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Abstract

In the field of cloud computing, Infrastructure as a Service (IaaS) provides
virtualized on-demand computing resources on a pay-per-use model. IaaS Cloud
differ from traditional mutualized infrastructures in that the resources can be
dynamically claimed and released, and the real hardware infrastructure is un-
known to its users. These properties drastically changes the way resource pro-
visioning and job scheduling can be addressed by the user because i) the large
number of jobs and resources to handle becomes rapidly overwhelming for hu-
man operators, and ii) the real performances of the platform should be inferred
from observations to make robust scheduling decisions. In order to optimize
the resources usage by the client, we advocate the need for brokers on the
client-side. This article presents our work based on Schlouder, a broker of IaaS
cloud resources able to provision and schedule independent jobs or static work-
flows according to strategies chosen by the client. Further, we advocate that
simulation can be a precious auxiliary to help the user to choose between provi-
sioning strategies. Schlouder brings a unique feature which is to predict through
simulation the makespan and cost of executions under various strategies. The
contribution of this work is twofold. First, it presents the broker, available as an
open source project, in which new provisioning strategies can be plugged in by
third parties. The effectiveness of the tool is demonstrated through experiments
involving actual applications and platforms. Second, we show that simulation
produces accurate predictions making this feature a helpful means for the user
to choose the appropriate strategy.
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1. Introduction

The need for computational and storage resources has been constantly in-
creasing during the last decades, and today, cloud computing represents an
attractive solution for a wide variety of users. Cloud computing can be deliv-
ered to the customers under different forms, IaaS, Platform as a Service (PaaS)
or Software as a Service (SaaS) to name a few. We focus in this paper on the
IaaS paradigm, which enables the user to use the bare infrastructure through
the deployment of virtual machines (VMs). This form is the most generic one
as almost any software can be installed and run. Although clouds are often
tightly associated with web applications, IaaS enables a wide range of applica-
tions, from media encoding and decoding to remote software delivery and data
mining. Previous works also demonstrate the possibility to use the cloud as
a viable infrastructure for scientific computations. Montero et al. [1], Song et
al. [2] and Villegas et al. [3] showed the usefulness of the cloud for different type
of scientific application such as bag-of-tasks, workflows, and MPI programs.

Managing the resources provided by an IaaS implies however two major dif-
ficulties from the user perspective: i) the large number of jobs and resources
to handle becomes rapidly overwhelming for human operators, and ii) the real
performances of the platform that should be taken into account to make robust
scheduling decisions. Users usually perform the resource provisioning process
manually, i.e they decide all by themselves when and which resources should
be claimed and released. This might lead to naive and suboptimal decisions,
especially when the number of jobs increases and several resources are proposed
at different prices (and with different billing contracts) and performance capa-
bilities. Moreover, the decision parameters, most often the monetary cost and
the completion time of the execution, are contradictory. Meeting short comple-
tion time constraints implies to provision powerful and numerous resources, and
thus pay a high price. On the contrary, a low budget implies more tolerance
regarding the completion time.

Though provisioning decisions are difficult to make for human users, IaaS
clouds have in common essential characteristics that open interesting opportuni-
ties to develop automatic tools to help decision making. Compared to previous
large-scale distributed infrastructures (such as grids), IaaS essentially differs by
i) its pay-per-use economical model, and ii) the homogeneous performances it
contracts with the client. First, the economical model of the cloud is to bill
the users solely for the time they have used the resources, based on an atomic
time unit that we call Billing Time Unit (BTU) — most often one hour. Sec-
ond, providers run large clusters where many resources are homogeneous. Even
though the hardware differ (for example from one datacenter to another), the
provider tends to announce a range of performance rather than a precise hard-
ware type. For example, Amazon has its own power units (called EC2CU) to
distinguish the CPU power they reserve to the client’s VM depending on the
price paid.
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In this article, we propose an automatic tool as a project named Schlouder1.
Schlouder is a broker of IaaS resources able to provision and schedule online (i.e,
dynamically as jobs arrive, without knowledge of future submissions) indepen-
dent jobs or static workflows. The provisioning/scheduling is computed after
the strategy the user can pick from the existing library. Strategies can be seen as
a steering wheel to drive the provisioning process towards performance or cost
saving. Our work is not the unique proposal for a client-side broker based on
strategies: other works such as [3] have investigated this field and propose other
online scheduling strategies which partially overlap our objectives. However,
offering a choice of strategies that favor one objective or another may not fully
satisfy the user since he has no idea of the alternative solutions. For example,
if a user chooses a monetary cost-effective strategy to execute his workload, he
will not know how the price paid compares with another plan which would have
led to a quicker execution. The system can not give this information because
of the online assumption, which only allows to compute alternative schedules
post mortem. Even post mortem, i.e once the workload is known, it is difficult
in practice to precisely compute the alternative schedules due to ceiling effects
induced by BTUs [4]. To tackle this lack of information, Schlouder brings in a
unique feature which is to predict through simulation the makespan and cost
of executions under various strategies. The simulation relies on SimGrid [5],
a well-established and evaluated discrete event simulator, for which we have
written an IaaS-orientated programming interface. Schlouder is, to the best
of our knowledge, the only broker with an integrated simulator. This article
also contributes to better understand how accurate the predictions produced by
simulation can be by comparing the results to real applications runs.

In the rest of the paper, we show in details the contributions made by
Schlouder. Section 2 describes the design of Schlouder with its set of provi-
sioning strategies and its simulation module. Section 3 describes the use-cases
and experimental setup that serve as the basis for the evaluation, of a real
execution (Section 4) first, and then for the simulation of the same cases (Sec-
tion 5). We analyze in details the behavior of the broker and the accuracy of
the prediction computed by the simulation module. Our work is then compared
to related work in Section 6 and we sketch possible future work in conclusion.

2. Schlouder: A Client-side Broker, Overview

The motivation behind Schlouder is to assist users in the task of provisioning
and scheduling resources for their applications. In a nutshell, Schlouder is a
broker able to tailor a virtual platform on-demand, in order to execute a set of
jobs according to user’s preferences.

1Available online at: http://schlouder.gforge.inria.fr/
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2.1. Schlouder’s Architecture
Schlouder orchestrates the cooperation between a batch scheduler and a

cloud kit software to fill our objectives. The role of a batch scheduler (such
as OpenPBS or Slurm) is to assign jobs to a set of known resources while an
IaaS cloud kit software (such as OpenNebula, OpenStack or Eucalyptus) aims
at provisioning the cloud resources by starting or stopping VMs on the physical
hosts.

After a job has been submitted, Schlouder’s provisioning determines how
many resources are needed and it instructs the cloud kit software to start or
stop VMs accordingly. Those VMs include the slave part of the batch scheduler
software. Once a VM is started, the slave connects to its pre-configured batch
scheduling server, which becomes aware of the apparition of a new resource.
Schlouder is then able to instruct the batch scheduler to assign a job to its known
resources, according to its own scheduling strategies (we actually bypass the
scheduling policies of the batch scheduler). Although the batch scheduler is used
for only a part of its functionalities, it generally provides a robust framework
for handling the job submissions and error logging, which justifies that we did
not develop our own specific job submitter.

Schlouder currently supports Slurm [6] as batch scheduler, and OpenStack,
Eucalyptus and BonFIRE as cloud kit frameworks.
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Figure 1: The architecture of Schlouder and its surrounding environment

Figure 1 depicts Schlouder’s architecture. A user submit his jobs to Schlouder,
represented by the green box labeled ’Broker Schlouder’. Schlouder computes
the schedule for each incoming job along the scheduling strategy (described
hereafter) chosen by the user. To realize its scheduling decision, the resources
are requested to be started or stopped by contacting the computer hosting the
cloud kit controller (the figure illustrates a case with two connectors installed,
OpenStack and BonFire) using the appropriate API, such as EC2 for Eucalyp-
tus or Nova for OpenStack. The assignment of jobs to resources is then operated
through the batch scheduler interface (the Slurm connector on the figure).

2.2. Real Execution or Simulation
Besides this expected function of job execution management, Schlouder

brings an original feature allowing the user to predict the result of one schedul-
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ing strategy or another through simulation. The core of Schlouder wraps up
these two essential modes of working represented on the figure by the Execution
Engine and Simulation Engine. Both engines rely on the provisioning/schedul-
ing algorithms stored in the Strategy Library. The respective roles of these core
components are:

• The Strategy Library (SL) is the placeholder where strategies are stored.
Each strategy takes the form of one Perl class that implements the schedul-
ing logics of the strategy. The framework offers the strategies an API to
access the characteristics and state of both the platform and jobs. The
library currently contains 12 strategies designed after our work [7].

• The Execution Engine (EE) is the orchestrator of the broker for a real
execution. When a job request is admitted, the EE first gets the provision-
ing and scheduling decisions from the strategy chosen by the user. It then
requests the cloud kit software to start or stop some VMs to reflect the
provisioning decision, and then instructs the batch scheduler to schedule
the job on the given VM. A background task of the EE is also in charge
of monitoring the platform state and the job execution.

• The Simulation Engine (SE) is a fully integrated module able to execute
a simulation given the workload and a description of the cloud resources.
The framework of the simulation will be detailed in Section 2.4.

Depending on whether the submission is a real execution or a simulation,
the core components are solicited in the order shown on Figure 1. In case of a
simulation, the steps prefixed by S are taken: submission of the job description
from the client to the Schlouder broker on the frontend (S.1); translation of the
request and set up of the simulation (S.2); simulation of the execution using the
strategies picked from the SL (S.3); predictions returned back to the users (S.4).
In case of a real submission, the steps prefixed by R are taken: submission of
the job description exactly like in S.1 (R.1); translation of the request to the
execution engine (R.2); computing of the provisioning and scheduling decision
using the strategy chosen by the user (R.3); the EE requests the cloud kit to
adjust the platform (start or stop VMs) in agreement with the provisioning
decision (R.4); the EE requests the batch scheduler to schedule jobs onto VMs
in agreement with scheduling decisions (R.5).

2.3. The Provisioning Strategies

At the core of Schlouder are the strategies for scheduling and provisioning re-
sources. The strategies are heuristics for computing a bi-objective optimization
problem, based on monetary cost and makespan of the whole workload. In the
pay-per-hour billing model mentioned in introduction (following the on-demand
Amazon’s pricing model), any started VM may leave idle periods until the end
of the BTU (hour) that can be re-used for computation for no extra expense,
with the counterpart to wait for a VM to become idle. The idea behind mini-
mizing the cost is therefore to compute a schedule that fills in these idle periods.
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Hence, a strategy usually implements a heuristic driven towards minimizing or
mitigating one or the other objective.

In [7] we designed and studied a dozen provisioning strategies, from the
optimally cheaper strategy to the optimally quickest strategy. The algorithms
used in these strategies share a common structure composed of two phases:

1. a deploy phase, invoked at each job submission. It consists in deciding (1)
whether or not a new VM must be deployed, and (2) which active VM the
job must be mapped to. It is described in Algorithm 1.

2. a release phase, triggered at a parameterized frequency. This release pro-
cedure is common to all strategies. It consists in deciding which active
VMs must be shutdown and released. Each running VM is examined in
turn, and an idle VM is kept running as long as it does not increase the
cost. A shutdown occurs when it would incur additional charges.

Algorithm 1 Deploy(j,t)

// a new job j is submitted, at date t

C ← ∅ // C is the set of candidate VMs
(C ⊂ V )
for v ∈ V do

if eligible(v, j) then
C ← C ∪ {v}

end if
end for
if C 6= ∅ then

v ← optimum(C)
else

v ← deploy() // Create and run a new
VM
V ← V ∪ {v}

end if
enqueue(qv, j) // Map the job to the VM

Where:

• eligible(v, j) is true if j can be assigned to
qv ,

• optimum(C) returns the virtual machine
to which a job j is to be assigned,

• deploy() provisions and starts a new VM
and returns its identifier,

• enqueue(qv, j) adds the job to the queue
of a given VM v. If v is available (i.e qv is
empty) the job actually starts immediately
on v without being queued.

The functions eligible and optimum allow us to define all our provisioning
strategies. eligible filters out the set of active VMs to which a job can be
assigned depending on the current state of VMs. If this set is empty, then a
new VM is deployed, otherwise optimum selects the VM to assign the job to
among the set of candidate VMs. These definitions are summarized in Table 1
and grouped into four families.

• 1VM4All : The first strategy provisions a single VM and put all the jobs
in its queue. It gives a lower bound on cost for the given workload, as idle
time is reused at the maximum.

• 1VMperJob-based strategies: On the opposite side of the spectrum,
we devise three “expensive” strategies. 1VMperJob is a reference strategy
for the lowest waiting time possible: it deploys a new VM for each new
job request whatever the state of the other active VMs.
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strategy eligible(v, j) returns true optimum(C) returns v ∈ C such that ... comment

1VM4All always v = v0 Slowest/Cheapest
1VMperJob never any
1VMperJobPlus any Fastest/Most expensive
1VMperJobBest if qv = ∅ sv is maximum
1VMperJobWorst sv is minimum
FirstFit any Regular BinPacking strategies
BestFit iv − sv is maximum
WorstFit if c(sv − bv) = c(sv − bv + rj) iv − sv is minimum
EarliestFit iv is minimum + wait time optimization
RelaxFirstFitx any Price optimization
RelaxEarliestFitx if c(sv − bv) = c(sv − bv + rj) iv is minimum + max wait time constraint
RelaxLastestFitx and (iv − t) < (x× rt) iv is maximum

Table 1: The scheduling strategies with their respective parameters for algorithm 1.

• Bin-Packing-based strategies: We have implemented three classic
heuristics for the online bin-packing problem [8], namely FirstFit , BestFit
and WorstFit . In our context, FirstFit scans the list of already deployed
VMs and maps the job to the first VM that does not require to prolongate
the rent time over a new BTU, i.e we map the job for no extra-cost. If no
such already started VM exits, a new VM is deployed.

The above strategies have the objective to minimize the number of BTUs.
Hence, it tends to minimize the global cost with little consideration to the
completion time, which is absent from the original Bin-Packing problem.
EarliestFit is a first approach to include this criteria. It is a Fit heuristic
selecting the VM which minimizes the waiting time of the job.

• Relax -based strategies: RelaxFirstFitx, RelaxEarliestFitx and Re-
laxLastestFitx include a bound on the waiting time, which is expressed as
a factor x. A new VM is deployed when no active VM can handle the job
at constant cost or when the waiting time exceeds x times the runtime of
the job. A low value of x leads to a 1VMperJobPlus-like behavior. On
the contrary, a high value of x leads to a Bin-Packing-like behavior, as the
same delay is considered acceptable.

In this paper, we will restrict our study to two representative strategies
from two different families. The first one follows the algorithm of 1VMper-
JobPlus, and we will give it hereafter the more mnemonic name As soon as
possible (ASAP) as it theoretically produces the shortest makespan. Figure 2
illustrates these strategies. The second is BestFit , called in the following As full
as possible (AFAP) which mitigates the cost. In addition, ASAP and AFAP
refine the original 1VMperJobPlus and BestFit strategies by including the boot
time parameter. This overhead whose value typically ranges between 30s and
300s [9] has indeed an important impact in real operations. Let us summarize
the main line of the two strategies:

• ASAP deploys a new VM for each job that can not be handled immediately
by an already provisioned VM. We do not deploy a new VM if the boot
time exceeds the time to wait for one VM to become available. Thus,
the only waiting time is the boot time of the newly deployed VM. On
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the example, when the job J2 is submitted, the VM1 is idle. The job is
immediately executed on VM1 without any waiting time. However, J3

and J4 cannot be executed immediately on VM1. Hence one new VM is
instantiated for these jobs. This execution yields a cost of three BTUs.

• AFAP scans the list of already deployed VMs and maps the job to the VM
that reduces most its idle time by executing the job. If no such already
started VM exists, a new VM is deployed. On the example, a new VM is
deployed to map the job J3 because executing it on VM1 would trigger a
new BTU and then increase the idle time. On the contrary, the execution
of J4 is delayed in order to reduce the idle time of VM2. This execution
yields a cost of two BTUs.

VM3

VM1

VM2ASAP

VM1

VM2

AFAP

Time

Billing Time Unit (BTU)VM

Workload

J1 J2

J4J3

J4

J3

J2J1

J2

J1

J3

J4

Figure 2: Illustration of the ASAP and AFAP provisioning strategies on a basic workload
composed of four jobs

2.4. The Simulation Framework

The simulation performed by the simulation engine relies on the SimGrid
toolkit [5, 10], a well-established discrete event simulator. The inputs to Sim-
Grid are a description of the physical infrastructure (hosts and capabilities of
the CPUs, network characteristics and architecture, . . . ) and the tasks to simu-
late, expressed either as an amount of floating operations to perform when it is
a computation task, or as an amount of bytes when it is a communication (over
the network or a storage I/O).

In a distinct project2, we have added to SimGrid a new interface (an API)
that allows its users to describe the operations of an IaaS cloud, such as man-
aging an instance (start, stop, suspend and resume), describing the available

2http://schiaas.gforge.inria.fr
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resources, managing instance types and images, or handling the storage of the
IaaS provider. These operations then translate into instructions at the hy-
pervisor level in SimGrid, and then into tasks simulated by the discrete event
simulation engine.

In Schlouder, the simulation is performed by an invocation of SimGrid
through this interface, and requires as input the platform description and a
workload as in a real execution. The workload consists in the jobs with their
characteristics (i.e. duration, input and output size, and dependencies of each
task). The main output of the simulator is the cost and makespan for each avail-
able provisioning strategy. It can also provide very precise information about
the chronology of events and the job to VM mapping, which is useful to analyze
and improve provisioning strategies post-mortem.

The simulation accuracy relies on three factors: a) the accuracy of the models
used by SimGrid for computations and communications, b) the accuracy of the
infrastructure description, and c) the accuracy of the tasks’ durations. Item
a) has been studied in-depth regarding the network model [11], while the CPU
model does not yet capture all the complexity induced for instance by the cache
effects. Concerning item b), while we can easily capture this information in our
private cloud testbeds, it is usually unknown for public clouds. To address this
issue, Schlouder offers an automatic discovery of a platform’s performances and
the generation of the corresponding description, by requesting the execution of
an additional monitoring job at submission time. This job executes LINPACK
to benchmark the vCPU of the VM, and ping and iperf to benchmark the
network between all of the instantiated VMs and between the VMs and the
controller. Finally, item c) depends on the information provided by the user.
The durations of the tasks may be a source of inaccuracy and we will see in the
evaluation section to which extent they change the predictions in our test-cases.

3. Evaluation: Experimental Setup

We now describe the experimental environment setup to evaluate Schlouder.
We have chosen two different scientific applications, ran on several different
cloud platforms. In each run, we evaluate the two strategies to evidence that
they yield contrasted provisioning/scheduling scenarios. We executed each run
several times in order to ensure stability between the executions, for a total of
219 runs.

3.1. The Applicative Use-Cases

The two test-case applications are the Open Mass Spectrometry Search Al-
gorithm (OMSSA), in the field of computational biology, and Montage in the
field of astronomy. The former is a CPU intensive Bag-of-Tasks (BoT) while
the latter is a data intensive workflow. The tasks’ durations that are given in
each job header are estimations by the user, who is supposedly a practitioner
able to evaluate his/her tasks’ durations. In our experimental context, we can
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easily substitute computed durations for the users’ estimations. Indeed, in these
two use-cases, the durations are computed using a linear extrapolation based
on the data size to compute or communicate. In all applications, we have in-
deed observed a strong correlation between data size and duration, and a linear
regression serves as the basis for this estimation. We have chosen to calibrate
the jobs’ durations once on our private cloud platform (icps-cloud) and use the
same estimations on all platforms despite a slight difference in CPU power, with
the objective to test the robustness of the scheduling given this imprecision.

3.1.1. OMSSA

The tandem mass spectrometry analysis (also known as MS/MS analysis)
consists in the fragmentation of peptides generated by enzymatic digestion of
complex mixtures of proteins. Thousands of peptide fragmentation spectra are
acquired and further interpreted to identify the proteins present in the biological
sample. Peak lists of all measured peptide masses and their corresponding
fragment ions are submitted to database search algorithms such as OMSSA [12]
for their identification. Each spectrum is then searched against a database
of proteins. We will execute three different kinds of search, representative of
common search requests for proteomics data interpretation. It contains up to
257 762 MS/MS spectra interpreted with the following setups: high-resolution
measurements and full trypsin cleavage (hrt), high-resolution measurements and
semi-trypsin cleavage (hrs), and finally low-resolution measurements and full
trypsin cleavage (lrt).

As each search is independent from the others, a natural parallelization
consists in making this application a BoT. For each spectra file, a job running
OMSSA is created to perform the identification search. All jobs can be run
independently on different CPUs. The parallelization grain (i.e., the number
of spectra distributed to each CPU) per OMSSA execution is computed as a
function of the requested resolution and the number of available CPUs. One
“good” granularity has been determined empirically by the proteomists as 10 000
spectra per task for the full trypsin cleavage and 1 250 spectra per task for the
semi-trypsin cleavage. The number of tasks vary from 33 for the lrt search to
65 for the hrs search with a runtime from 1.6 seconds to 485 seconds.

3.1.2. Montage

The second application is the Montage Astronomical Image Mosaic En-
gine [13], whose objective is to gather astronomical images in Flexible Image
Transport System (FITS) format into a mosaic. The input arguments are the
desired region of the sky, the size of the mosaic in terms of square degrees, and
other arguments such as the FITS image archive to use. In our experiments we
used the Two Micron All Sky Survey (2MASS) [14] archive. This application is
a workflow composed of three steps: the input images are first reprojected to
the coordinate space of the desired output, then any discrepancies in brightness
are removed, and finally the different input images are coadded to create the
output images.
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Figure 3 shows an example of a Montage workflow. Each circle is a task and
each arc represents the data dependencies between two tasks. The number in
each task represents the level of the task in the workflow. All the tasks at a
specific level match the call to a specific Montage command mentioned on the
left side of the figure.

In our experiments we chose to compute a mosaic of a unique astronomical
object but with different sizes. The chosen object is Pleiades, also used in the
Montage tutorial. Thereafter, we name NxN with N an integer from 1 to 3,
the execution of Montage with 3 sizes.

Figure 3: Illustration of a Montage workflow. Each circle is a task and each arc represents
the data dependencies between two tasks

We summarize in Table 2 some of the applications’ characteristics. The
column ”# dependencies” is the number of dependencies between the different
tasks of the Montage workflow. We evidence that these test-cases are at two ends
of the spectrum regarding the resource usage. OMSSA is a compute intensive
bag-of-tasks application while Montage is a data intensive workflow.

3.2. The Cloud Platforms

We executed the applications on two different clouds: a private cloud in our
lab based on OpenStack, and a public cloud, namely BonFIRE [15], targeting
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Table 2: OMSSA and Montage characteristics

# tasks
walltime (s)

data size
communication

# dependenciesmin avg max to computation
ratio

OMSSA
lrt 33 86 152 398 1.2GB 2% 0
hrt 34 6 16 199 514MB 16% 0
hrs 65 66 148 411 1.3GB 1% 0

Montage
1x1 163 4 18 167 8GB 94% 288
2x2 467 6 49 593 30.9GB 97% 863
3x3 993 4 60 1 340 69.8GB 98% 1 861

large scale cloud research.

3.2.1. Public Cloud

BonFIRE [15] is a public multi-cloud testbed, currently operated on seven
geographically distributed sites across Europe. We ran our experiments on
three of them: de-hlrs, fr-inria, and uk-epcc. Each site is accessible through a
common API based on OCCI [16]. The cloud kit is OpenNebula 3.6 in a version
derived for BonFIRE. These testbeds have different physical infrastructures3.
The maximum number of VMs we can instantiate depends on the current site
usage, the disk quota, and the CPU quota. In our case, using a 10GB VM image
with 1 core and 1024 MB memory, we were able to run from 20 to 23 VMs on
each site. Notice that this testbed is not smaller than what most public clouds
offer since they generally impose a limit on the number of instances per user (for
instance 20 at EC2, although this limit can be lifted through a request form).
The central cloud storage provided by BonFIRE is a Network File System (NFS)
share. The server is located on the be-ibbt testbed. In order to access the data,
a resource need to be in the BonFIRE WAN and to mount this shared storage.
The Schlouder server is in the BonFIRE WAN through a VPN. Thereafter, we
name these sites BonFIRE-site name.

3.2.2. Private Cloud

Our private cloud setup is composed of two local servers, each being a dual
2.67GHz Intel Xeon X5650 processor, with 12 hyper-threaded cores on both
CPUs. We run up to 25 single core VMs with 1024 MB memory. Both servers
run on a Linux 3.0.0-12 with the KVM module. For this experiment, we used
OpenStack 2012.1.3-dev [17] as cloud kit. Our central cloud storage is the S3-
compliant software Walrus installed on a different server, on the same LAN.
Thereafter, we name this cloud icps-cloud.

Table 3 shows the characteristics of the private and the public cloud. They
differ in many regards: they are of different size and CPU power, and they use
different hypervisors. On BonFIRE, the physical machines are heterogeneous

3Comprehensive information is available onlinehttp://www.bonfire-project.eu/
infrastructure/testbeds
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Table 3: Characteristics of our four testbeds

cloud # nodes # cores CPU power (GHz) # max VM hypervisor storage boot time (s)
min avg max min avg max

icps-cloud 2 48 2.67 2.67 2.67 25 KVM Walrus 36 120 255
BonFIRE-de-hlrs 36 344 1.65 2.15 3.40 20 Xen 3.1.2 NFS 34 266 2 097
BonFIRE-fr-inria 4 96 0.93 0.93 0.93 20 Xen 3.2 NFS 123 982 11 084
BonFIRE-uk-epcc 7 176 1.29 1.42 1.54 20 Xen 3.0.3 NFS 130 437 1 047

Table 4: Makespans (in s) and costs (in BTU) for each strategy (average over all runs, all
platforms)

hrs hrt lrt 1x1 2x2 3x3

Makespan
ASAP 1 127 378.8 826.1 1 976 7 254 15 484
AFAP 4 707 612.8 4 132 3 229 9 916 17 415

ratio 4.18 1.62 5 1.63 1.37 1.12

Cost
ASAP 21.7 8.5 20.7 8.91 31.3 52.9
AFAP 5.19 1 2.55 1.36 8.09 16.9

ratio 0.24 0.11 0.12 0.15 0.26 0.32

with very different CPU power. The private cloud has a constant and low boot
time while the public cloud showed occasional irregular very long boot times.

4. Evaluation of Real Executions

We now analyze the behavior of Schlouder in the experimental conditions
defined in the previous section. We verify whether the two strategies fulfill
their respective objectives when ran for applications on actual infrastructures.
We first report the general behavior under a strategy, by reporting the average
makespans and costs for the complete executions of the bags-of-tasks (OMSSA)
and workflows (Montage) in Table 4.

We see that AFAP does spare a significant part of the cost of ASAP for the
two types of applications. Conversely, the execution time is longer, though this
increase varies largely depending on the application type. For the computation
intensive workloads, the increase may reach 3 to 4 times the makespan of ASAP
while the workflow, which is communication intensive, only takes from 12% to
63% more time to complete. OMSSA hrt which also exhibits more communica-
tions than hrs and lrt , has a makespan overhead no bigger than the workflow
executions. Therefore, it appears that AFAP is overall a competitive strategy
with communication intensive applications.

4.1. Job-level Analysis on Different Platforms

We now compare the average behavior of jobs on each platform in order to
evidence the impact of different infrastructure characteristics on the strategies.
We define the following metrics to characterize a job’s behavior. A job executes
for a walltime, composed of:

13



• The wait time, which consists in the time taken to boot VMs (boot wait
time) and the time jobs wait before they can actually run after they have
been scheduled by the batch scheduler (schedule wait time). The boot time
is possibly null if the VM was already running. The schedule wait time
includes the time a job has to wait because of a dependency to another
job in case of a workflow. It also includes the time to wait for a VM to
become available in case the maximum number of VMs are already in use.

• The communication time represents the durations of the data transfers
required by inputs and outputs of jobs.

• The execution time is the duration of the computation.

The overhead of Schlouder’s management tasks has been measured but is neg-
ligible (on average 0.42% of the execution time) and not shown on the figure.

Figure 4 shows the walltime time breakdown for the execution of the six
applications4. Times can be read on the left vertical axis. Also presented are
the costs, in numbers of BTU consumed, to be read on the right vertical axis.

4.2. Observations

The first observation is that the strategies rank in the same order whatever
the platform, excepted for the case BonFIRE-fr-inria using ASAP, which will be
discussed below. AFAP (plots in the right column on Figure 4) reduces the cost
in all cases: it saves from 64% to 94% as compared to ASAP. For instance, the
average number of BTUs over all platforms for the 2x2 execution is respectively
8 and 31 BTUs. In all cases but the exception BonFIRE-fr-inria, AFAP yields
as expected a longer makespan, due to the longest schedule wait times. The two
computation intensive applications hrs and lrt exhibit the biggest difference in
schedule wait time when comparing ASAP and AFAP.

The second observation is that for a given strategy, the breakdown of the
time spent is proportionally similar from one platform to another. For instance
the ratio of the schedule wait time of AFAP to ASAP for 1x1 varies between 3.11
(fr-inria) and 3.63 (de-lrs), or for lrt between 9.02 (de-lrs) and 10.79 (uk-ecc).

Thirdly, this job-level analysis also reveals that ASAP incurs a longer boot
time on average. The reason is that many VMs are booted simultaneously,
inducing network and/or bus contention to load the VM images.

Last, we notice a relatively small part spent on average in communication
time, even for communication intensive applications. This is explained by the
structure of the Montage workflows, that spawn a large number of tasks (see
Table 2), of which only the final ones gather a large amount of data through
communications, hence the small average of communication time. We can also
notice that the average communication time is constantly larger with ASAP,
probably because communications have a greater overlap inducing contention,

4Note that due to maintenance operations on BonFIRE-fr-inria at the time of the experi-
ments, we were not able to execute the 3x3 experiment using the ASAP strategy.
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Figure 4: Breakdown of the walltime of the execution of OMSSA and Montage on different
platforms, using the AFAP and ASAP provisioning strategies
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whereas AFAP spares almost all of this contention. This is the reason why
ASAP fails at completing in a shortest makespan in some situations, as we will
see in the next section.

Finally in this experiment, the wide range of platforms and the different
types of applications do not involve divergent behaviors from the broker. This
is the encouraging sign that Schlouder produces expected results with little or
even no calibration of the target platform.

4.3. Pathological Cases

While the overall observation is that Schlouder fulfills the objectives targeted
by the two strategies, the experiment exhibit unexpected behaviors in some
specific situations. We investigate hereafter the causes of these peculiarities.

Boot Time Variation. The 2x2 execution with ASAP (Figure 4) results in con-
siderably longer wait times on BonFIRE-fr-inria (averagely 9 400 s per task)
as compared to the other platforms (from 1 095 s to 2 660 s). Nearly half of
this wait time is actually due to boot times. This difference is explained by
the way BonFIRE-fr-inria provisions new VMs in response to a user’s request.
By comparing BonFIRE-fr-inria and BonFIRE-de-hlrs provisioning to the same
request, we discovered that both clouds eventually provided 22 VMs, but while
these VMs were started simultaneously on BonFIRE-de-hlrs, they were started
in three consecutive batches of 8 simultaneous VMs maximum at BonFIRE-fr-
inria. The timelines of the executions showing the number of concurrent jobs
or VMS running (vertical axis labeled diameter) at the two sites of 2x2 using
ASAP, presented in Figure 5, evidence this behavior. This situation actually
happens when the infrastructure is over capacity. Most of the infrastructures we
know return an error in such a case. On BonFIRE, the request remains pending,
waiting for the physical infrastructure to be able to deploy the VM. We keep
this case to highlight the issue, but Schlouder has actually been patched with a
timer to circumvent such a case.
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Figure 5: 2x2 executions using ASAP on BonFIRE-fr-inria (left) and BonFIRE-de-hlrs (right)
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ASAP may fail to speed-up execution. ASAP does not result in a shorter makespan
everytime. This might surprise the user given the objective of the strategy. For
example, for montage 3x3, which is a communication intensive application (see
Table 2) its execution using ASAP or AFAP lasts approximately the same time,
about 6 000 s on icps-cloud. By plotting the execution timeline showing the
number of concurrent VMs on Figure 6, we see that ASAP provisions a higher
number of VMs than AFAP (25 against 6). ASAP increases the parallelism of
tasks and thereby increases the concurrency between the communications. In
this case – this phenomenon is not observed for 1x1 and 2x2 —, the contention
over the network results in a slowdown of the workload execution walltime.
Thanks to the Simulation Engine, users can avoid such bad surprises.
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Figure 6: 3x3 executions on icps-cloud with ASAP (left) and AFAP (right)

Tasks Walltime Mis-estimate. Strategies compute their schedule based on the
job walltime, which will call estimation, told by the user in the preamble of
the job description. Recall (see section 3.1) that these data were obtained by
calibration of the jobs on the icps-cloud platform. We observe that the coarse
granularity of BTUs offers enough tolerance to leave the scheduling unchanged
in most cases. However, we could exhibit in the experiments the situation
represented in Figure 7. The execution of lrt on icps-cloud, where the compu-
tation was calibrated, required two VMs as estimated by the AFAP strategy.
When running it on BonFIRE-de-hlrs, where the CPU power is slightly lower,
the strategy made its decision based on an under-estimated walltime (4 810 s
instead of 3 435 s), which led to overload the BTU capacity (3600 s) and to
trigger an extra BTU. Accurate walltime estimations would have made AFAP
to provision an extra VM instead, reducing the completion time while keeping
the same number of BTUs.

The walltime estimation is a classical issue in the field of batch scheduling,
and some scheduling algorithms are more sensitive than others to tasks dura-
tion uncertainty [18]. For AFAP — and more generally for strategies based on
bin-packing —users should provide accurate durations to ensure an effective ex-
ecution of the strategy. Otherwise, users could turn to less sensitive algorithms
such as ASAP. However, many techniques can be used to improve estimation
accuracy. For example, in our case, we can either make some calibrations on
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every platform, learn from past executions, or infer the estimations according
to the platform performances as reported by Schlouder’s monitoring jobs.
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Figure 7: lrt execution using AFAP on icps-cloud (left) and on BonFIRE-de-hlrs (right)

5. Evaluation of the Simulation

5.1. Raw Accuracy

Our objective is to understand if the predictions produced through sim-
ulation are accurate enough for the user to make relevant decisions. In our
experiments, we gathered 219 results of real executions (see Section 3) to which
we compare the predictions. We define the divergence between the observed

time and cost and those predicted by simulation as err = |m−m′|
m , where m is a

real observation and m′ is obtained by simulation.
We have discussed in Section 2.4 the sources of inaccuracy for the simulation.

Two of the factors should be examined in our experiment to understand possible
divergences. The first factor concerns the characteristics of the platform. In
our experiment, we choose to use the information gathered by the Schlouder
monitoring job to automatically build the SimGrid platform file. The motivation
for this choice is that it could also be used on a public cloud and that it reflects
the actual state of the platform. The second factor is the tasks’ durations input
to the simulator. These durations are generally estimated by the user and may
therefore represent an important source of error. In the analysis hereafter, we
isolate this factor by observing the simulation results when

• the tasks durations are estimated by the user, as explained in section 3.1,
and we call this scenario simulation with estimated durations,

• the tasks durations input to the simulation are those observed in real
execution, and we call this scenario simulation with consolidated durations.
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Figure 8: Simulation Engine accuracy in terms of cost and makespan for estimated and
consolidated task durations

Simulation with Estimated Durations. The continuous line in Figure 8 shows the
cumulative distribution function of the error rate in term of cost, and makespan,
that is the walltime. The cost is perfectly predicted for half of the 219 cases,
and the error rate is kept under 0.5 for almost 95% of them. The makespan
error rate is kept under 0.5 for 87% of the jobs. Both reach a maximum error
rate of 3.0.

Simulation with Consolidated Durations. If we now replace the estimated du-
rations of tasks with observed ones, the mispredictions drastically fall down,
as shown by the dashed line in Figure 8. The error rates in term of cost and
makespan are kept under 0.1 for almost 96% of the cases. The difference with
the estimated durations includes both the deviation in the computation time
but also some network data transfers over NFS, which are difficult to capture on
the BonFIRE platforms. The storage for this testbed is actually shared and lo-
cated in Belgium, which implies cross-traffic and long network communications.
This architecture is especially difficult to model, and much more complex than
most public clouds which generally provide storage local to the datacenter. The
communication prediction remains therefore an issue to investigate. However,
the simulation process itself appears to be valid if accurate task durations are
provided by the user.
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5.2. Accuracy of Strategy Ranking

Beyond these raw measures of divergence between simulation and real exe-
cution, we believe simulation is most useful when it allows the user to compare a
portfolio of strategies. Most important in this case will be the ranking of strate-
gies regarding each objective. Small mispredictions will not necessarily make
the user change his mind as long as the results preserve the ranking between
strategies. We now analyze the accuracy of simulation in this regard by defining
a new metric based on ratios on the objectives.

We define the efficiency e of ASAP compared to AFAP, as the ratio of
makespan gain to cost gain.

costup = costASAP/costAFAP (1)

speedup = MakespanAFAP/MakespanASAP (2)

e =
speedup

costup
(3)

Hence the following example values of e means:

• e = 1: ASAP increases the cost as much as it speeds up the execution,
e.g. The user pays twice more using ASAP to halve the completion time.

• e > 1: ASAP increases the cost less than it speeds up the execution, e.g.
The user pays 1.5 more using ASAP in order to halve the completion time.

• e < 1: ASAP increases the cost more than it speeds up the execution, e.g.
The user pays 3 more using ASAP in order to halve the completion time.

Efficiency of Simulation with Estimated Durations. As for the raw measures
comparison, we first evaluate the relevance of simulation by comparing the effi-
ciency of real executions versus the one predicted by simulation with estimated
durations. Drawn as a continuous line on Figure 9 is the cumulative distribution
function of the error rate of the ASAP efficiency between the real executions and
simulations. It is perfectly predicted for half of the 219 cases, and the error rate
is kept under 1.0 for 81% of them. However, a small fraction of the simulations
show a considerable deviation to real efficiency, with a maximum of 7.2, and
needs further investigation.

Efficiency of simulation with Consolidated Estimations. If we now use the real
walltimes in the simulation to compare simulation results against the provi-
sioning and scheduling done in the real executions, we obtain the cumulative
distribution function plotted as a dashed line on Figure 9. We can see that there
is almost no error in the efficiency prediction. Therefore, our conclusion is that,
as long as the user can provide accurate estimations for the task’s durations,
the simulation produces the correct ratio makespan/cost.

During this study, we had to understand some intricacies to explain the rea-
son for remaining inaccuracies. First, the overhead of job management (which
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Figure 9: Simulation Engine efficiency accuracy for estimated and consolidated task durations

includes Schlouder, the cloud kit and the batch scheduler) is not simulated,
however the small errors on the makespan it implies is not significant (under
1%). Second, these experiments revealed a bug in Schlouder that may cause
erroneous provisioning decision in rare situations. This bug is caused by the
simultaneous execution of the provisioning and submission thread, making the
action of provisioning to possibly happen in the middle of the batch submission
process when handling very large batches. For technical reasons, this resulted
into boot time mispredictions. The threads interleaving made the bug very
difficult to track down. We identified this bug at the light of the simulation
analyzed with the BTU viewer included in Schlouder’s tools. The bug has been
corrected since then and we have further checked that the only significant errors
between the simulation with estimated durations and real execution were due to
this bug. Finally, we conclude that the Simulation Engine (SE) is very accurate
as soon as the walltimes can be accurately estimated. Moreover, the SE proved
to be a useful tool to check the implementation correctness of a strategy.

6. Related Work

We can see Schlouder as a service that abstracts the underlying infrastruc-
ture, and we may wonder how our approach relates to the usual IaaS-PaaS-SaaS
categorization. Schlouder actually lies midway between IaaS and PaaS. It dif-
fers from a PaaS regarding the way the infrastructure is abstracted. In PaaS, the
infrastructure is handled internally by the provider and clients are totally blind
regarding the way their applications will share resources (e.g VMs with other
users). An IaaS client-side broker has a finer knowledge and control over the re-
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sources it chooses on behalf of its user. Another difference is that PaaS imposes
specific development frameworks, which have been tailored by the provider to
accommodate its PaaS. There is no such restriction in an IaaS broker since all
applications can be freely embedded into a VM image. More generally, operat-
ing IaaS clouds allows for a much larger range of usages, including exploiting
infrastructures composed of several clouds.

Thus, Schlouder is a hybrid, closer to IaaS than to PaaS. It automates VM
scaling, provides limited cloud interoperability, and has a simulation-based rec-
ommendation system for choosing the appropriate provisioning strategy. There-
fore, in the following related work description, we cover both IaaS solutions and
specific PaaS projects whose target applicative field is comparable with the one
addressed in this paper.

The problem of executing a workload of BoTs or workflows on the cloud
has been extensively studied. In our review of some of these projects, we are
particularly interested in their ability to provide clients with customized provi-
sioning and scheduling strategies; whether or not they restrict users to an API
or programming model; and their availability to the open source community.
We include in our comparison solutions offering brokers on both single and mul-
tiple cloud platforms. Interestingly, most brokers operate on an IaaS basis as
they require a direct access to the infrastructure. Brokers exist in some PaaS
solutions as well but their behavior is usually hidden from the client. Finally
while most commercial PaaS systems are restricted to a single provider, some
have begun adding intercloud capabilities [19, 20]. We divide the related work
in two parts: (1) PaaS with automatic provisioning and (2) client oriented IaaS
brokers.

6.1. PaaS solutions with automatic provisioning

Projects like Aneka [19], mOSAIC [20] or COMP Superscalar [21] together
with many commercial PaaS (e.g., Google App Engine [22]) have two constraints
from the client point of view which do not occur in our proposal.

First, they completely hide access to the virtual resources and provide inbuilt
automatic or manual scaling. This impacts users that want to take advantage
of PaaS services but maintain some control of the VMs from an optimization
point of view. Hybrid PaaS like Azure [23] offer a partial solution but still do
not allow clients to customize the scheduling policy.

Second, they restrict users to specific APIs, tools or programming models.
For instance, Tejedor et al. [21] propose a platform and a programming model
based on Java annotation to execute an application on an IaaS cloud. Vecchiola
et al. [19] and Petcu et al. [20] propose a more comprehensive platform with
tools to manage the workloads but still confine clients to specific programming
models and APIs. Commercial solutions like Google App Engine support mostly
web applications and only a few languages.
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6.2. Client oriented IaaS brokers
The cloud computing has first been developed for a web usage and is still

widely used in this context. Thus a lot of research has been made to build
a cloud broker to serve web services. STRATOS [24], Kingfisher [25], Com-
patibleOne [26] and FCM [27] are examples of frameworks dealing with inter-
cloud web based applications. STRATOS is tested on both Amazon EC2 and
Rackspace to show its cross-cloud ability. The broker can choose the best re-
sources in the best clouds based on the topology of the application and a set of
user specified objectives. Kingfisher supports private and public clouds and uses
a cost-aware provisioning strategy that cannot be modified or changed. Com-
patibleOne is both a model to describe the users’ needs (CORDS) and a cloud
broker to provision and deploy cloud application (ACCORDS). The latter is of
interest for us. It offers an interoperable way to run instances on multiple clouds.
The user can customize the provisioning strategy by specifying an agreement
document, combination of CORDS and WebService Agreement [28]. Kertesz et
al. [27] propose Federated Cloud Management (FCM) a cloud broker for stateless
web-services in a multi-cloud environment. Their broker makes the provisioning
decision based on multiple criteria: the number of incoming request, monitoring
results, SLA constraints and billing period of the IaaS provider. However it does
not allow to customize the provisioning strategy.

None of these projects provides a method for handling other types of ap-
plications such as scientific jobs. Web requests can be assimilated with short
jobs with high reactivity. For this reason brokers supporting them must provide
mechanism for quickly adapt to peak demands. In contrast, scientific workloads
have no reactivity constraints but their duration is highly dependent on the
application type. Although not an IaaS, Google App Engine provides a good
example in this direction. It restricts clients from making requests that take
longer than 30 seconds.

Brokers for general scientific computations have been investigated in [1], [2],
[29], and [3]. The main difference with our solution for the three following
works is that they do not provide a method of customizing the provisioning
policy. In [1] a cluster architecture to deliver flexible and elastic High Through-
put Computing environments is presented. The aim is to grow a local cluster
capacity using an external cloud provider. The results demonstrate that only
the overheads due to virtualization affect the performance of the elastic clus-
ter. TorqueCloud [2] is a tool built with the distributed resource management
software TORQUE and the Eucalyptus cloud platform. A deadline constraint
algorithm, IdleCached, for BoT is presented. A difference is that they aim
to extend TORQUE while we designed a modular platform allowing to switch
to different cloud providers, schedulers and provisioning strategies. Mendez et
al. [29] designed a solution to offer to scientists a SaaS platform for scientific
computation named e-clouds. Their platform is used by the scientists through
a web portal. With this design, e-clouds restrict the user to execute one ap-
plication chose in a finite list whereas we let the user configure his own VM
image with the software he chooses. Moreover, the software does not seem to
be publicly available.
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Two tools close to our are the Virtual Execution Platform (VEP) designed
by Harsh et al. [30] and a tool that aims at testing user-defined strategies de-
signed by Villegas et al. [3]. VEP [30] is part of the Contrail platform and aims
to help the cloud provider to become part of the larger Contrail cloud federa-
tion. It eases the execution of an application through a web portal. The two
main differences are the lack of recommendation system like the SE and the
requirement to install a piece of software on the cloud provider side.

The work by Villegas et al. [3] is the closest to ours. Their SkyMark per-
formance evaluation tool is able to generate, submit, and monitor bags-of-tasks
to IaaS clouds conforming to the EC2 API. Eight provisioning and four alloca-
tion strategies are presented and tested. While they also developed a discrete
event simulator that duplicates the SkyMark functionality, the simulator does
not have the maturity of the SimGrid tool (SkyMark is not available for test-
ing). Further, the simulation process is not intended to be integrated into the
framework as a recommendation utility, as we do with Schlouder.

Among commercial brokering systems, one of the most well-known is RightScale
[31] which allows its clients to deploy and monitor VMs across multiple cloud
providers via a web interface. The clients define the rules which automatically
trigger the VM provisioning, based on thresholds for various monitored con-
ditions such as the load. This solution does not provide a way to customize
the provisioning strategy based on other criteria than threshold. Other com-
panies such as Amazon Elastic Beanstalk [32], CloudFoundry [33] or Windows
Azure [23] provide similar services but without multicloud support.

7. Conclusion

We have presented in this paper our cloud broker Schlouder, which helps
users drive their IaaS resources provisioning and scheduling for BoTs or work-
flows. Its usage has been illustrated through the execution of two real applica-
tions in bioinformatics and astronomy.

We highlighted that Schlouder, using one of the embedded provisioning
strategies, is able to effectively favor one of the criterion, cost or makespan.
We have studied the behavior of AFAP strategy to take advantage of the pay-
per-use property in order to provision a limited amount of VMs and use all the
rented BTUs, but many intermediate strategies are also available in Schlouder.

The simulation of an application execution on a cloud is a challenging issue.
However, this task is eased by the homogeneity of the performances of the cloud.
To this end, Schlouder offers a simulation engine (SE) able to accurately predict
the makespan, cost and the jobs-to-VM mapping of using such or such strategy,
and how the strategy will compare to the others. Although the SE requires
a description of the real platform, which is often not known in the case of
public clouds, the black box nature of the cloud makes possible to automatically
discover the available bandwidth, latency and the CPU power of the resources,
and from these data, build a model of the real platform.

The future work is threefold. First, we will tackle with the issue of choosing
the right provisioning strategy which might be a difficult choice for the user,
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even with the help of SE. Our idea is to design one unique meta-strategy, which
would apply the most inexpensive strategy among all available ones, according
to one user given deadline. Indeed, while cost/makespan tradeoffs are difficult
to apprehend, deadlines are common knowledge for scientists. Second, we will
improve the SE results by designing a P2P monitoring module, able to share
information about both public cloud infrastructures and application runtimes
among the Schlouder users. Last, in order to circumvent the great impact of
the walltime prediction on the AFAP provisioning strategy, we plan to add
a measure of confidence to the SE results. Knowing the error rate e of the
walltime prediction, we can simulate the execution of the user’s workload with
both walltime prediction × (1 + e) and walltime prediction × (1 − e). Hence
we obtain an interval of the possible results, and thus a measure of confidence
of the SE results.
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