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ABOUT TIME MEASUREMENT IN A PLATONIC QUADRIDIMENSIONAL SPACE 

SUR LA MESURE DU TEMPS 
DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN 

Alain Jégat 

 

Abstract 
 

Through the observation of an elementary oscillator, concepts of synchronization, proper and 
improper time, this article aims to expose the reasoning that led to the definition originally made 
for the measurement of time by inertial frames in this space (cf. hal-01165196, v1. A platonic 
(euclidean-projective) model for the special theory of relativity). 

It also offers an open reflection about different possible concepts of time in a four-
dimensional Platonic space that leads, through the projective character of this space, to connect 
the (enlarged) Newtonian and relativistic points of view. 

 
 

Résumé 
 

À travers l’observation d’un oscillateur élémentaire, les concepts de synchronisation, de 
temps propre et impropre, cet article a pour objet premier d’exposer les raisonnements qui ont 
conduit à la définition initialement émise pour la mesure du temps par les référentiels inertiels 
dans cet espace (cf. hal-01081576, v1. Un modèle platonicien (euclidien-projectif) pour la théorie 
de la relativité restreinte). 

Il propose également une réflexion ouverte sur différentes conceptions possibles du temps 
dans un espace quadridimensionnel platonicien qui conduit, via le caractère projectif de cet 
espace, à relier les points de vue newtoniens (élargis) et relativistes.  

 
 

1. The geometrical framework  
 

This modeling is based on the Platonic space outlined in the following articles: 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 
RELATIVITY » (pre-publication hal-01165196, version 1). 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 
RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

 

 , , , ,O i j k h
   

 is a frame for the four-dimensional Euclidean space whose axes are denoted

 OX ,   OY ,  OZ ,  Ow ; the direction of the projection is that of the vector h


. 

We consider a punctual mobile P in rectilinear uniform motion and associate to this mobile 
the hyperplane HP which contains it and is orthogonal to the direction of its motion. The points 
of this hyperplane, which thus have parallel trajectories to that of P, constitute what we will 
refer to as the "observers" of the reference frame related to P. 

To simplify the following diagrams, we shall consider only mobiles whose motion is located 

in the plan  XOw , as well as the "observers" connected to P located in this plan. 

We will name d  the straight line traveled by P,  u


 its guiding vector (oriented in the 

direction of the motion),  R  the reference frame related to P,    the angle  ,i u

 
. 
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2. Absolute time concept 
 

We recall here the concept of absolute time introduced in the article hal-01340134. 

Given the regular motion of the objects observed in the Platonic universe (« between two 
events, the distances traveled by all the observed objects are equal, regardless of their trajec-
tory »), and with reference to the Newtonian concepts (“Absolute, true and mathematical time, 
of itself, and from its own nature flows equably without regard to anything external”), we can 
introduce a notion of absolute time in the following terms : 

« Absolute time T  between two events is the distance traveled by (all) the mobiles 
between these two events .» 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, in the above diagram, if the event E1 occurs while the mobiles M, N and P are 

respectively at M1, N1 and P1 and if the event E2 occurs while the mobilesM, N and P are 

respectively at M2 , N2 and P2 , we can define the absolute time T  between these two events 

by the relation T r   . 

Note that in this Platonic space, one can thus introduce a notion of absolute time which is 
measured in meters. 
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3. Time measurement in a reference frame R  

 
3.1  Introduction of a basic oscillator 

The ideas and arguments developed in this article will be supported on the 
following additional hypothesis (which, consistent with all previous articles, was 
then a consequence of the definition of time measurement): 

« electromagnetic waves propagate in the Platonic space according 

 to directions orthogonal to the vector h


. » 

The concept of time familiar to us is based on periodic physical phenomena.  
We will present a basic oscillator whose examination will allow us, in the 

following paragraphs, to clarify the definition adopted for the time measurement in 
the Platonic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram above shows two observers A and B of a reference frame R , 

separated in this frame by a distance 0x . 

An electromagnetic wave is transmitted from A to B when A is at 0A . 

It is perceived by B when at 1B  (A is then at 1A ) after an absolute duration 1T , 

then re-emitted to A.  
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Observer A perceives the wave reemitted by B when in 
2A  (B then being at 

2B ) 

after an absolute duration equal to 
2T . 

It is then re-emitted to B, and so on ... 

An elementary calculation leads to:  

1 0

sin

1 cos
T x




  


  and  

2 0

sin

1 cos
T x




  


,  from which  0

1 2

2

sin

x
T T




   . 

Then, with     0 2 0w w A w A  
  
and   0 1 2 sinw T T     , we obtain: 

0 02w x  
  
, regardless of the angle . 

 

Note that the notion of periodic temporal phenomenon in a reference frame R  is 

reflected in the Platonic space by a geometric periodicity (here, for example, by 

reproducing the basic diagram below by translations along vectors  1 2k T T u 


).  

 

 

 

 

 

 

 

 

 

 

 

 

3.2  Proper time measurement by an observer O 
 

Consider an observer O provided with such a basic oscillator. 

According to the results of the Michelson-Morley experiment, this observer knows 

that the duration 0t  of each oscillation is 0
0

2 x
t

c


  . 

If n denotes the number of oscillations counted between two events E1 and E2 

perceived by O, the proper time t  measured by this observer between these events is 

given by 0t n t   .  
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So, we have : 0 0
0

2 x w
t n t n n

c c

 
     . 

In addition, we have     0 0nw w O w O n w      ,  and we obtain : 

 

   0nc t w O w O    . 

 
Thus, the measurement of the proper relative time by an observer into a reference 

frame corresponds to the measurement of its movement along the axis  Ow .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Whatever the measure of the angle   (non-multiple of  ), the international system 

of Units assigns to a distance of one meter along this axis a proper duration equal to 

91
3,335641.10

299 792 458
s .  In other words, it assigns this duration to an 

occurrence of the oscillator described above with 0 0,5x m  . 
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3.3  Synchronizing clocks in the reference frame R  

We assume in this section that each of the reference frame R  observer is 

provided with a basic oscillator, as described above, these oscillators being identical. 

Each of these observers can measure the proper time between two events he 
perceives. 

The purpose of this section is to provide a method for synchronizing each of these 
"clocks" to a reference clock, and therefore, enable a consistent measure time 

between any two events perceived by two separate observers A and B into R . 

Choose for example the clock of the observer O  as a reference clock, and consider 

any observer A into R . 

Synchronizing the clock of A with that of O  
can be performed from the emission of 

an electromagnetic signal directed to A, at a proper time designated at O  by 
0t t . 

We assume that at this moment O  is at 
0O , with  0 0w O w  , and that A is at 

A0  (see diagram below).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When receiving this signal, taking into account its speed c into R , A sets its clock 

to 1 0

x
t t

c


   , with x O A  .      [1] 
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The absolute duration T  corresponding to the transmission of this signal is: 

sin

1 cos
T x




  


, 

and we also have (see diagram above):  

1 cosw x     ; 
1 2 sinw w T     , 

from where :   
2w x   . 

In other words, from the synchronization proposed in [1], the time t1 

corresponding to the reception of the signal A is such that: 

2
1 0 0

wx
t t t

c c


    ,   i.e.  

1 0 2ct ct w   . [2] 

This result leads to the following remark: 

moving from A0  to  A1, observer A is passed through the hyperplane 
0w w . 

Denote this event by E0, the corresponding position of A by 
0wA  and denote the event 

" A is at A1  "  by E1 (see diagram below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We therefore obtain, applying to the proper time t  measured by A between these 

events E0  and E1 the result obtained in 3.2. :    1 0 .wc t w A w A    
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Then, with     2 1 0ww w A w A  
 
 and  [2], we obtain : 

   1 0 1 0wct ct w A w A     i.e. 
1 0c t ct ct   . 

As the moment t1 corresponds to the event " A is A1  " and the proper duration t  

corresponds to " A moved from 
0wA  to A1 ," it appears that, for the observer A, the 

event " A is at 
0wA  " corresponds to the moment 

0t t . 

Thus, whatever the observer A into R , the clock of A is synchronized with the 

clock of O  if and only if, for any 
0w , the events "   0w O w  " and "   0w A w " 

correspond to the same proper moment 
0t  for O  and A. 

It is thus found that the clocks are synchronized into R  if the moment 
0t t

corresponds, for each observer into R , to his crossing of the hyperplane 
0w w . 

 

 

3.4  Measurement of an improper duration into a reference frame R  

Clocks being so synchronized into R , consider two events E1 and E2  respectively 

perceived into R  by the observer A (then located at A1) at the moment 
1t  and by the 

observer B (then located at B2) at the moment 
2t . 

The duration t  between these two events into R  being defined by 
2 1t t t   , it 

immediately follows from the previous observation that    2 1 .c t w B w A    
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3.5  Link between absolute time and relative time 

Consider two events E1 and E2  respectively perceived into R  by the observer A 

(then located at A1) at the moment 
1t  and by the observer B (then located at B2 ) at 

the moment 
2t . 

Note t  and x  the duration and the distance separating these two events into 

R  (see previous diagrams). 

From the results  
cos

sin

X T
x





 
 

 
 and  

cos

sin

T X
c t





 
   (1)

 
 

 

we obtain :                    
cos

sin

x c t
T





  
       (and 

cos

sin

x c t
X





  
  ). 

 

In particular, for any observer A, the proper time between two events corresponds 

to 0x   and therefore 
sin

c t
T




  , or  

sin
.

T
t

c


   

This means, in fact, that the measurement of proper time which is familiar to us (the 
time measured by our clocks) corresponds into the Platonic space to the measure-

ment of the component along the  Ow -axis of the absolute time (divided by c). 

Finally, in the very special case of an observer who would be linked to a photon, 

any proper duration is equal to zero ( sin 0  ), which corresponds to a photon 

movement whose direction is contained in a hyperplane orthogonal to h


 (since the 

component along the  Ow -axis of absolute time is then equal to zero). 

 

Remark :       formulas (1) provide a link between the absolute Newtonian concepts (adapted to 
the Platonic space) and familiar relativistic concepts. 
This link is developed into paragraph 3.7 and will allow us to demonstrate the 
Lorentz transformation. 
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3.6  Simultaneity – Causality 
 

3.6.1. Simultaneity 

By definition, two events E1 and E2 perceived respectively by A1 and B2 are called 

simultaneous in the reference frame R  if and only if the time interval t  between 

them is zero; ie.    2 1w B w A . 

 

 

 

 

 

 

 

 

 

 

 

 

This situation corresponds for these two events E1 and E2 to the equality:  

 

cos
T

X






, where T  is the absolute time between them. 

 

Thus, two events E1 and E2 can not be perceived simultaneously into any reference 

frame R  if T X    (such events can be bound by a causal link – see next 

paragraph –). 
 

Conversely, if T X   , there is always a reference frame R  in which these 

events can be perceived simultaneously (and they can not therefore be bound by 
causality). 

 

Note that if   , then simultaneously perceived phenomena into R  are not 

simultaneous into R  (in the diagram below, the events E1 and E2 are perceived 

simultaneously by observers A1 and B2 into R , but are separated into R  by the 

interval of time ' 0t  , with  
2

2

cos cos
'

sin
1

v c x
c t X

v

c

 



  
   



): 
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3.6.2. Causality 
 

In accordance with the approach adopted in the theory of relativity, we will 
consider that if two events can not be reached at a speed lower or equal to the speed 
of light, they have no direct causal link. 

 

This results in any reference frame R  by inequality x c t   , 

which leads to       1 cos 1 cosx c t       

and then to    cos cosx c t x c t        , 
 

and therefore, with the formulas set out in paragraph 3.5:   X T    . 
 

So there is a possible causality between the events E1 and E2 only if T X   . 
 

Note that the case T X    corresponds to the case where the events E1 and E2 

may be linked by an electromagnetic signal. 
 

As expected, it is thus observed that if two events may be linked by a causal link in 

a Galilean reference frame R , then they can also be in any inertial frame. Indeed : 
 

T X c t x       ,  
 

whatever is  , not a multiple of   (cf. above calculation).  
 

Finally, to restate a fact mentioned in the previous paragraph, we recall that two 

events can not be bound by a causal relationship if there is a reference frame R  
 where 

they are perceived simultaneously (and vice versa).  
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3.6.3. Light prism 
 

By analogy with the " light cone" mentioned in the theory of relativity, we can 
represent by a " light prism" (in a five-dimensional space, the fifth dimension 

identifying the flow of absolute time T) the zone without any causal link with the 

observer, i.e. the outside of the prism.  
This "prism" is here simplified in a three-dimensional representation, whose 

hyperplane T T  , shown in the second diagram in two dimensions, is discussed in 
the next page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An event E0 is perceived by the observer O into R  at the absolute moment 0T  . 

Consider the three events 
1 TE 

, 
2 TE 

, 
3 TE 

, occurring after an absolute duration T .  
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 Regarding 
1 TE 

, we have 
1X T    : thus there is a reference frame R

 where E0 

and 
1 TE 

 are perceived simultaneously (with here 
1

cos
T

X






, the perception of 

1 TE   
being done in R

 by the observer A’ , then located at A’1);  E0 and 
1 TE 

 

therefore can not be bound by a causal link.  
 
 

 Regarding 
2 TE 

, we have 
2X T    : thus there is no reference frame R

 where 

E0  and 
2 TE   

can be perceived simultaneously; E0  and 
2 TE 

 therefore can be bound 

by a causal link. 
 
 

 Regarding 
3 TE 

, we have 
3X T    : E0  and 

3 TE 
 therefore can be bound by a 

causal link (e.g. a light signal).  
 

To expand the view expressed in paragraphs 3.6.1 and 3.6.2, however, one could 
also imagine in this case limit the existence of such a photon linked reference frame 

R
 where E0 and 

3 TE 
 are perceived simultaneously, as in this case all proper 

duration is zero (see section 3.5). 
 

 
 

Remark :    in the situation diagrammed above, the simultaneity of events E0  and 
1 TE 

 

into the frame R , which corresponds to the equality 
1

cos
T

X






, is also 

reflected in the equality 1

1

c tv

c x





, where v  is the speed of R  measured by 

R  (with 
cos cos

1 cos cos

v

c

 

 





),  

1x refers to the distance between the events 

E0  and 
1 TE 

 in the frame R , 1t  
the duration between events E0  and 

1 TE 
 

in the frame R .  

 

If 't  is the time between the events E0  and 
1 TE   

measured in the reference 

frame R , the equality 1

1

c tv

c x





 corresponds to ' 0t  , according to the 

Lorentz transformation recalled into the next paragraph. 
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3.7  Lorentz transformation 
 

3.7.1. Summary of the article hal- 01165196 

Two reference frames R  and R  in uniform translation (i.e. with rectilinear 

trajectories) are here considered, and two events E1 and E2 are observed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have:  
cos

sin

X T
x





 
     and   

cos

sin

T X
c t





 
   . 

Similarly, we find:     
cos

'
sin

X T
x





 
     and   

cos
'

sin

T X
c t





 
   . 

With   
cos cos

1 cos cos

v

c

 

 





,   we obtain:  

 cos sin

1 cos cos

X Tv
x c t

c

 

 

 
   


 ; 

Supposing that sin sin 0   , we have   
2

2

sin sin
1

1 cos cos

v

c

 

 
 


 ,   then : 

2

2

cos

sin
1

v
x c t

X Tc

v

c





  
 





  , i.e.    
2

2

'

1

x v t
x

v

c

  
 



 . 
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Similarly, we obtain :  
 cos sin

1 cos cos

T Xv
c t x

c

 

 

 
   


, 

then finally:     
2

2

cos

sin
1

v
c t x

T Xc

v

c





  
 





   , i.e.      
2

2

'

1

v
c t x

cc t
v

c

  

 



  . 

 

 

3.7.2. Length contraction 
 

With  ' 0c t  , we obtain :   
cos cos

1 cos cos
c t x

 

 


  


 ,  from which we deduce:   

sin sin
'

1 cos cos
x x

 

 
  


,     i.e.      

2

2
' 1

v
x x

c
    . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This length contraction is shown above from  ' 0
cos

T
c t X




      . 
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3.7.3. Time dilation 
 

Similarly, with 0x   , we obtain :    

 

1 cos cos
'

sin sin
c t c t

 

 


    ,    i.e.     

2

2

'

1

c t
c t

v

c


 



. 

 
This time dilation is illustrated below from: 

 

0 cosx X T      . 
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3.7.4. Illustration : lifetime of the muon 
 

An illustration of the above relations concerns the lifetime of the muon, unstable particle 
whose rest lifetime is about 2,2t s  . 

The lifetime of a muon moving at a speed such as 0,992v c  in a particle accelerator becomes: 

2

2

' 17,4

1

t
t s

v

c




  



. 

 
To simplify the following diagram, we shall consider a muon whose motion is located in the 

plan (XOw). 
 

 Consider to start a muon M  moving along a trajectory led by a vector u


, with  ,i u 

 
. 

We mean by "proper lifetime" of this muon the duration, noted 
muont , between the events 

E1: " muon creation " (M  is at M1) and E2 : "muon decay" (M  is then at M2) measured in a 

rest frame R . 

 
 

 

 

 

 

 

 

 

 

 

We have :    2 1muonc t w M w M     (cf. paragraph 3.2). 

The absolute duration T  corresponding to the proper lifetime of the muon is given by: 

sin

muonc t
T




     (cf. paragraph 3.5). 

The hypothesis that will underpin this paragraph is that the proper lifetime of the muon is 
independent of its trajectory in the Platonic space.  

Thus, regardless of the reference frame R , if the muon is at rest in that frame, its 

lifetime measured would be equal to muont . 
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 Now consider the observation of the muon by any reference frame R : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comments  
 

The muon is moving in the direction d
. Its proper lifetime  is denoted by « 

muont  ». 

The muon is initially located at M1.  Into the reference frame R  , it is then perceived by the 

observer A1. 
 

In this diagram, 0,992v c . 

In a non-relativistic way, after a time lapse measured into R  equal to the proper lifetime 

muont , the muon is supposed to be perceived at M’2  by the observer B’2, after covering in R  
the distance labeled « 

non relx  »,  with non rel muonx v t     . 

But its proper lifetime muont  leads the muon at M2 , after an absolute duration equal to 

sin

muonc t
T




  . 

It is then perceived into R  by the observer B2. 

The distance traveled by the muon, measured into R , is labeled measuredx  and its lifetime 

measured into R  is labeled measuredt . 

We obtain in this illustration the usual relativistic relations:   

2

2
1

muon
measured

c t
c t

v

c


 



     and     
2

2
1

non rel

measured

x
x

v

c


 



. 
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4. Conclusion 

As we have seen, this article, through the presentation of some generating ideas of the 
Platonic model, allows to propose a geometric approach of the concept of time which we are 
familiar. 

Since the Michelson-Morley experiment (whose modeling was proposed in Article hal- 
01247385) and the birth of the theory of relativity, our time measurement is based on the 
counting of occurrences of an electromagnetic periodic phenomenon. 

 

For a given observer measuring the proper time t  between two events, this article 

shows that it actually leads to measure the axis  Ow  component of the distance travelled 

(i.e. the absolute time T  measured) by this observer in the Platonic space. 
Our system of units assigns to a distance of one meter covered on that axis a proper 

duration approximately equal to 93,3356.10  second, regardless of its trajectory. 

 
Between two given events, the apparent relativity of durations (and distances) measured 

by different reference frames appears as a direct consequence of their different trajectories 
... and shows that the absolute Newtonian concepts and relativistic concepts are not so 
irreconcilable that could the thinking, the latter being the result of a partial (projective)  
measure of the first (adapted to a Platonic space). 

Is it possible to measure the intrinsic flow of absolute time between two specified events 

(not just its  Ow  axis component)? 

If so, our contemporary vision of physics will be again profoundly changed. 
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