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Multipoint scatterers with zero-energy bound states *

We study multipoint scatterers with zero-energy bound states in three dimensions. We present examples of such scatterers with multiple zero eigenvalue or with strong multipole localization of zero-energy bound states.

Introduction

We consider the model of point scatterers in three dimensions, which goes back to the classical works [START_REF] Bethe | Quantum Theory of the Diplon[END_REF], [START_REF] Fermi | Sul moto dei neutroni nelle sostanze idrogenate[END_REF], [START_REF] Ya | Scattering by a singular potential in perturbation theory and in the momentum representation[END_REF], [START_REF] Berezin | Remark on Schrödinger equation with singular potential[END_REF] and presented in detail in the book [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF]. For more recent results on such models, see [START_REF] Dell'antonio | A brief review on point interactions, Inverse problems and imaging[END_REF], [START_REF] Badalyan | Scattering by acoustic boundary scattering with small wave sizes and their reconstruction[END_REF], [START_REF] Grinevich | Faddeev eigenfunctions for multipoint potentials[END_REF] and references therein. More precisely, we consider the stationary Schrödiger equation

-∆ψ + v(x)ψ = Eψ, x ∈ R 3 , (1) 
with multipoint potential (scatterer)

v(x) = n j=1 v z j ,α j (x), (2) 
consisting of n single-point scatterers v z j ,α j (x), where each point scatterer v z j ,α j (x) is described by its position z j ∈ R 3 and its internal parameter α j ∈ R, where

z i = z j if i = j.
In the present article we study multipoint scatterers v for which equation (1) admits non-zero solutions ψ ∈ L 2 (R 3 ) at energy E = 0, or in other words, we study the multipoint scatterers with zero-energy bound states. These studies are motivated, in particular, by studies of low-energy scattering effects in three dimensions. To our knowledge, the question about zeroenergy bound states for multipoint scatterers was not considered properly in the literature. Besides, our studies were stimulated by [START_REF] Taimanov | Two-dimensional Schrödinger operators with fast decaying potential and multidimensional L 2kernel[END_REF], where interesting examples of regular rapidly decaying potentials with well-localized zero energy bound states in two dimensions were constructed using the Moutard transform technique.

Results of the present article include Proposition 1, Theorem 1 and Examples 1 and 2 given below.

Solitions of the Schrödinger equation with multipoint potential

We say that ψ satisfies (1) iff

-∆ψ(x) = Eψ(x) for x ∈ R 3 \{z 1 , z 2 , . . . , z n }, (3) 
and

ψ(x) = ψ j,-1 |x -z j | + ψ j,0 + O(|x -z j |) as x → z j , j = 1, . . . , n, (4) 
where

ψ j,0 = 4πα j ψ j,-1 . (5) 
In this article we use the same normalization of multipoint scatterers as in the book [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF], see pages 47, 112. 3)-( 5) if and only if this function admits the following representation:

Proposition 1 A function ψ = ψ(x) satisfies (
ψ(x) = ψ 0 (x) + n j=1 q j G + (|x -z j |, E), (6) 
where

-∆ψ 0 (x) = Eψ 0 (x) for x ∈ R 3 , (7) 
G + (r, E) = - e i √ Er 4πr , r > 0, i = √ -1, √ E ≥ 0 for E ≥ 0, ( 8 
)
and q = (q 1 , . . . , q n ) t satisfies the following linear system:

A q = φ, ( 9 
)
where A is the n × n matrix

A j,j ′ = α j -i √ E 4π for j ′ = j G + (|z j -z j ′ |, E) for j ′ = j, ( 10 
)
and φ = (φ 1 , . . . , φ n ) t , φ j = -ψ 0 (z j ), j = 1, . . . , n. ( 11 
)
Proposition 1 is a variation of statements used in the book [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF].

3 Zero-energy bound states Theorem 1 Equation ( 1) with multipoint potential v of the form (2) admits a non-zero solution ψ ∈ L 2 (R 3 ) at energy E = 0 if and only if there exists a non-zero q such that A q = 0 for E = 0, (12)

n j=1 q j = 0, ( 13 
)
where A is defined by (10). In addition, the one-to-one correspondence between such solutions ψ and vectors q is given by:

ψ(x) = - 1 4π n j=1 q j 1 |x -z j | . ( 14 
)
Theorem 1 follows from Proposition 1, the property that

G + (| • |, 0) ∈ L 2 loc (R 3 ),
the linear independence of G + (| • -z j |, 0), j = 1, . . . , n, the following asymptotic formula for ψ of the form (14):

ψ(x) = - 1 4π|x| n j=1 q j + O 1 |x| 2 as |x| → +∞, (15) 
and the following lemma:

Lemma 1 Let ψ 0 satisfy ( 7) for E = 0 and:

ψ 0 = ψ 0,1 + ψ 0,2 , ψ 0,1 (x) = o(1) as |x| → ∞, ψ 0,2 ∈ L 2 (R 3 ). ( 16 
)
Then ψ 0 ≡ 0.

1 follows from the mean value property over balls for harmonic functions, the Cauchy-Schwarz inequality and Liouville's theorem for harmonic functions.

In the next example we consider a scatterer consisting of four equal single point scatterers located in the vertices of a regular tetrahedron.

Example 1 Let n = 4, z j ∈ R 3 , |z j -z j ′ | = s > 0 for all j = j ′ , 1 ≤ j, j ′ ≤ 4, α j = α = -(4πs) -1
, and v be given by [START_REF] Badalyan | Scattering by acoustic boundary scattering with small wave sizes and their reconstruction[END_REF]. Then E = 0 is a triple eigenvalue for equation [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF].

This statement follows directly from Theorem 1.

In the next example we consider a scatterer consisting of 2m equal single point scatterers located in the vertices of a regular planar 2m-gon.

Example 2 Let n = 2m, z 1 , . . . , z 2m ∈ R 3 be sequentially enumerated vertices of a convex regular planar (belonging to a fixed plane) polygon with 2m vertices,

α j = α = - 2m k=2 (-1) k 4π|z k -z 1 | , ( 17 
)
and v be given by [START_REF] Badalyan | Scattering by acoustic boundary scattering with small wave sizes and their reconstruction[END_REF]. Then:

α = 0, (18) 
ψ(x) = - 1 4π 2m j=1 (-1) j+1 |x -z j | (19)
is a zero-energy bound state for equation [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF];

ψ(x) = O 1 |x| m+1 as |x| → +∞. ( 20 
)
The point is that in this example the zero-energy bound state ψ is strongly localized for large m.

In addition, we have the conjecture that E = 0 is a simple eigenvalue in this example; it was checked numerically up to m = 48 using Theorem 1.

The property (18) follows from the formulas:

α = - m+1 k=2 (-1) k u k , u k = 1 2π|z k -z 1 | , k = 2, . . . , m, 1 4π|z m+1 -z 1 | , k = m + 1, (21) 
u 2 > u 3 > . . . > u m+1 > 0. ( 22 
)
Formulas ( 17), (19) were obtained using (12) with q j = (-1) j+1 , j = 1, . . . , n, and finding α such that (12) holds for α j = α, j = 1, . . . , n.

To prove the localization property (20) we choose orthogonal coordinates such that

z j = r 0 ω j , r 0 > 0, ω j = cos π(j -1) m , sin π(j -1) m , 0 , j = 1, . . . , 2m. (23) 
We have

1 |x -z j | = 1 (R 2 + r 2 0 ) 1/2 +∞ l=0 b l 2r 0 R R 2 + r 2 0 l (νω j ) l , R → ∞, (24) 
where R = |x|, ν = x/|x|, ν = (sin θ cos φ, sin θ sin φ, cos θ), θ, φ are the polar and azimuthal angles of ν, respectively, b l are the expansion coefficients:

( 

1 -t) -1/2 = +∞ l=0 b l t l , |t| < 1. ( 25 
This completes the proof of Example 2.

(- 1 )

 1 j (νω j ) l , R → ∞, (26)νω j = sin θ cos φ -π(j -1) m .The localization (20) follows from the property:C l := 2m j=1 (-1) j (νω j ) l = 0 for 0 ≤ l ≤ m -1. (27)In turn, identity (27) follows from the formulas:C l = C l (θ, φ) = (sin θ) l l k=-lc lk e ikφ for some c lk depending on m; (28) C l (θ, φ + π/m) = -C l (θ, φ).
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