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Abstract

In this Note, we present a new version of the vector penalty-projection splitting method described in [1] for the
fast numerical computation of incompressible flows with variable density and viscosity. We show that the velocity
correction can be made completely independent on the mass density ρ. Hence, this step is purely kinematic using
the fast Helmholtz-Hodge decompositions proposed in [2]. Then, it is shown that the dynamic step of pressure
gradient correction can be fast and locally consistent on edge-based generalized MAC-type unstructured meshes
which naturally verify the compatibility condition in the proposed discrete setting. By the way, a new accurate
front-tracking Lagrangian-advection technique is also introduced for multiphase flows.

This new method preserves the fully vector formulation of both the prediction and correction steps of the
original scheme, the primary unknowns being (v,∇p) and ρ by advection, since the pressure Neumann-Poisson
problem remains eliminated. The efficiency of the present method is demonstrated through numerical results on
sharp test cases.

To cite this article: Ph. Angot, J.-P. Caltagirone and P. Fabrie, C. R. Math. Acad. Sci. Paris, Ser. I xxx,
XXX–XXX (2016).

Résumé

Une méthode cinématique de pénalité-projection vectorielle pour l’écoulement incompressible à
densité variable.

On présente dans cette Note une nouvelle version de la méthode de splitting par pénalité-projection vectorielle
décrite dans [1] pour le calcul des écoulements incompressibles à masse volumique et viscosité variables. Le principal
résultat est de rendre la correction vectorielle de vitesse complètement indépendante de la masse volumique ρ.
Cette étape devient donc purement cinématique et correspond à une décomposition rapide de Helmholtz-Hodge
proposée dans [2]. On montre que l’étape dynamique de correction du gradient de pression peut être rapide et
localement consistante sur des maillages généralisés de type MAC non structurés.
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Version française abrégée

L’idée clé pour la construction de cette nouvelle méthode (K-VPPε) repose sur les décompositions ra-
pides de Helmholtz-Hodge en domaine borné proposées dans [2] et analysées dans [3]. L’étape de correction
vectorielle en vitesse v est rendue purement cinématique. Elle correspond à une méthode de projection
à divergence nulle approchée pour obtenir la composante irrotationelle v̂ := ∇φ du champ de vitesse
prédit ṽ. L’étape dynamique de correction du gradient de pression est alors obtenue en introduisant le
concept de densité inertielle ρ calculée sur chaque arête du maillage principal et reliant les sommets
des inconnues scalaires p, φ et ρ. On montre qu’il existe ρ satisfaisant l’équation de consistance locale :
∇(ρ φ) = ρ∇φ = ρ v̂, et permettant de recouvrer un gradient de pression entre les sommets. En pratique,
comme la condition de compatibilité associée est naturellement satisfaite pour les maillages de type MAC,
le calcul de ρ est effectué facilement et de façon rapide à partir de ρ et d’une fonction de partage α, tandis
que φ est reconstruit à partir de son gradient connu sur les arêtes.

1. Introduction

We consider the numerical solution of unsteady incompressible flows with variable mass density and vis-
cosity. This is typically the case of incompressible or low-Mach dilatable and/or multimaterial multiphase
flows [13]. The design of efficient numerical methods, i.e. accurate, fast and robust, is still a challenging
issue [11], especially for multiphase flows with strong stresses [4]: large mass density or viscosity ratios,
large surface tension, open boundary conditions, fluid-structure interactions, or multi-physics problems.
Many refined techniques have been developped for the front-tracking or front-capturing of moving and
deformable phase interfaces, e.g. [10,12,13,14], and most of them use the very popular time-stepping
projection methods of Chorin-Teman for the flow solver.

Here, we focus on the important feature of velocity-pressure coupling with fully vector splitting methods
[1,4] which eliminate the pressure Poisson equation of scalar projection methods and thus the pressure
boundary condition. The main objective of this work is to show that the velocity correction step in the
vector penalty-projection (VPPε) method [1] can be made fully kinematic and completely independent
of the mass density. This is obtained by using fast Helmholtz-Hodge decompositions studied in [2,3]. A
similar result is obtained in [9] with a scalar projection method. Then, it is shown that the dynamic step of
pressure gradient correction can be easily made in a locally consistent way if the spatial discretization sat-
ifies a discrete compatibility condition that is verified for edge-based generalized MAC-type unstructured
meshes, already introduced in [1,7].

2. The kinematic vector penalty-projection method for the Navier-Stokes equations

Let us consider the incompressible Navier-Stokes model problem in the time-space domain (0, T ) × Ω
with homogeneous Dirichlet boundary condition for velocity v on (0, T )× Γ :

ρ (∂tv + (v· ∇)v)− div (2µ(ρ)d(v)) +∇p = f in (0, T )× Ω,

divv = 0 in (0, T )× Ω,

∂tρ+ v· ∇ρ = 0 in (0, T )× Ω,

v|Γ = 0 on (0, T )× Γ,

ρ(t = 0) = ρ0, v(t = 0) = v0 in Ω.

(1)
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Here, Ω is a connected and bounded domain in Rd (d ≤ 3) with a Lipschitz continuous boundary Γ := ∂Ω.
The strain rate tensor is denoted by d(v) := (∇v+(∇v)t)/2, the mass density by ρ, the dynamic viscosity
by µ = µ(ρ) and the pressure by p. The force field f usually includes the gravity force ρ g and the capillary
surface tension σ κnΣ δΣ supported by the interface Σ between the phases, where nΣ is a unit normal
vector on Σ, κ its local curvature and σ the surface tension coefficient.

2.1. The time semi-discrete scheme (K-VPPε)

The fast (K-VPPε) method, proposed here using a first-order linearly implicit scheme reads with
classical notations, for all n ∈ N such that (n + 1)δt ≤ T , δt > 0 being the time step, 0 < ε � 1 the
penalty parameter, and starting from the initial conditions ρ0 = ρ0, v0 = v0 and p0 = 0 in Ω :

(a) Standard prediction step:

ρn
(
ṽn+1 − vn

δt
+ (vn· ∇)ṽn+1

)
− div

(
2µ(ρn)d(ṽn+1)

)
+∇pn = fn in Ω,

ṽn+1
|Γ = 0 on Γ,

(b) Divergence-free velocity penalty-projection (VPP): purely kinematic step

ε v̂n+1 −∇
(
div v̂n+1

)
=∇

(
div ṽn+1

)
in Ω,

v̂n+1
|Γ = 0 on Γ,

(c) Velocity correction: vn+1 = ṽn+1 + v̂n+1 in Ω,

(d) Find the inertial density ρn such that (see Sect. 2.2):

∇(ρn φn+1) = ρn v̂n+1, with φn+1 reconstructed from its gradient v̂n+1 :=∇φn+1 in Ω,

(e) Explicit locally consistent pressure gradient correction: dynamic step

∇(pn+1 − pn) = −ρ
n

δt
v̂n+1 = − 1

δt
∇(ρn φn+1) or (pn+1 − pn) = −ρ

n φn+1

δt
in Ω,

(f) Advection and front-tracking of density (see Sect. 2.3):

ρn+1 − ρn

δt
+ vn+1· ∇ρn = 0 in Ω.

(2)

In the sub-step (d), the scalar potential φn+1 is theoretically equal to φn+1 :=
1

ε
divvn+1 up to an

additive constant, as a by-product of the (VPP) sub-steps (b, c). However, to avoid round-off errors in the
numerical computations when ε is very small up to machine precision, typically ε = 10−14, since we have
‖divvδt‖l2(0,T ;L2(Ω)) = O(ε δt), it is shown in [1,2] that it is far better to directly reconstruct φn+1 locally
from its known gradient ∇φn+1 := v̂n+1. This is easily carried out by using the circulation theorem with
the Stokes formula along each edge which gives a very fast numerical procedure. A similar technique is
also detailed in Section 2.2 to locally calculate ρn on each edge linking pressure vertices.

Since v̂n+1 = vn+1− ṽn+1 with (c), it is important to notice that the sub-steps (d) and (e) in (2) allow
us to write the effective velocity and pressure gradient corrections as in [1,4], v̂n+1 being the solution by
the (VPP) method of sub-step (b) which is now purely kinematic and completely independent on ρ :

ρn
vn+1 − ṽn+1

δt
+∇(pn+1 − pn) = 0 in Ω,

with ∇(pn+1 − pn) = −ρ
n

δt
v̂n+1 in Ω.

(3)

Then, if the calculation of the pressure itself is not necessary for physical reasons, the present method
reads more simply :
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(K-VPPε)



ρn
(
ṽn+1 − vn

δt
+ (vn· ∇)ṽn+1

)
− div

(
2µ(ρn)d(ṽn+1)

)
+∇pn = fn in Ω,

ṽn+1
|Γ = 0 on Γ,

ε v̂n+1 −∇
(
div v̂n+1

)
=∇

(
div ṽn+1

)
in Ω,

v̂n+1
|Γ = 0 on Γ,

Velocity correction: vn+1 = ṽn+1 + v̂n+1 in Ω,

Explicit pressure gradient correction: ∇(pn+1 − pn) = −ρ
n

δt
v̂n+1 in Ω,

ρn+1 − ρn

δt
+ vn+1· ∇ρn = 0 in Ω.

(4)

Another improvement of the present method is that the sub-step (b) in (2) can be also enforced by the
Dirichlet condition v̂n+1

|Γ = 0 and not only with the natural normal component v̂n+1·n|Γ = 0 as in [1,2,3].

Indeed, we can prove by a vanishing viscosity method that it yields a well-posed problem with a unique
solution v̂n+1 ∈ H1

0(Ω) when the boundary Γ is of class C1,1 or if Ω is a convex domain.
Now by summing the prediction and correction steps using vn+1 = ṽn+1 + v̂n+1 and (3), we get that

the unique solutions (vn+1,∇pn+1) and ρn+1 at each time step satisfy the equations below, even if the
practical scheme is never solved in this way but within two steps :

ρn
(
vn+1 − vn

δt
+ (vn· ∇)ṽn+1

)
− div

(
2µ(ρn)d(ṽn+1)

)
+∇pn+1 = fn in Ω,

vn+1
|Γ = 0 on Γ,

∇
(
divvn+1

)
= ε v̂n+1, and ∇(pn+1 − pn) = −ρ

n

δt
v̂n+1 in Ω,

ρn+1 − ρn

δt
+ vn+1· ∇ρn = 0 in Ω.

(5)

This formally shows that the (K-VPPε) method does produce the same numerical solutions as the original
(VPPε) one, and thus gives an O(δt) time accuracy of both velocity and pressure for the first-order scheme
with ‖divvδt‖l∞(0,T ;L2(Ω)) = O(ε δt), as numerically verified in [1].
Moreover, the velocity-pressure coupling in (2) can be interpreted as a new two-step artificial compres-
sibility scheme for variable density flows satisfying the pressure correction :

pn+1 = pn − ρn φn+1

δt
in Ω. (6)

2.2. Construction of the inertial density field ρ on a staggered generalized MAC-type mesh

The main important issue of the present (K-VPPε) method (2) is to show the existence at each time
step of the so-called inertial density ρ. Indeed, since the irrotational component v̂ of ṽ = v−v̂ is calculated
by the (VPP) sub-step (b), this also gives easily as a by-product the scalar potential φ such that v̂ =∇φ
as detailed further. Then, the inertial density ρ should verify the local consistency condition below which
is required to recover a pressure gradient :

∇(ρ φ) = ρ∇φ = ρ v̂ in Ω, with ρ = ρ on Γ. (7)

A necessary, and also sufficient condition if the domain Ω is simply-connected, to get q ∈ H1(Ω) such
that ∇q = ρ v̂ reads rot (ρ v̂) = 0, which gives the local compatibility condition because rot v̂ = 0 :

rot (ρ v̂) = ρ rot v̂ +∇ρ∧v̂ =∇ρ∧v̂ = 0, in Ω. (8)
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This condition is naturally satisfied in the proposed discrete setting below for edge-based generalized
MAC-type discretisations since ∇ρ is calculated between two vertices a, b along any edge where the
velocity components v̂· t are located, see Figure 1. Then from [2,3], since φ ∈ H2(Ω) ↪→ C(Ω) for d ≤ 3
and defined up to an additive constant, we can choose a continuous potential φ > 0 on the compact
domain Ω which yields ρ = q/φ.

In practice, the compatibility equation∇(ρ φ) = ρ v̂ in (7) can be solved locally on the spatial mesh with
a very fast numerical technique. Here, we consider the structured MAC staggered grid [10] or the edge-
based generalized unstructured staggered mesh of MAC-type [5,7] in the context of dispersed multiphase
flows. The edge-based generalized MAC mesh shown in Figure 1 is constructed in the spirit of Whitney’s
finite elements, see e.g. [6]. A typical configuration at time tn := n δt, in 2-D for sake of clarity, for a
triangular primal mesh is shown in Figure 2. The scalar unknowns p, φ, ρ, or divv are located at the
vertices of the primal mesh. The velocity components v· t, as well as the gradients of scalar potentials
∇φ or ∇p are located at the mid-point of any edge linking two neighbour vertices and oriented by a
unit vector t. We have verified in [1] that the underlying space discretization yields second-order errors
in O(h2) for the L2(Ω)-norm of both velocity and pressure; h being the mesh step. It is also easy to show
that the following important properties are exactly satisfied at the discrete scale: rot h(∇hφh) = 0 and
div h(rot hψh) = 0, ∀h > 0 for any scalar φ or vector potential ψ. This was numerically verified up to
machine precision in [2].

The discrete interface Σ between two phases is represented by a chain of Lagrangian markers having its
own connectivity table and defining a polygon with N marker sides (or surface-markers based on triangles
in 3-D). Each marker point belongs to a single cell in the primal mesh and this association is made by a
fast algorithm of ray-tracing [12] which also easily determines the intersections of the connected marker
chain with the edges separating two neighbour cells. Then, a phase function ξ is defined at each vertex
taking the value 1 or 0 depending whether the point lies inside or outside the polygonal chain.

Figure 1. Edge-based generalized MAC-type unstructured mesh. Topology of the 3-D primal mesh with vertices, edges, faces

and an interface Σ: p, ρ, φ unknowns located at all vertices a or b and velocity components v· t on each edge [a, b].

The calculation of φ and ρ is made by reconstruction of a scalar potential by integrating its known
gradient along all the edges in the primal mesh. Starting from one point where φ := 0 arbitrarily, we have
along any edge [a, b], which gives the value φb when φa is already known, and so on :∫ b

a

v̂· t dx :=

∫ b

a

∇φ· t dx = φb − φa, on any edge [a, b]. (9)

Now, the calculation of ρ must take account of the density variations and thus of the position of the
interface Σ. From one side using the generalized average formula, there exists ρ constant along the
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Figure 2. Detection of an interface represented by a Lagrangian marker chain on the primal mesh. Left: topology of the

primal mesh with vertices, edges, cells and the interface – Right: intersections of the connected marker chain cutting
across some primal edges.

segment [a, b] such that :∫ b

a

ρ v̂· t dx = ρ

∫ b

a

v̂· t dx = ρ (φb − φa) =

∫ b

a

∇(ρ φ)· t dx.

Hence, ρ satisfies the compatibility condition (7) along the edge [a, b]. From another side, denoting the
intersection point xΣ with the marker chain by c := Σ ∩ [a, b] and the distance d(a, b) := |b− a|, we have
also:∫ b

a

ρ v̂· t dx =

∫ c

a

ρ v̂· t dx+

∫ b

c

ρ v̂· t dx = (ρa |c− a|+ ρb |b− c|) v̂· t

=
(ρa |c− a|+ ρb |b− c|)

|b− a|

∫ b

a

v̂· t dx = (αρa + (1− α) ρb) (φb − φa), with α :=
|c− a|
|b− a|

.

Comparing the two expressions, we get ρ associated to the edge [a, b] as a weighted average :

ρ[a,b] = αρa + (1− α) ρb, on any intersected edge [a, b]; 0 ≤ α ≤ 1. (10)

Moreover, it is explained in the context of Discrete Mechanics [7,8] that the inertial density ρ and the
mass density ρ have different physical meanings.
A kinematic scalar projection (KSP) method, similar to the version proposed in [9], is now simply obtained
by replacing the (VPP) sub-step (b) in (2) by the standard technique for the divergence-free projection
of ṽ consisting to solve for φ the Neumann-Poisson problem: −∆φ = div (ṽ) with ∇φ·n = 0 on Γ.

2.3. A new front-tracking Lagrangian-advection method

A new simple but accurate Lagrangian front-tracking technique is now introduced for the advection
of interface Σ in the sub-step (2(f)) and the updating of density ρn+1 from the velocity field vn+1. The
algorithm which ensures a good mass conservation of the different phases is briefly described below :
a) Calculate the barycentric velocity vb(x) associated to each marker point x from the velocity com-

ponents vn+1· t on the edges bordering the primal cell where the marker lies.
b) Move the markers such that x′(t) = vb(t,x) by calculating the new position with the Heun Runge-

Kutta explicit scheme (RK2 or RK4 with the K-VPP method of second-order in time) :

xn+1 = xn +
δt

2

(
vnb (xn) + vn+1

b (xn + δtvnb (xn))
)
.
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c) Detect the cells in the primal mesh which are crossed by the updated marker chain with a ray-
tracing technique issued from computer graphics procedures [12] and according to that, update the
phase function ξ at the vertices .

d) Calculate the intersection points xΣ ∈ [a, b] between the marker chain segments and the edges [a, b]
of the crossed cells in the primal mesh.

e) From xΣ, calculate the dividing function α on each edge [a, b] oriented by t and cutted across by Σ.
f) Update the density ρ, the corresponding viscosity µ(ρ) and the inertial mass density

ρ[a,b] = αρa + (1− α) ρb, on any intersected edge [a, b].
g) Compute the local curvature κ(x) at each marker point x using the osculator circle crossing three

consecutive points.
h) Compute the force source term modelling the capillary effects fc := σ κ∇ξ on Σ to be included in

the force balance on any intersected edge.
i) Solve for the flow at time tn+1 = (n+ 1)δt with the method of velocity-pressure coupling.

3. Some validations with numerical experiments

The numerical results are performed with a time-step δt satisfying a CFL value of CFL = 0.5.

3.1. Perfect numerical verification of Laplace’s law: the static equilibrium of a droplet

The local curvature κ(x) is calculated at each marker point x by using the osculator circle defined by
x and its two neighbours. Thus, it should be exact when the interface Σ is a circle of radius R where
the constant curvature equals κ = 1/R or κ = 2/R for a sphere in 3-D. It is numerically verified up to
machine precision. For an ellipse of radius a and b in the polar coordinates, the analytical value equals :

κ(θ) =
a b

(a2 sin2 θ + b2 cos2 θ)3/2
, with θ ∈ [0, 2π].

The second-order accuracy in the L2-norm is achieved with respect to the mean distance between two
connected interface-markers for calculating the local curvature κ(x), as shown in Figure 3.

The emblematic case of capillary effects is the static equilibrium of a cylindrical or spherical droplet
[8]. Here, the issue is to attest the abilty of the whole numerical methodology to preserve the perfect
equilibrium during an arbitrary time. Let us consider a cylindrical drop of radius R with a constant
surface tension σ = 1 for two fluids of different densities. The computation is run with zero initial
conditions, the boundary condition v|Γ = 0 and the capillary force field fc = σ κ∇ξ on Σ with no gravity
force. Because the curvature is κ = 1/R 6= 0, exactly computed in our case with the markers chain,
the drop is likely to crash on itself with a speed equal to the capillary velocity. But since the flow is
incompressible, the locally isovolume flow induces a reaction force exerted on the interface that exactly
counter-balances the capillary force fc. Then, the static equilibrium is obtained instantaneously with a
uniform capillary pressure inside the droplet which equals Laplace’s law: pc = σ/R for a disk, pc = 2σ/R
for a sphere and pc = σ κ in general, whatever the densities.

The result shown in Figure 4 is computed within one time iteration only and exhibits no parasite
current. The exact uniform capillary pressure pc = 400Pa is obtained with a velocity field being exactly
zero both inside and outside the drop up to machine precision.
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Figure 3. Second-order space convergence rate for the local curvature of an ellipse with a = 1 and b = 0.75: error in L2-norm

versus number N of Lagrangian interface-markers.

Figure 4. Laplace uniform capillary pressure pc = 400Pa in a disk droplet of radius R = 2.5 10−3m for a constant surface

tension σ = 1N/m: the velocity field is zero in both cases with no parasite current. Left: unstructured mesh non-fitted to

the interface-markers circle – Left: unstructured mesh fitted to the interface.

3.2. Numerical results for a sharp benchmark: air bubble dynamics in melted steel

The test case of air bubble dynamics rising in liquid water, where the density ratio is ρl/ρg = 829,
viscosity ratio µl/µg = 56 with the air-water surface tension σ = 0.0714N/m, is reputed to be diffi-
cult to compute with the suitable mesh convergence property [11,13], and hence considered as already
discriminating.

Here, we show that the (K-VPPε) method can compute the case proposed in [4] of air bubbles arising
in a liquid melted steel with a density ratio ρl/ρg ≈ 8500, viscosity ratio µl/µg = 54 and surface tension
σ = 1.5N/m. The motion is induced by the vertical gravity force ρ g with g = 9.81m/s2 and the capillary
force fc = σ κ∇ξ. The size of the mesh is 128×256 Cartesian MAC cells, N = 128 Lagrangian markers are
used in the interface chain and the mesh convergence is reached. The cylindrical air bubble is initialized
assymmetrically at the bottom of the liquid column in order to create a lateral motion, and we have a
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symmetry boundary condition for the velocity components on the walls. A typical situation is shown in
Figure 5 where the interface is plotted over the pressure or the vertical velocity fields.

Figure 5. Dynamics of the air bubble of diameter d = 0.01m, mass density ρg = 1.1768 kg/m3, dynamic viscosity
µg = 1.85 10−5 Pa s in a vertical cavity of width l = 4 10−2m and heigth h = 10−1m. The bubble rises in the liquid

steel with ρl = 104 kg/m3, µl = 10−3 Pa s and σ = 1.5N/m. Left: pressure field p ∈ [−9235, 0]Pa (p = 0 at bottom left)

at time t = 0.05 s – Center: vertical velocity field vz ∈ [−0.48, 1.55]m/s and streamlines at t = 0.05 s – Right: Some
bubble positions and shapes during time and vertical velocity field vz at final time t = 0.2 s.

4. Conclusion

From the physical point of view, the main conclusion of this work is that the velocity correction
in a time-stepping method for the incompressible flow is fully kinematic and only concerned with the
Helmholtz-Hodge decomposition of the predicted velocity. Hence, this step includes no physics inside.
Conversely, the pressure gradient correction does link the mass density to induce the motion and perfectly
reproduce the dynamics of the phenomena. This assertion, which was only a conjecture till now, is here
validated by two physical examples.
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