. Rayleigh-Taylor instability in 2D: evolution of the interface over time with At = 0.3

At = 0.3 At = 0.35 At = 0.4 At = 0.45 At = 0.5

Figure 13. Rayleigh-Taylor instability in 2D: evolution of the interface with different Atwood numbers.

symmetry of the initial condition preserved during the time evolution, we consider the problem on
the reduced domain with a width of d/2 and a height of 2d. We see again the same configurations
with different Atwood numbers.
As mentioned, we also validate our code by the same values as in [FGQ01]. The evolution of

the interface is plotted in Figure 15 in the time scale of [Try88] which is related to ours by
tref = t

√
d.At.g. We can see that these results are qualitatively close to those of Figure 1 in

[FGQ01] (and also with results in [CCG08]). Indeed, the results are in good agreement at the early
stage and we can observe some slight discrepancies only at the large times of the evolution.

5.3.2. Rayleigh-Taylor instability in 3D
Finally, we consider the 3D computation of Rayleigh–Taylor instability problem. All the
computational conditions are exactly the same as the 2D case and 3D instability has been well
captured by proposed scheme, plotted in Figure 18. The results performed in the figure 18 are very
close to the results presented in Figure 7 of [LJG96], or Figure 18 of [LFX05]. The slight difference
of geometric configurations can be understood considering the fact that our computational fluid is
incompressible while theirs are compressible. On the other hand, the density ratio is not identical.
Therefore, a more detailed comparison with these results may not be convenient.
In this simulation, we begin with a mesh of 9.901 vertices (50429 tetrahedra). The final mesh
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At = 0.3 At = 0.35 At = 0.4 At = 0.45 At = 0.5

Figure 14. Rayleigh-Taylor instability in 2D: evolution of the interface with different Atwood numbers on
the reduced domain.

t = 1.5 s t = 1.75 s t = 2.0 s t = 2.25 s t = 2.5 s

Figure 15. Rayleigh-Taylor instability in 2D: evolution of the interface with At = 0.5, Re = 1000.

consists in 103.687 vertices (566.753 tetrahedra) with hmin = 0.002, hmax = 0.1. Regarding the
mesh adaptation, hmin is decreased at each time step in order to well capture the interface with the
minimal time of computation.

5.4. Viscous flow in a circular domain

We consider here a fluid with density ρ = 1 and dynamic viscosity µ = 1. The surface tension
constant is γ = 7.2. and the gravity action is modeled by f = −100. No atmospheric pressure is
considered i.e. the fluid is in the vacuum. The initial solution is presented in Figure 20. Let us note
that the initial solution is obtained by solving the steady Stokes equation with a upward gravity.
The computational domain considered here is the unit circle i.e. the circle of radius 1 and the center
(0, 0). Let us note that in this test, the mesh elements all over the computational boundary, even out
of the fluid domain, must be small enough to preserve the curvy shape of the computational domain.
This is also due to the fact the fluid domain is quite large (half of the computational domain). The
characteristic element size of the mesh is about 0.03 and the time step is in the order of 10−3. The
test is done over the time interval [0, 4.435] (over 3300 iterations). Figure 21 represents the solution
at some time steps.
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Figure 16. Rayleigh-Taylor instability in 2D: extracted results of evolution of the interface with At = 0.5, Re
= 1000 in [FGQ01].

Figure 17. Rayleigh-Taylor instability in 2D: zoom of adapted mesh in the vicinity of the interface, left:
anisotropic mesh, right: isotropic mesh

5.5. Collapse of a shampoo column

We consider here a fluid with density ρ = 1024 and dynamic viscosity µ = 8. The surface tension
constant is γ = 0.07 and the gravity action is modeled by the force density f = −9.8. The fluid is
subjected to no atmospheric pressure i.e. pa = 0 and the friction constant is equal to α = 10−2. This
friction is computed following the law

α =
ρ |U|
C2
f

,

where Cf = 190 as in [CCT07] and |U| is the order of the norm of the flow velocity. The value
which is taken here f|U| is 0.4. However, the result does not change significantly if we take for
instance |U| = 0.04 or |U| = 4.

The initial fluid is a 0-velocity fluid column. The computational domain dimension as well as
the fluid column width and height are the same as in [CCT07]: The computational domain is
0.42m× 0.44m whereas the fluid domain is 0.114m× 0.114m. Figure 22 compares our result with
the physical experiments and the numerical results presented in [CCT07]. The problem is considered
in [CCT07] as a bi-fluid air-shampoo problem. Therefore, the fluid equation is solved on the whole
computational domain. Similarly to our work, the interface between two flows is captured by solving
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t = 0 s t = 0.2 s t = 0.4 s t = 0.6 s

t = 0.8 s t = 1.0 s t = 1.2 s t = 1.4 s

Figure 18. Rayleigh-Taylor instability in 3D, evolution of the interface in time with At = 0.5.

Figure 19. Rayleigh–Taylor instability in 3D: results obtained in [LJG96] (left) and [LFX05] (right).

an advection equation (edge-track interface locator technique). The time step we consider here is
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Figure 20. Norm of the initial velocity (on the left) and the associated vector field (on the right).

Figure 21. Evolution of a 2-dimensional viscous fluid in the unit circle. The equilibrium is reached at about time T = 4.

∆t = 0.01 for the first ten iterations (until time t = 0.1) and is ∆t = 0.02 for other iterations. The
values we consider for hmin and hmax are 0.0009 and 1.0. More over hgrad = 2.5. The mesh
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adaptation at each step leads to large elements out of the fluid and fine elements inside (see Figure
23). Let us note that the time step in [CCT07] is ∆t = 0.001. Nevertheless, the results are similar.

 

Figure 22. Comparison between physical experiments of [CCT07] (top), the numerical result of [CCT07] with wall
friction (middle) and our results (bottom) at times t = 0.1, 0.2, 0.3, 0.4, 0.5 (from left to right).

Figure 23. Adapted mesh for the dam break with shampoo at times t = 0.1 (left), t = 0.3 (middle) and t = 0.5 (right).
We see that the mesh elements’ size is small inside the fluid, very small in the vicinity of the free surface and large out

of the fluid far from the surface.

5.6. Collapse of a water column

This test case is a dam break test case with water whose characteristics are ρ = 1000 and dynamic
viscosity µ = 0.001. The high value of the Reynolds number of this problem leads to some turbulent
effects. As mentioned in [MP94], when the Reynolds number is large there are usually strong
gradients for the velocity and the vorticity in the vicinity of solid walls. For this reason, other
models are suggested for this kind of problems (see for instance [MP94]). The model we consider
here is the model recalled in [CCT07]. In this simple model, the viscosity of the fluid is modified
to take into account the energy dissipated by the turbulent effects. The law according to which the
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flow is modified is given by

µmod = min
(
µ+ l2mixρ

√
D(u) : D(u)/2;µmax

)
,

where lmix = Ct hUGN such that Ct is a modeling parameter, hUGN is a characteristic element size
and µmax is a cut-off value. The values suggested in this test case for this parameters are

Ct = 3.57, hUGN = hmin = 9× 10−4, µmax = 1.5.

In practice, we take here µ = 0.001 and ∆t = 0.001 for the first iteration of the algorithm. Then,
we take the cut-off value µmax for viscosity and set ∆t = 0.005 for others. Boundary conditions
considered here are slip boundary conditions without friction. Besides, no atmospheric pressure is
taken into account. Other parameters are set as hmax = 1 and hgrad = 2.5.

Remark

In all dam break test cases, simulations are proved to be very sensitive to the time step. Indeed, even
small variations of the time step play a very important role in the behavior of the fluid. Moreover,
for a fixed size of the mesh elements, a too small time step may lead to an incoherent simulation.
This may be eventually due to the presence of the time step in a denominator of the right hand side
of the error estimate of the problem.
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top to bottom).
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