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Multipoint scatterers with

zero-energy bound states ∗

P.G. Grinevich † R.G. Novikov‡

Abstract

We study multipoint scatterers with zero-energy bound states in
three dimensions. We present examples of such scatterers with multi-
ple zero eigenvalue or with strong multipole localization of zero-energy
bound states.

1 Introduction

We consider the model of point scatterers in three dimensions, which goes
back to the classical works [4], [6], [9], [3] and presented in detail in the book
[1]. For more recent results on such models, see [5], [2], [7] and references
therein. More precisely, we consider the stationary Schrödiger equation

−∆ψ + v(x)ψ = Eψ, x ∈ R
3, (1)

with multipoint potential (scatterer)

v(x) =
n

∑

j=1

vzj ,αj
(x), (2)
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consisting of n single-point scatterers vzj ,αj
(x), where each point scatterer

vzj ,αj
(x) is described by its position zj ∈ R

3 and its internal parameter αj ∈
R, where zi 6= zj if i 6= j.

In the present article we study multipoint scatterers v for which equa-
tion (1) admits non-zero solutions ψ ∈ L2(R3) at energy E = 0, or in other
words, we study the multipoint scatterers with zero-energy bound states.
These studies are motivated, in particular, by studies of low-energy scatter-
ing effects in three dimensions. To our knowledge, the question about zero-
energy bound states for multipoint scatterers was not considered properly in
the literature. Besides, our studies were stimulated by [8], where interest-
ing examples of regular rapidly decaying potentials with well-localized zero
energy bound states in two dimensions were constructed using the Moutard
transform technique.

Results of the present article include Proposition 1, Theorem 1 and Ex-
amples 1 and 2 given below.

2 Solitions of the Schrödinger equation with

multipoint potential

We say that ψ satisfies (1) iff

−∆ψ(x) = Eψ(x) for x ∈ R
3\{z1, z2, . . . , zn}, (3)

and

ψ(x) =
ψj,−1

|x− zj |
+ ψj,0 +O(|x− zj |) as x→ zj , j = 1, . . . , n, (4)

where
ψj,0 = 4παjψj,−1. (5)

In this article we use the same normalization of multipoint scatterers as in
the book [1], see pages 47, 112.

Proposition 1 A function ψ = ψ(x) satisfies (3)-(5) if and only if this
function admits the following representation:

ψ(x) = ψ0(x) +

n
∑

j=1

qjG
+(|x− zj |, E), (6)
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where
−∆ψ0(x) = Eψ0(x) for x ∈ R

3, (7)

G+(r, E) = −e
i
√
Er

4πr
, r > 0, i =

√
−1,

√
E ≥ 0 for E ≥ 0, (8)

and ~q = (q1, . . . , qn)
t satisfies the following linear system:

A~q = ~φ, (9)

where A is the n× n matrix

Aj,j′ =

{

αj − i
√
E

4π
for j′ = j

G+(|zj − zj′|, E) for j′ 6= j,
(10)

and ~φ = (φ1, . . . , φn)
t,

φj = −ψ0(zj), j = 1, . . . , n. (11)

Proposition 1 is a variation of statements used in the book [1].

3 Zero-energy bound states

Theorem 1 Equation (1) with multipoint potential v of the form (2) admits
a non-zero solution ψ ∈ L2(R3) at energy E = 0 if and only if there exists a
non-zero ~q such that

A~q = 0 for E = 0, (12)

n
∑

j=1

qj = 0, (13)

where A is defined by (10). In addition, the one-to-one correspondence be-
tween such solutions ψ and vectors ~q is given by:

ψ(x) = − 1

4π

n
∑

j=1

qj
1

|x− zj|
. (14)

Theorem 1 follows from Proposition 1, the property that

G+(| · |, 0) ∈ L2

loc(R
3),
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the linear independence of G+(| · −zj |, 0), j = 1, . . . , n, the following asymp-
totic formula for ψ of the form (14):

ψ(x) = − 1

4π|x|

n
∑

j=1

qj +O

(

1

|x|2
)

as |x| → +∞, (15)

and the following lemma:

Lemma 1 Let ψ0 satisfy (7) for E = 0 and:

ψ0 = ψ0,1 + ψ0,2, ψ0,1(x) = o(1) as |x| → ∞, ψ0,2 ∈ L2(R3). (16)

Then ψ0 ≡ 0.

Lemma 1 follows from the mean value property over balls for harmonic func-
tions, the Cauchy-Schwarz inequality and Liouville’s theorem for harmonic
functions.

In the next example we consider a scatterer consisting of four equal single
point scatterers located in the vertices of a regular tetrahedron.

Example 1 Let n = 4, zj ∈ R
3, |zj−zj′ | = s > 0 for all j 6= j′, 1 ≤ j, j′ ≤ 4,

αj = α = −(4πs)−1, and v be given by (2). Then E = 0 is a triple eigenvalue
for equation (1).

This statement follows directly from Theorem 1.
In the next example we consider a scatterer consisting of 2m equal single

point scatterers located in the vertices of a regular planar 2m-gon.

Example 2 Let n = 2m, z1, . . . , z2m ∈ R
3 be sequentially enumerated ver-

tices of a convex regular planar (belonging to a fixed plane) polygon with 2m
vertices,

αj = α = −
2m
∑

k=2

(−1)k

4π|zk − z1|
, (17)

and v be given by (2). Then:
α 6= 0, (18)

ψ(x) = − 1

4π

2m
∑

j=1

(−1)j+1

|x− zj |
(19)
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is a zero-energy bound state for equation (1);

ψ(x) = O

(

1

|x|m+1

)

as |x| → +∞. (20)

The point is that in this example the zero-energy bound state ψ is strongly
localized for large m.

In addition, we have the conjecture that E = 0 is a simple eigenvalue in
this example; it was checked numerically up to m = 48 using Theorem 1.

The property (18) follows from the formulas:

α = −
m+1
∑

k=2

(−1)kuk, uk =

{

1

2π|zk−z1| , k = 2, . . . , m,
1

4π|zm+1−z1| , k = m+ 1,
(21)

u2 > u3 > . . . > um+1 > 0. (22)

Formulas (17), (19) were obtained using (12) with qj = (−1)j+1, j =
1, . . . , n, and finding α such that (12) holds for αj = α, j = 1, . . . , n.

To prove the localization property (20) we choose orthogonal coordinates
such that

zj = r0 ωj, r0 > 0, ωj =

(

cos

(

π(j − 1)

m

)

, sin

(

π(j − 1)

m

)

, 0

)

,

j = 1, . . . , 2m. (23)

We have

1

|x− zj |
=

1

(R2 + r20)
1/2

+∞
∑

l=0

bl

(

2r0R

R2 + r20

)l

(νωj)
l, R → ∞, (24)

where
R = |x|, ν = x/|x|, ν = (sin θ cosφ, sin θ sinφ, cos θ),

θ, φ are the polar and azimuthal angles of ν, respectively, bl are the expansion
coefficients:

(1− t)−1/2 =

+∞
∑

l=0

blt
l, |t| < 1. (25)
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Thus,

ψ(x) =
1

4π

1

(R2 + r20)
1/2

+∞
∑

l=0

bl

(

2r0R

R2 + r20

)l
[

2m
∑

j=1

(−1)j(νωj)
l

]

, R→ ∞,

(26)

νωj = sin θ cos

(

φ− π(j − 1)

m

)

.

The localization (20) follows from the property:

Cl :=
2m
∑

j=1

(−1)j(νωj)
l = 0 for 0 ≤ l ≤ m− 1. (27)

In turn, identity (27) follows from the formulas:

Cl = Cl(θ, φ) = (sin θ)l
l

∑

k=−l

clke
ikφ for some clk depending on m; (28)

Cl(θ, φ+ π/m) = −Cl(θ, φ). (29)

This completes the proof of Example 2.
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