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. Then, it is shown that the dynamic step of pressure gradient correction can be fast and locally consistent on edge-based generalized MAC-type unstructured meshes which naturally verify the compatibility condition in the proposed discrete setting. By the way, a new accurate front-tracking Lagrangian-advection technique is also introduced for multiphase flows.

This new method preserves the fully vector formulation of both the prediction and correction steps of the original scheme, the primary unknowns being (v, ∇p) and ρ by advection, since the pressure Neumann-Poisson problem remains eliminated. The efficiency of the present method is demonstrated through numerical results on sharp test cases.

Version française abrégée

L'idée clé pour la construction de cette nouvelle méthode (K-VPP ε ) repose sur les décompositions rapides de Helmholtz-Hodge en domaine borné proposées dans [START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF] et analysées dans [START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/Brinkman problems[END_REF]. L'étape de correction vectorielle en vitesse v est rendue purement cinématique. Elle correspond à une méthode de projection à divergence nulle approchée pour obtenir la composante irrotationelle v := ∇φ du champ de vitesse prédit v. L'étape dynamique de correction du gradient de pression est alors obtenue en introduisant le concept de densité inertielle ρ calculée sur chaque arête du maillage principal et reliant les sommets des inconnues scalaires p, φ et ρ. On montre qu'il existe ρ satisfaisant l'équation de consistance locale : ∇(ρ φ) = ρ ∇φ = ρ v, et permettant de recouvrer un gradient de pression entre les sommets. En pratique, comme la condition de compatibilité associée est naturellement satisfaite pour les maillages de type MAC, le calcul de ρ est effectué facilement et de façon rapide à partir de ρ et d'une fonction de partage α, tandis que φ est reconstruit à partir de son gradient connu sur les arêtes.

Introduction

We consider the numerical solution of unsteady incompressible flows with variable mass density and viscosity. This is typically the case of incompressible or low-Mach dilatable and/or multimaterial multiphase flows [START_REF] Tryggvason | Direct Numerical Simulations of Gas-Liquid Multiphase Flows[END_REF]. The design of efficient numerical methods, i.e. accurate, fast and robust, is still a challenging issue [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF], especially for multiphase flows with strong stresses [START_REF] Ph | A spectacular solver of low-Mach multiphase Navier-Stokes problems under strong stresses[END_REF]: large mass density or viscosity ratios, large surface tension, open boundary conditions, fluid-structure interactions, or multi-physics problems. Many refined techniques have been developped for the front-tracking or front-capturing of moving and deformable phase interfaces, e.g. [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF][START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF][START_REF] Tryggvason | Direct Numerical Simulations of Gas-Liquid Multiphase Flows[END_REF][START_REF] Wang | A hybrid level set-volume constraint method for incompressible two-phase flow[END_REF], and most of them use the very popular time-stepping projection methods of Chorin-Teman for the flow solver.

Here, we focus on the important feature of velocity-pressure coupling with fully vector splitting methods [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | A spectacular solver of low-Mach multiphase Navier-Stokes problems under strong stresses[END_REF] which eliminate the pressure Poisson equation of scalar projection methods and thus the pressure boundary condition. The main objective of this work is to show that the velocity correction step in the vector penalty-projection (VPP ε ) method [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF] can be made fully kinematic and completely independent of the mass density. This is obtained by using fast Helmholtz-Hodge decompositions studied in [START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF][START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/Brinkman problems[END_REF]. A similar result is obtained in [START_REF] Caltagirone | A kinematics scalar projection method (KSP) for incompressible flows with variable density[END_REF] with a scalar projection method. Then, it is shown that the dynamic step of pressure gradient correction can be easily made in a locally consistent way if the spatial discretization satifies a discrete compatibility condition that is verified for edge-based generalized MAC-type unstructured meshes, already introduced in [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF].

The kinematic vector penalty-projection method for the Navier-Stokes equations

Let us consider the incompressible Navier-Stokes model problem in the time-space domain (0, T ) × Ω with homogeneous Dirichlet boundary condition for velocity v on (0, T ) × Γ :

             ρ (∂ t v + (v• ∇)v) -div (2µ(ρ) d(v)) + ∇p = f in (0, T ) × Ω, div v = 0 in (0, T ) × Ω, ∂ t ρ + v• ∇ρ = 0 in (0, T ) × Ω, v |Γ = 0 on (0, T ) × Γ, ρ(t = 0) = ρ 0 , v(t = 0) = v 0 in Ω. (1) 
Here, Ω is a connected and bounded domain in R d (d ≤ 3) with a Lipschitz continuous boundary Γ := ∂Ω.

The strain rate tensor is denoted by d(v) := (∇v+(∇v) t )/2, the mass density by ρ, the dynamic viscosity by µ = µ(ρ) and the pressure by p. The force field f usually includes the gravity force ρ g and the capillary surface tension σ κ n Σ δ Σ supported by the interface Σ between the phases, where n Σ is a unit normal vector on Σ, κ its local curvature and σ the surface tension coefficient.

2.1. The time semi-discrete scheme (K-VPP ε )

The fast (K-VPP ε ) method, proposed here using a first-order linearly implicit scheme reads with classical notations, for all n ∈ N such that (n + 1)δt ≤ T , δt > 0 being the time step, 0 < ε 1 the penalty parameter, and starting from the initial conditions ρ 0 = ρ 0 , v 0 = v 0 and p 0 = 0 in Ω :

                                                                 (a) Standard prediction step: ρ n v n+1 -v n δt + (v n • ∇) v n+1 -div 2µ(ρ n ) d( v n+1 ) + ∇p n = f n in Ω, v n+1 |Γ = 0 on Γ, (b) 
Divergence-free velocity penalty-projection (VPP): purely kinematic step

ε v n+1 -∇ div v n+1 = ∇ div v n+1 in Ω, v n+1 |Γ = 0 on Γ, (c) Velocity correction: v n+1 = v n+1 + v n+1 in Ω, (d) Find the inertial density ρ n such that (see Sect. 2.2): ∇(ρ n φ n+1 ) = ρ n v n+1 ,
with φ n+1 reconstructed from its gradient v n+1 := ∇φ n+1 in Ω, (e) Explicit locally consistent pressure gradient correction: dynamic step

∇(p n+1 -p n ) = - ρ n δt v n+1 = - 1 δt ∇(ρ n φ n+1 ) or (p n+1 -p n ) = - ρ n φ n+1 δt in Ω,
(f ) Advection and front-tracking of density (see Sect. 2.3):

ρ n+1 -ρ n δt + v n+1 • ∇ρ n = 0 in Ω. (2) 
In the sub-step (d), the scalar potential φ n+1 is theoretically equal to φ n+1 := 1 ε div v n+1 up to an additive constant, as a by-product of the (VPP) sub-steps (b, c). However, to avoid round-off errors in the numerical computations when ε is very small up to machine precision, typically ε = 10 -14 , since we have div v δt l 2 (0,T ;L 2 (Ω)) = O(ε δt), it is shown in [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF] that it is far better to directly reconstruct φ n+1 locally from its known gradient ∇φ n+1 := v n+1 . This is easily carried out by using the circulation theorem with the Stokes formula along each edge which gives a very fast numerical procedure. A similar technique is also detailed in Section 2.2 to locally calculate ρ n on each edge linking pressure vertices. Since v n+1 = v n+1 -v n+1 with (c), it is important to notice that the sub-steps (d) and (e) in (2) allow us to write the effective velocity and pressure gradient corrections as in [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | A spectacular solver of low-Mach multiphase Navier-Stokes problems under strong stresses[END_REF], v n+1 being the solution by the (VPP) method of sub-step (b) which is now purely kinematic and completely independent on ρ :

     ρ n v n+1 -v n+1 δt + ∇(p n+1 -p n ) = 0 in Ω, with ∇(p n+1 -p n ) = - ρ n δt v n+1 in Ω. (3) 
Then, if the calculation of the pressure itself is not necessary for physical reasons, the present method reads more simply :

(K-VPP ε )                                    ρ n v n+1 -v n δt + (v n • ∇) v n+1 -div 2µ(ρ n ) d( v n+1 ) + ∇p n = f n in Ω, v n+1 |Γ = 0 on Γ, ε v n+1 -∇ div v n+1 = ∇ div v n+1 in Ω, v n+1 |Γ = 0 on Γ,
Velocity correction:

v n+1 = v n+1 + v n+1 in Ω,
Explicit pressure gradient correction:

∇(p n+1 -p n ) = - ρ n δt v n+1 in Ω, ρ n+1 -ρ n δt + v n+1 • ∇ρ n = 0 in Ω. ( 4 
)
Another improvement of the present method is that the sub-step (b) in ( 2) can be also enforced by the Dirichlet condition v n+1 |Γ = 0 and not only with the natural normal component v n+1 • n |Γ = 0 as in [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF][START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/Brinkman problems[END_REF]. Indeed, we can prove by a vanishing viscosity method that it yields a well-posed problem with a unique solution v n+1 ∈ H 1 0 (Ω) when the boundary Γ is of class C 1,1 or if Ω is a convex domain. Now by summing the prediction and correction steps using v n+1 = v n+1 + v n+1 and (3), we get that the unique solutions (v n+1 , ∇p n+1 ) and ρ n+1 at each time step satisfy the equations below, even if the practical scheme is never solved in this way but within two steps :

                     ρ n v n+1 -v n δt + (v n • ∇) v n+1 -div 2µ(ρ n ) d( v n+1 ) + ∇p n+1 = f n in Ω, v n+1 |Γ = 0 on Γ, ∇ div v n+1 = ε v n+1 , and ∇(p n+1 -p n ) = - ρ n δt v n+1 in Ω, ρ n+1 -ρ n δt + v n+1 • ∇ρ n = 0 in Ω. (5) 
This formally shows that the (K-VPP ε ) method does produce the same numerical solutions as the original (VPP ε ) one, and thus gives an O(δt) time accuracy of both velocity and pressure for the first-order scheme with div v δt l ∞ (0,T ;L 2 (Ω)) = O(ε δt), as numerically verified in [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF]. Moreover, the velocity-pressure coupling in (2) can be interpreted as a new two-step artificial compressibility scheme for variable density flows satisfying the pressure correction :

p n+1 = p n - ρ n φ n+1 δt in Ω. (6) 

Construction of the inertial density field ρ on a staggered generalized MAC-type mesh

The main important issue of the present (K-VPP ε ) method ( 2) is to show the existence at each time step of the so-called inertial density ρ. Indeed, since the irrotational component v of v = v-v is calculated by the (VPP) sub-step (b), this also gives easily as a by-product the scalar potential φ such that v = ∇φ as detailed further. Then, the inertial density ρ should verify the local consistency condition below which is required to recover a pressure gradient :

∇(ρ φ) = ρ ∇φ = ρ v in Ω, with ρ = ρ on Γ. (7) 
A necessary, and also sufficient condition if the domain Ω is simply-connected, to get q ∈ H 1 (Ω) such that ∇q = ρ v reads rot (ρ v) = 0, which gives the local compatibility condition because rot v = 0 :

rot (ρ v) = ρ rot v + ∇ρ ∧ v = ∇ρ ∧ v = 0, in Ω. ( 8 
)
This condition is naturally satisfied in the proposed discrete setting below for edge-based generalized MAC-type discretisations since ∇ρ is calculated between two vertices a, b along any edge where the velocity components v• t are located, see Figure 1. Then from [START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF][START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/Brinkman problems[END_REF], since φ ∈ H 2 (Ω) → C(Ω) for d ≤ 3 and defined up to an additive constant, we can choose a continuous potential φ > 0 on the compact domain Ω which yields ρ = q/φ. In practice, the compatibility equation ∇(ρ φ) = ρ v in ( 7) can be solved locally on the spatial mesh with a very fast numerical technique. Here, we consider the structured MAC staggered grid [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF] or the edgebased generalized unstructured staggered mesh of MAC-type [START_REF] Perot | Discrete conservation properties of unstructured mesh schemes[END_REF][START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF] in the context of dispersed multiphase flows. The edge-based generalized MAC mesh shown in Figure 1 is constructed in the spirit of Whitney's finite elements, see e.g. [START_REF] Bossavit | Computational Electromagnetism[END_REF]. A typical configuration at time t n := n δt, in 2-D for sake of clarity, for a triangular primal mesh is shown in Figure 2. The scalar unknowns p, φ, ρ, or div v are located at the vertices of the primal mesh. The velocity components v• t, as well as the gradients of scalar potentials ∇φ or ∇p are located at the mid-point of any edge linking two neighbour vertices and oriented by a unit vector t. We have verified in [START_REF] Ph | A fast vector penalty-projection method for incompressible nonhomogeneous or multiphase Navier-Stokes problems[END_REF] that the underlying space discretization yields second-order errors in O(h 2 ) for the L 2 (Ω)-norm of both velocity and pressure; h being the mesh step. It is also easy to show that the following important properties are exactly satisfied at the discrete scale: rot h (∇ h φ h ) = 0 and div h (rot h ψ h ) = 0, ∀h > 0 for any scalar φ or vector potential ψ. This was numerically verified up to machine precision in [START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF].

The discrete interface Σ between two phases is represented by a chain of Lagrangian markers having its own connectivity table and defining a polygon with N marker sides (or surface-markers based on triangles in 3-D). Each marker point belongs to a single cell in the primal mesh and this association is made by a fast algorithm of ray-tracing [START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF] which also easily determines the intersections of the connected marker chain with the edges separating two neighbour cells. Then, a phase function ξ is defined at each vertex taking the value 1 or 0 depending whether the point lies inside or outside the polygonal chain. 

Now, the calculation of ρ must take account of the density variations and thus of the position of the interface Σ. From one side using the generalized average formula, there exists ρ constant along the 

a ρ v• t dx = c a ρ v• t dx + b c ρ v• t dx = (ρ a |c -a| + ρ b |b -c|) v• t = (ρ a |c -a| + ρ b |b -c|) |b -a| b a v• t dx = (α ρ a + (1 -α) ρ b ) (φ b -φ a ), with α := |c -a| |b -a| .
Comparing the two expressions, we get ρ associated to the edge [a, b] as a weighted average :

ρ [a,b] = α ρ a + (1 -α) ρ b , on any intersected edge [a, b]; 0 ≤ α ≤ 1. ( 10 
)
Moreover, it is explained in the context of Discrete Mechanics [START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF][START_REF] Caltagirone | Modélisation des effets capillaires en mécanique des milieux discrets[END_REF] that the inertial density ρ and the mass density ρ have different physical meanings. A kinematic scalar projection (KSP) method, similar to the version proposed in [START_REF] Caltagirone | A kinematics scalar projection method (KSP) for incompressible flows with variable density[END_REF], is now simply obtained by replacing the (VPP) sub-step (b) in ( 2) by the standard technique for the divergence-free projection of v consisting to solve for φ the Neumann-Poisson problem: -∆φ = div ( v) with ∇φ• n = 0 on Γ.

A new front-tracking Lagrangian-advection method

A new simple but accurate Lagrangian front-tracking technique is now introduced for the advection of interface Σ in the sub-step (2(f )) and the updating of density ρ n+1 from the velocity field v n+1 . The algorithm which ensures a good mass conservation of the different phases is briefly described below : a) Calculate the barycentric velocity v b (x) associated to each marker point x from the velocity components v n+1 • t on the edges bordering the primal cell where the marker lies. b) Move the markers such that x (t) = v b (t, x) by calculating the new position with the Heun Runge-Kutta explicit scheme (RK2 or RK4 with the K-VPP method of second-order in time) :

x n+1 = x n + δt 2 v n b (x n ) + v n+1 b (x n + δt v n b (x n )) .
c) Detect the cells in the primal mesh which are crossed by the updated marker chain with a raytracing technique issued from computer graphics procedures [START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF] and according to that, update the phase function ξ at the vertices . d) Calculate the intersection points x Σ ∈ [a, b] between the marker chain segments and the edges [a, b] of the crossed cells in the primal mesh. e) From x Σ , calculate the dividing function α on each edge [a, b] oriented by t and cutted across by Σ. f ) Update the density ρ, the corresponding viscosity µ(ρ) and the inertial mass density ρ [a,b] = α ρ a + (1 -α) ρ b , on any intersected edge [a, b]. g) Compute the local curvature κ(x) at each marker point x using the osculator circle crossing three consecutive points. h) Compute the force source term modelling the capillary effects f c := σ κ ∇ξ on Σ to be included in the force balance on any intersected edge. i) Solve for the flow at time t n+1 = (n + 1)δt with the method of velocity-pressure coupling.

Some validations with numerical experiments

The numerical results are performed with a time-step δt satisfying a CFL value of CFL = 0.5.

Perfect numerical verification of Laplace's law: the static equilibrium of a droplet

The local curvature κ(x) is calculated at each marker point x by using the osculator circle defined by x and its two neighbours. Thus, it should be exact when the interface Σ is a circle of radius R where the constant curvature equals κ = 1/R or κ = 2/R for a sphere in 3-D. It is numerically verified up to machine precision. For an ellipse of radius a and b in the polar coordinates, the analytical value equals :

κ(θ) = a b (a 2 sin 2 θ + b 2 cos 2 θ) 3/2 , with θ ∈ [0, 2π].
The second-order accuracy in the L 2 -norm is achieved with respect to the mean distance between two connected interface-markers for calculating the local curvature κ(x), as shown in Figure 3.

The emblematic case of capillary effects is the static equilibrium of a cylindrical or spherical droplet [START_REF] Caltagirone | Modélisation des effets capillaires en mécanique des milieux discrets[END_REF]. Here, the issue is to attest the abilty of the whole numerical methodology to preserve the perfect equilibrium during an arbitrary time. Let us consider a cylindrical drop of radius R with a constant surface tension σ = 1 for two fluids of different densities. The computation is run with zero initial conditions, the boundary condition v |Γ = 0 and the capillary force field f c = σ κ ∇ξ on Σ with no gravity force. Because the curvature is κ = 1/R = 0, exactly computed in our case with the markers chain, the drop is likely to crash on itself with a speed equal to the capillary velocity. But since the flow is incompressible, the locally isovolume flow induces a reaction force exerted on the interface that exactly counter-balances the capillary force f c . Then, the static equilibrium is obtained instantaneously with a uniform capillary pressure inside the droplet which equals Laplace's law: p c = σ/R for a disk, p c = 2σ/R for a sphere and p c = σ κ in general, whatever the densities.

The result shown in Figure 4 is computed within one time iteration only and exhibits no parasite current. The exact uniform capillary pressure p c = 400 P a is obtained with a velocity field being exactly zero both inside and outside the drop up to machine precision. Laplace uniform capillary pressure pc = 400 P a in a disk droplet of radius R = 2.5 10 -3 m for a constant surface tension σ = 1 N/m: the velocity field is zero in both cases with no parasite current. Left: unstructured mesh non-fitted to the interface-markers circle -Left: unstructured mesh fitted to the interface.

Numerical results for a sharp benchmark: air bubble dynamics in melted steel

The test case of air bubble dynamics rising in liquid water, where the density ratio is ρ l /ρ g = 829, viscosity ratio µ l /µ g = 56 with the air-water surface tension σ = 0.0714 N/m, is reputed to be difficult to compute with the suitable mesh convergence property [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF][START_REF] Tryggvason | Direct Numerical Simulations of Gas-Liquid Multiphase Flows[END_REF], and hence considered as already discriminating.

Here, we show that the (K-VPP ε ) method can compute the case proposed in [START_REF] Ph | A spectacular solver of low-Mach multiphase Navier-Stokes problems under strong stresses[END_REF] of air bubbles arising in a liquid melted steel with a density ratio ρ l /ρ g ≈ 8500, viscosity ratio µ l /µ g = 54 and surface tension σ = 1.5 N/m. The motion is induced by the vertical gravity force ρ g with g = 9.81 m/s 2 and the capillary force f c = σ κ ∇ξ. The size of the mesh is 128×256 Cartesian MAC cells, N = 128 Lagrangian markers are used in the interface chain and the mesh convergence is reached. The cylindrical air bubble is initialized assymmetrically at the bottom of the liquid column in order to create a lateral motion, and we have a symmetry boundary condition for the velocity components on the walls. A typical situation is shown in Figure 5 where the interface is plotted over the pressure or the vertical velocity fields. 

Conclusion

From the physical point of view, the main conclusion of this work is that the velocity correction in a time-stepping method for the incompressible flow is fully kinematic and only concerned with the Helmholtz-Hodge decomposition of the predicted velocity. Hence, this step includes no physics inside. Conversely, the pressure gradient correction does link the mass density to induce the motion and perfectly reproduce the dynamics of the phenomena. This assertion, which was only a conjecture till now, is here validated by two physical examples.
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 1 Figure 1. Edge-based generalized MAC-type unstructured mesh. Topology of the 3-D primal mesh with vertices, edges, faces and an interface Σ: p, ρ, φ unknowns located at all vertices a or b and velocity components v• t on each edge [a, b]. The calculation of φ and ρ is made by reconstruction of a scalar potential by integrating its known gradient along all the edges in the primal mesh. Starting from one point where φ := 0 arbitrarily, we have along any edge [a, b], which gives the value φ b when φ a is already known, and so on :b a

Figure 2 .

 2 Figure 2. Detection of an interface represented by a Lagrangian marker chain on the primal mesh. Left: topology of the primal mesh with vertices, edges, cells and the interface -Right: intersections of the connected marker chain cutting across some primal edges. segment [a, b] such that : b a

  b

Figure 3 .

 3 Figure 3. Second-order space convergence rate for the local curvature of an ellipse with a = 1 and b = 0.75: error in L 2 -norm versus number N of Lagrangian interface-markers.

Figure 4 .

 4 Figure 4. Laplace uniform capillary pressure pc = 400 P a in a disk droplet of radius R = 2.5 10 -3 m for a constant surface tension σ = 1 N/m: the velocity field is zero in both cases with no parasite current. Left: unstructured mesh non-fitted to the interface-markers circle -Left: unstructured mesh fitted to the interface.

Figure 5 .

 5 Figure 5. Dynamics of the air bubble of diameter d = 0.01 m, mass density ρg = 1.1768 kg/m 3 , dynamic viscosity µg = 1.85 10 -5 P a s in a vertical cavity of width l = 4 10 -2 m and heigth h = 10 -1 m. The bubble rises in the liquid steel with ρ l = 10 4 kg/m 3 , µ l = 10 -3 P a s and σ = 1.5 N/m. Left: pressure field p ∈ [-9235, 0] P a (p = 0 at bottom left) at time t = 0.05 s -Center: vertical velocity field vz ∈ [-0.48, 1.55] m/s and streamlines at t = 0.05 s -Right: Some bubble positions and shapes during time and vertical velocity field vz at final time t = 0.2 s.