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Abstract

The effect of the antiangiogenic drug sunitinib on the tumor size
and the metastatic burden evolution are studied statistically and math-
ematically. For this, a new model SunitinibTGI is built, which allows
to model with accuracy the phenomenon, thus giving us more informa-
tion on the behavior of a tumor treated with sunitinib, distinguishing
a phase of resistance to sunitinib under certain conditions. Together
with some correlations that are noted on the data set, these tools allow
us to better understand the metastatic response to sunitinib adminis-
tration, notably in a neoadjuvant setting.
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1 Introduction

Cancer is, in France, the first cause of mortality ([12]). In spite of the con-
stant progress of medical research, cancer is still an illness which is poorly
understood in a lot of aspects.

Cancer is a disease which is born when some cells of the organism break
free from the genetic rules and undergo limitless mitosis. This leads to the
creation of a mass of cells with uncontrollable growth within the organs,
which have no utility whatsoever for the organism: the primary tumor. At
some stage, the tumor cannot grow more due to the lack of nutrients. But
some primary tumors find themselves able to induce what is called angio-
genesis, which allows to stimulate its own vascularization. This way, the
tumor can access more nutrients and grow even more.

Some tumor cells may be able to escape the organ, through the blood
or the lymph nodes, giving the possibility of a dissemination of tumor cells
inside the whole organism. These cells are then able to settle in a new organ
(colonization), and to grow inside the organ to form a secondary tumor.
This latest process is called metastatic process, and is the least understood
and the most lethal part in most cancers.

One of the possible ways to treat cancer is therefore to block angiogen-
esis, in order to deprive the tumor from its nutrients, thus weakening it.
Among the most well-known antiangiogenic drugs, we can quote the Su-
tent (or sunitinib, for the name of the molecule), which has recently been
the object of a controversy. One of the main goals for the administration
of such a medicine is the size reduction of the primary tumor, allowing to
remove the tumor through surgery much easier later. And if, indeed, this
specific consequence has been evidenced by several experiments, John Ebos,
in [6], has made a connection between the administration of the drug and
the metastatic acceleration for mice. Administering such a drug could lead
to an acceleration of the metastatic process for mice, and ultimately reduc-
ing their life expectancy.

During this six-month-long internship carried out at inria Bordeaux,
within the monc team, the main objective was to study the connection be-
tween these two factors, through the analysis of Mr John Ebos’ data. The
first objective was to try and describe as accurately as possible the evolution
of the size of the primary tumor in those experiments, when treated and un-
treated. A benchmark of classical models had to be performed, to compare
their relative efficiency to fit the data. The fitting process itself had to be
studied in order to pick the best (most stable, accurate and quicker) opti-
mization algorithm. Faced with rather unsatisfying results when fitting the
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Figure 1: Description of the effect of sunitinib

treated data to classical methods, a new model was built to try and com-
prehend the evolution of the disease. From this model, called SunitinibTGI,
that we proved to be more efficient statistically than the classical models
for our data (and with identifiable parameters), we were also able to learn
more things on the primary tumor size evolution. Besides, performing cor-
relations on several amounts of data showed some interesting results.

Incorporating this new primary tumor size evolution model into a more
classical metastatic process equation allowed us to check whether the metastatic
acceleration was indeed notable or somewhat insignificant mathematically.

The report that follows will, for that reason, first discuss the biological
point of view more specifically. Then, the various benchmarks performed
will be presented, which will justify the creation of a new model ; its prop-
erties will then be studied. Finally, correlations and the metastatic growth
will be discussed.

It should be noted that 4 annexes are present within the report: an an-
nex devoted to cancer biology, an annex devoted to the statistical tools that
were employed during the internship, an annex related to the optimization
benchmark that was carried out, and finally an annex devoted to the nu-
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merical methods employed. All the code used for the internship was written
using Matlab, and the internship was an extension of the work carried out
previously by Mr Aristoteles Camillo ([12]).

2 Description of the problem

2.1 Nature of the issue

2.1.1 A brief summary on sunitinib

Sunitinib (marketed by Pfitzer as Sutent) is a drug that was approved in
2006 by the Food and Drug Administration simultaneously for two diseases:
metastatic kidney cancer, and GIST (Gastro-Intestinal Stromal Tumor) as
a second-line drug (after the potential failure of imatinib). This drug acts
like a targeted bio-therapy: it does not attack straightly the cells, but at-
tacks instead a specific biological action mechanism used for the growth
of tumor cells. That action mechanism is angiogenesis, the biological pro-
cess by which new blood vessels are created from pre-existing ones, allowing
the tumor to grow beyond a certain size to be able to eventually metastasize.

Sunitinib acts as an inhibitor for Tyrosine Kinase Receptors, the enzymes
which receive the signals emitted by the primary tumor allowing the further
growth of the vasculature within the primary tumor. Among the recep-
tors that are inhibited by the drug are the VEGFRs (Vascular Endothelial
Growth Factor Receptors) and PDGFRs (Platelet-Derived Growth Factor
Receptors).

Besides, sunitinib is a small molecule, and is therefore able to enter into
the cells, unlike most antibodies.

2.1.2 Controversy on the effect of sunitinib in a neo-adjuvant
setting

In 2009, the American biologist John Ebos and his associated co-workers
published an article [6], that was seen as a major breakthrough. In this
article, Ebos showed that a metastatic acceleration could occur for a mouse
treated with sunitinib in a neo-adjuvant perspective (before tumor resec-
tion). These results seem to indicate that a treatment of sunitinib in a
neo-adjuvant setting can reduce the life expectancy of mice.

This matter of the exact effect of sunitinib on tumor and metastatic ki-
netics is absolutely crucial, for it is a very common and widespread antian-
giogenic drug. For that reason, other studies were led on human patients,
which tended to show that there was no clear metastatic acceleration and

9



Figure 2: Presentation of the 2009 article by J. Ebos et al.

overall survival reduction when administered with sunitinib.

This issue was central in the internship.

2.2 Data description

All the data this internship is built upon were provided by Dr Ebos, the
American biologist who first assumed the idea of connection between suni-
tinib administration and metastatic acceleration.

The data is extracted from mice, and all are drawn from two different
cell lines: breast and melanoma, both treated with sunitinib.

The breast data are data on primary tumor size and, for some groups,
metastatic burden. 88 mice were subject to the experiment, and, among
them, 33 were used as control individuals (so they were injected with the can-
cer cells, but not with the treatment). Six various groups, differing by their
scheduling, can be distinguished. For four out of six groups, the primary
tumor was resected, allowing to evaluate the evolution of the metastatic
burden when sunitinib is administered in a neo-adjuvant perspective. For
the two remaining groups (31 and 32), the primary tumor was not resected
; these groups are useful for they permit to study tumor growth kinetics on

10



Figure 3: Description of the experimental process for a group of mice

Figure 4: Description of the experimental process

11



Group number Dose injected (mg.kg−1) Treatment days Resection day

1 120 24-30 32

2 60 24-38 39

31 60 11-60 -

32 120 2-19 -

51 60 20-33 34

6 60 20-33 34

Figure 5: Summary of all breast-related data that were dealt with during the
internship

Group number Drug employed Cell line Treatment days

1A 516 regular 1-41

1B sunitinib regular 1-41

2A 516 resistant 1-41

2B sunitinib resistant 1-41

Figure 6: Summary of all melanoma-related data that were dealt with during
the internship

a longer scale. Figure 5 displays the different treatments for each group.

Another data set corresponds to melanoma-related cells. 38 mice are
subject to such an experiment, among which 22 are exploited for control
analysis (so, untreated) and the 16 remaining mice can be divided into 4
groups. All these data have in common the fact that they only show pri-
mary tumor growth. Besides, all tumors are treated from day 1 to day 41,
and the treatment is then stopped. These pieces of data, thus, allow to
evaluate the impact of a stop of the treatment. Two various drugs (516 and
sunitinib) were used on two different cell lines (regular or sunitinib-resistant
cells). All the useful information regarding this data set are indicated on
figure 6.

All primary tumor growth volume data are expressed in mm3. The
volume is calculated thanks to the formula: V = 0.5width2.length, where
length and width of the tumor cells are measured using a caliper. The
metastatic burden is measured using bio-luminescence, and is therefore ex-
pressed in photons per second.

12



Figure 7: Surface of the objective function to be optimized for a Gompertz
function

2.3 Benchmark of optimization algorithms

Our objective during this internship is to model the evolution of tumor
growth. On a mathematical point of view, we need to solve the following
least-square minimization problem (yi designates the data, p the parameters
of the model and M the chosen model):

minp(
∑

i(yi −M(ti; p))
2)

To address this issue, a test case was carried out on a Gompertz model
and the data for mice which were not administered any treatment.

Several algorithms and methods were implemented to be compared.
Were tested the constant gradient, variable gradient, Gauss-Newton and
Levenberg-Marquardt algorithms. The results are described in the annex
devoted to Optimization in this report, but only its outcome will be dis-
played here.

We concluded that the Nelder-Mead and the Levenberg-Marquardt al-
gorithms were to be favoured in terms of stability and efficiency.

One important point that needs to be understood is that, no matter
how accurate our optimization process is, there is still a huge influence of
the initial condition. For that reason, for each data fitting that will be
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Figure 8: Fit of the average data of the group 3 by the exponential model

performed in the subsequent parts of the report, the optimization algorithm
was launched a significant number of times, with various starting points.

3 Classical models of tumor growth without treat-
ment ([1])

The first data that needs to be fitted with models is the evolution of the
size of the primary tumor of mice for control groups (so when the mice are
not treated). For that reason, all the following models were implemented
on MATLAB, and the Nelder-Mead algorithm was used each time, on the
objective function described in the previous part. This allowed us to find
the parameters of each model which were able to describe as accurately as
possible the evolution of the primary tumor. We then computed the result
that was obtained to see how close it was from the actual data. This way,
we were able to compare all the following models.

3.1 Exponential model

Tumor growth in this model is supposed to be exponential.

dV

dt
= λV (1)

where λ is the growth rate of the primary tumor.

14



Figure 9: Fit of the average data of the group 3 by the exponential-linear
model

3.2 Exponential-linear model

This model takes into account more elements, when compared with the
exponential model. It follows 2 successive phases:

• an exponential growth with a constant rate a0.

• a linear growth with a constant rate a1.


dV

dt
= a0V (t), t ≤ τ

dV

dt
= a1, t ≥ τ

V (t = 0) = V0

(2)

To use the model, we often resort to a single differential equation, which
approximates the behavior described by the previous equations:

dV

dt
=

a0V (t)

(1 + (a0V (t)
a1

)ψ)
1
ψ

(3)

ψ is often chosen equal to 20 (value taken from [1]). We notice that when
V is small, the growth of the model is very close to the exponential growth
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Figure 10: Fit of the average data of the group 3 by the Gompertz model

; when V is large, the model gets closer to a linear one.

Besides, if we want the solution to be continuously differentiable, we see
that we necessarily have τ = 1

log(
a1
a0V0

)
.

On a biological point of view, the model represents the fact that the
growth of the tumor is almost unlimited at first, but that as the nutrients
go scarce, its growth will then necessarily be restricted, and become linear.

3.3 Gompertz model

In this model, tumor growth is written this way:

dV

dt
= (a− b ln(V ))V (4)

In the equation, a is the tumor proliferation rate, and b is the rate of
exponential decay of the proliferation rate.

Biologically, the model is based on the same reasoning as the exponential-
linear model, but with the supplementary assumption that the tumor size
has an upper boundary: the carrying capacity V0 exp(ab ). It cannot grow
until infinity.
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Figure 11: Fit of the average data of the group 3 by the Gomp-Exp model

3.4 Gomp-Exp model

The Gomp-Exp model is built upon the following idea: at first, when all
nutrients are available, the tumor follows an exponential growth. When the
nutrients start to go scarce, then the tumor growth is akin to a Gompertz
model. This can be formalized as:

dV

dt
= min(λV, (a− b ln(V ))V ) (5)

3.5 Power Law model

A way to express tumor growth is through what is called the Power Law
model, which can be written this way:

dV

dt
= aV γ(t) (6)

In this equation, a represents the proliferation rate of the tumor, sup-
posed to be the same for all same cell lines, and γ is related to its vasculature
of the tumor in the current situation. Since we are specifically studying the
angiogenic process, and that we will try and model the vascularization of the
tumor, we can see that, independently from its performances, this model has
parameters that are extremely relevant to the subject that we are working
on.
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Figure 12: Fit of the average data of the group 3 by the Power Law model

3.6 Logistic model

In this model, the carrying capacity K is considered as a constant in the
problem. We can then write the model as:

dV

dt
= aV (t)(1− V (t)

K
) (7)

In this expression, a is considered as a rate controlling the velocity of the
growth. In this model, as the tumor volume reaches the carrying capacity,
the growth is gradually reduced.

3.7 Dynamic CC model

This model considers the carrying capacity K as a variable representing the
tumor vasculature. The dynamic can then be written as:

dV

dt
= aV (t) log(

K(t)

V (t)
)

dK

dt
= bV (t)

2
3

V (t = 0) = V0,K(t = 0) = K0

(8)

The biological reasoning behind such a model is close from the reasoning
guiding the other models. We can note that the factor 2

3 is chosen because
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Figure 13: Fit of the average data of the group 3 by the Logistic model

it is assumed that the carrying capacity growth is proportional to the tumor
surface.

3.8 Comparison of the accuracy of the untreated growth
models

We implemented all the previous models and fit the data from control groups
with them, using the Nelder-Mead algorithm as the optimization method.
The parameters are the result of the optimization problem of minimization
of the SSE. The results for this statistical comparison are summed up on
figure 14 (the meaning of each one of the statistical tools employed are de-
scribed in the Annex Statistics).

For the statistical tools SSE, AIC and RMSE, it is more interesting to
have a small value (see the Annex Statistics to understand why) ; as for the
R2, the closer it is to 1, the better the actual fit is.

We notice that for all criteria, two models seem to have to be favored:
the Gompertz model and the Power Law model. We can note that since
our work aims at modeling the effect of anti-angiogenic drugs, the biological
meaning of the parameters related to the Power Law model, notably through
their modeling of vascularization, could be quite useful.
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Figure 14: Comparison of the accuracy of the untreated growth models

4 Implementation of the treatment in a tumor growth
model

4.1 Shape of the treated data

Before performing any analysis, it is important to focus on the treated tumor
data (volume) graphically. We can separate all the data set into 3 differ-
ent kinds of behavior, 2 for breast-related data and a specific behavior for
melanoma-related data.

’Behavior breast 1’, as displayed in figure 15, shows a tumor growth
which can be distinguished into 3 phases.

• Phase 1 (pre-treatment): the tumor grows and no treatment is ad-
ministered yet. We can consider this growth as identical to the tumor
growth for control groups, when absolutely no treatment is adminis-
tered.

• Phase 2 (growth arrest): this phase begins when the treatment starts
to be administered, and it lasts for a certain duration which does not
seem to always coincide with the duration of the treatment. During
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Figure 15: Shape of the treated data for breast cancer [’behavior breast 1 and
2’]
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Figure 16: Shape of the treated data for melanoma [’behavior melanoma’]

this phase, the treatment seems to be extremely efficient, and to stop
nearly all tumor growth.

• Phase 3 (resistance phase): after a certain duration, the tumor re-
grows, and the treatment, while still administered at the same dose,
seems to be far less effective.

’Behavior breast 2’ corresponds to the same data, but for mice that had
their tumor resected sooner, and they then only exhibit the first two phases
of the previous behavior.

The third one, ’behavior melanoma’, can be divided into two phases.
First, there is no pre-treatment phase, for the treatment begins the day af-
ter the tumor is implanted. Then, we notice in the data a first phase of tumor
growth, which seems to last for about the same duration as the administra-
tion of the treatment. A second phase seems to occur when the treatment
stops, with a tumor growth that is accelerated. But these observations, as
for the exact duration of this phase, need to be verified mathematically and
statistically.

4.2 Approach based on pharmacokinetics ([15])

Most models in the literature are built upon the idea of pharmacokinetics.
Here, in this specific framework, we can see the whole human body, and in
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Figure 17: Unicompartmental model (absorption rate ka and elimination
rate k

particular the blood system, as a compartment, as shown in figure 17 (uni-
compartmental model with absorption). First, the drug enters the body, its
amount is given by a variable Xa. The drug reaches the gut, in which an ab-
sorption occurs, the absorption being defined by the variable ka. The drug
is then spread in the body, and is eliminated, the elimination being modeled
by a variable k. We call CAA the concentration of drugs actually in the
body, and we call Tadmin(m), the times at which the drug is administered,
at a dose Dm. Besides, we call V1 the fictive volume of the compartment.

We have the following equations:

{
dX(t)
dt = kaXa(t)− kX(t)

dXa(t)
dt = −kaXa(t)

First, let us suppose that the drug is only administered once at a time
Tadm and a dose D. We obtain Xa(t) = X0a exp(−ka(t − Tadm)). Which
leads us to

dX
dt = (kaX0a exp(−ka(t− Tadm))).(t > Tadm).

Using the variation of constants, we finally find

X(t) = D ka
ka−k (exp(−k(t− Tadm))− exp(−ka(t− Tadm))).(t > Tadm).

Now, if we suppose that we administer the drug at times Tadmin(m),
every time with the dose Dm, we obtain the following result:

X(t) =
∑

mDm
ka

ka−k (exp(−k(t−Tadm(m)))−exp(−ka(t−Tadm(m)))).(t >
Tadm(m)).

Since X(t) is the amount of drug in the body, we have X(t) = CAA(t)V1.
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Figure 18: Fit of the average data of the group 31 by the Exp-log kill model

cAA(t) =
∑

m
Dm
V1

ka
ka−k (exp(−k(t−Tadm(m)))−exp(−ka(t−Tadm(m)))).(t >

Tadm(m)).

In what will ensue, cAA will be calculated this way.

4.3 Classical models of tumor growth with treatment

The optimization of the objective function described in the ”Optimization”
subsection is once more computed, but with a different data set (treated
tumor) and with new models, supposedly more able to describe the data.

4.3.1 Exp-log kill

The Exp-log kill model can be expressed with the following equation:

dV

dt
= (α− βcAA(t))V (t) (9)

The idea behind this model is that the natural tumor growth (illustrated
by the parameter α) is compensated by the effect of the treatment (param-
eter β). It can be noted that the effect of the treatment is assumed to be
proportional to the drug concentration in the organism and to the tumor
volume (assumed to be proportional to the total number of tumor cells).
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Figure 19: Fit of the average data of the group 31 by the Gompertz-Norton-
Simon model (3 degrees of freedom)

4.3.2 Gompertz-Norton-Simon model

The Gompertz-Norton-Simon model can be written as:

dV

dt
= (α− β ln(V (t)))V (t)(1− ecAA(t)) (10)

It can be noted that this model is an adaptation of the Gompertz model
used for control groups, where a simple pharmacokinetic term was added,
partly determined by the parameter e, which needs to be fitted as a supple-
mentary parameter.

4.3.3 SimeoniAA model

This model is an adaptation of the Simeoni model used for control data. It
can be expressed as:

dV

dt
=

a0V (t)

(1 + (a0a1V (t))ψ)
1
ψ

(1− cAA(t)

cAA(t) + IC50
) (11)

The pharmacokinetics is this time implemented by a somewhat different
term, which allows once more to evaluate the drug effect through its con-
centration in the organism (IC50, in this model, corresponds biologically to
the required drug concentration to halve tumor growth).
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Figure 20: Fit of the average data of the group 31 by the SimeoniAA model
(3 degrees of freedom)

4.3.4 Simeoni2004 model

This model, first expressed in [14], is a more sophisticated model to try and
model tumor growth which adopts the following form (once again adapted
from the Simeoni model in control groups):



dx1
dt = a0x1(t)

[1+(
a0
a1
V (t))ψ ]

1
ψ
− k2cAA(t)x1(t)

dx2
dt = k2a(t)x1(t)− k1x2(t)
dx3
dt = k1[x2(t)− x3(t)]
dx4
dt = k1[x3(t)− x4(t)]
V (t) = x1(t) + x2(t) + x3(t) + x4(t)

This model results from a pharmacokinetic multi-compartmental ap-
proach of the problem (4 compartments), analogous to what was described
in the ’Approach based on pharmacokinetics’ subsection of the report. Here,
the primary tumor volume is considered as the sum of four different tumor
cells: x1 indicates the portion of proliferating cells within the total tumor
volume, and the other functions x2, x3 and x4 represent the non-proliferating
cells at later stages.

4.3.5 Treated dynamic CC model

This model is adapted from the dynamic CC model used for the fitting of
untreated data. It can be written as the following equations:

26



Figure 21: Fit of the average data of the group 31 by the Simeoni2004 model
(4 degrees of freedom)

Figure 22: Fit of the average data of the group 31 by the dynamic CC model
(2 degrees of freedom)
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Figure 23: Fit of the average data of the group 31 by the Hahnfeldt model
(3 degrees of freedom)

{
dV
dt = aV (t) ln(K(t)

V (t) )
dK
dt = aV (t)

2
3 − ecAA(t)V (t)

As a reminder, K represents here the carrying capacity (upper boundary
of tumor size), which is taken as a variable. We note that the pharma-
cokinetic adaptation of the model considers the effect of the treatment as a
term which reduces the carrying capacity of the tumor. This last statement
makes sense biologically, for the antiangiogenic effect of sunitinib is indeed
supposed to reduce the vasculature of the tumor and thus the carrying ca-
pacity in this model.

4.3.6 Hahnfeldt model

This model was first pitched in [17].

{
dV
dt = aV (t) ln(K(t)

V (t) )
dK
dt = bV (t)− dV (t)

2
3 − ecAA(t)K(t)

The differences are notable in the evolution of the carrying capacity. In-
deed, unlike the treated dynamic CC model, the influence of tumor volume
on carrying capacity growth is decomposed into two phenomena (birth and
death) illustrated by two distinct parameters (b for birth rate and d for
death rate). Besides, the effect of the treatment on the carrying capacity is
this time proportional to the carrying capacity instead of the tumor volume.
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This model actually causes several issues. First an issue of parameter
identifiability: indeed, b and d can be easily compensated, and therefore
none of them can be found to be identifiable. For that reason, and since
the only element that matters is not the exact value, but the proportion
between the different parameters in this equation, we decide to set b as 1.
This way, we manage to obtain a model for which parameters are identifiable.

A second issue is a stability one when we want to optimize the different
parameters. Indeed, for an important range of starting points, the algo-
rithm will converge very slowly. The starting points for parameters in our
algorithm therefore need to be chosen very carefully.

4.3.7 Limits

If the models that were previously defined seem totally consistent theoreti-
cally, they are faced with some difficulty when confronted with actual data.
Indeed, as it can be noted in figures 18 to 23, the models do not seem able
to fit the data properly, in particular the early phases. Notably, the whole
pre-treatment and growth arrest phases described on figure 15 can not be
fitted efficiently. This is a true problem, for it necessarily reduces the rele-
vance of all the models to fit this kind of data.

This observed result is actually rather unsurprising, for the effect of the
treatment is in these models only considered by the drug concentration in
the organism. The more drug concentration is in the organism, the more
tumor growth should be reduced, according to these models, which, as we
saw in the ’Shape of the treated data’ subsection, does not seem to be the
case. Therefore, no model is able to predict a change in the kinetic response
when the treatment does not change ; yet, it is the case in the data we are
working on. Besides, a good part of these models include parameters that
are not identifiable when confronted with actual data.

Since no model in the studied literature seems to be able to model these
various phases, it appears useful to create a new model that will be better
at evaluating the primary tumor kinetic response to treatment.

4.4 SunitinibTGI model

4.4.1 Required features

Before starting to actually build the model, it is important to detail the
features that our model will have to contain to be deemed satisfying.

• Ability to perform a better fit on the early stages of the treatment:
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this is precisely the reason we build this new model for.

• Better overall fit quality: we want this new model to bring overall
better statistical results on the fit of all phases, compared with models
in the literature.

• Simplicity of the model: we want the model to contain mathematical
expressions as simple as possible, so that the calculation time to find
a solution to the model is as short as possible.

• Biological meaning of the parameters: we want this model to include
parameters conceived so that their values may bring us biological in-
formation on the situation and the problem we are working on.

• Parameter identifiability: we want this model to have parameters being
identifiable. We set a tolerance maximum threshold of 50 % on the
error (NSE) as our limit for parameter identifiability.

4.4.2 Shape of the selected model

The model is built upon 3 phases: during the first phase, ’pre-treatment’
the growth is controlled by two parameters (a and γ1). When the treatment
starts and is efficient, a second phase ’growth arrest’ begins ; the growth is
controlled by 2 parameters (ā, γ1) , and the duration of this phase is con-
trolled by a parameter τ . Then, when the tumor regrows and the efficacy
of the treatment seems to gradually fade, a new phase, called ’resistance
phase’ starts, controlled itself by two parameters (a, γ2).

We can note the differences in growth kinetics between the three types
of data that we had distinguished in the part ’Shape of the treated data’:

• For the data sets that follow ’behavior breast 1’, we can see that the
three phases are represented and that the parameter ā can be chosen
equal to 0.

• For the data sets that follow ’behavior breast 2’, we can note that only
the first two phases are represented (hence, no need to consider the γ2
parameter), and that ā is there, also, equal to 0.
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• For the data sets that follow ’behavior melanoma’, we can note that
only the last two phases are represented, and that ā, in this case,
cannot be picked as equal to 0.

4.4.3 Expression of the model SunitinibTGI

The conceived model, a 5-parameter model, can be written this way:

dV

dt
=


aV γ1 if t ≤ tstart
āV γ1 if tstart < t ≤ tstart + τ
aV γ2 if t > tstart + τ

(12)

where tstart is the day at which the treatment starts to be administered.

The choice to use three successive Power Law models can be justified by
the analysis performed in the part ’Comparison of the accuracy of the un-
treated tumor growth models’, which showed that this model was satisfying
to fit untreated data, and that it had biological relevance.

Besides, it is a simple model (an explicit solution can be very easily

found for each one of the 3 phases: V (t) = (V 1−γ1
0 + a(1− γ1) t)

1
1−γ1 ), with

parameters that have a biological meaning, relevant to the context.

A biological interpretation possible for this model is the following.

Of course, when no treatment is administered, the situation is exactly
the same as for the control groups. When the treatment starts and is still
efficient (second phase), we suppose that it prevents the cells from prolifer-
ating and will modify the value of the proliferating rate a into a ā. When
the treatment loses a part of its efficacy (third phase), we suppose that it is
related to the fact that the tumor cells have developed a form of resistance
to sunitinib. This resistance may be biologically related to the opening
of a another way to pursue angiogenesis. Among the hypotheses that we
could draw is that when the antiangiogenic drug is administered at first, it
completely blocks and starves the tumor cells that would otherwise grow
through the receptors (RTKs) blocked by sunitinib. But not all cells grow
thanks to these receptors. Some of them may grow through other cellular
pathways. Some may notably grow through hypoxia, and do not require the
same amount of nutrients. This way, the angiogenesis would start over when
those hypoxic cells would get more significant in the whole pool of tumor
cells. Unaffected by the antiangiogenic drug, they would be able to grow in
spite of the administered treatment. But, since their vasculature is much
less stable, their growth would be less strong than tumor cells that would
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grow through RTKs. Anyway, this change in vasculature could help us jus-
tify this switch of γ between the two phases. Of course, this interpretation
can not be confirmed, but is one way of seeing the model with biological
relevance.

Still, on a mathematical point of view, two major problems seem to rise
with that definition of the model.

4.4.4 Smoothing of the model

First, the function that is calculated is not continuously differentiable, for
its derivative is of course discontinuous.

This causes a problem, notably related to parameter identifiability. In-
deed, statistical analyses that were performed showed that the lack in differ-
entiability for the model led to significantly larger NSEs for all parameters,
preventing parameter identifiability in all cases.

For that reason, we decided to smooth the model to make it continuously
differentiable, and in particular the explicit solution, since a statistical anal-
ysis that was performed showed that it was the smoothing that led to the
best improvement in stability. With this new smoothing, the model writes
as:

V1 + (Vτ − V1)RTd + (V2 − Vτ )Rτ (13)

where V1 is the explicit solution of the model in the first phase, Vτ the
explicit solution of the model in the second phase and V2 the explicit solu-
tion of the model in the third phase. As for the smoothing terms, they can
be expressed as:

RTd = 0.5(1 + tanh(pcont(t− tstart))

Rτ = 0.5(1 + tanh(pcont(t− tstart − τ))

In this smoothing term, pcont is chosen by trial and error (here, its value
is set to 2.1). The logic behind the use of the smoothing term RTd is that,
when t << tstart, RTd ≈ 0. When t draws near tstart, RTd draws near
1, and it remains close to 1 ∀t ≥ tstart. Thanks to this, we thus obtain a
continuously differentiable model. This mathematical process is only there
for parameter identifiability, and so that it checks mathematical properties
that will make it easier to be used.
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Figure 24: Parameter identifiability for the SunitinibTGI model [the first
table shows the maximal uncertainty for τ ]

4.4.5 Parameter identifiability in the model SunitinibTGI

The second problem is the question of parameter identifiability. Indeed,
since the sunitinibTGI model is a 5-parameter model, it is unlikely that all
parameters can be found to be identifiable when confronted with the data.
But, fortunately, we performed analyses that showed that a certain amount
of parameters could be set, without damaging fit quality.

First, by performing the likelihood ratio test between a model with a set
a and a free a, we see that we can set a with a very thin loss in fitting quality.
Besides, this a can be set at the same value for all cells belonging to the same
cell line. It is therefore consistent (and biologically relevant) to consider a
as the average of the a obtained from the fit of the control groups with a
Power Law model. Indeed, since a is supposed to model growth before any
treatment is even administered, it is consistent that it could be learnt from
control data. Setting a leads to a first improvement in parameter identifia-
bility.

Yet, the same statistical analyses (likelihood ratio test) showed that it
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was not interesting to set γ1 to the average of the control groups γ fitted
with a Power Law model, for it led to a dramatic decrease in fit quality. This
result can be explained by individual variability between mice, and because
the influence of γ1 on the trajectory of our graph is much more important.
For that reason, individual variability can really make major differences. It
is possible however to set an a priori on γ1, to pick it as a variable following
the γ control distribution fitted with Power Law model. This makes sense
biologically, for the same reason as the fact of setting a ; these parameters
control the pre-treatment tumor growth, and it is thus relevant to consider
that they can be learnt from the control groups. There again, restricting
the range in which we can choose γ1 leads to an improvement in parameter
identifiability.

The third step towards an even better parameter identifiability is the
setting of ā. This decision is not really motivated by a biological reasoning,
but rather by data analysis, and statistical analyses analogous to the ones
who led to the setting of a and the restrictions on γ1. They showed that ā
could be set at the same value for all cells from the same cell line. ā con-
trolling tumor growth in the early stages of the treatment administration,
it would not be consistent at all to learn it from control groups. For breast
cancer cells, since we have a clear arrest in tumor growth during this phase,
we quite simply choose ā equal to 0. For melanoma cells, we first fit a model
with a free ā. The median value of ā obtained by this process is then the
value to which we will set ā in ulterior analyses.

This way, we end up obtaining a model with only 2 parameters left totally
free (τ and γ2), and one parameter constrained in a specific distribution (γ1).
We therefore improve quite significantly the parameter identifiability of the
model [see figure 24].

4.4.6 Comparison with classical models

This model was compared, for each data set, to the other classical models for
treated tumor growth ; the results are displayed on figure 25. We can note
that for all data sets, and for all statistical tools, the SunitibTGI models
seems better fitted to model the process of treated tumor growth.

4.4.7 Notable results related to the model ([14])

Now that the model has been shown to be both efficient in terms of fitting
capacity and in terms of parameter identifiability, we can try and evaluate
the values of its parameters on the various data sets, and hence note a few
interesting elements on the biology of the problem.
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Figure 25: Comparison of the SunitinibTGI model with classical models
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Figure 26: SunitinibTGI modeling for an individual mouse injected with
breast cancer
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Figure 27: SunitinibTGI modeling for an individual mouse injected with
breast cancer

Figure 28: SunitinibTGI modeling for an individual mouse injected with
melanoma
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1. We notice that during the ’resistance’ part of the treatment for breast
cancer, tumor growth is significantly weaker than growth without a
treatment at all. Indeed, if we perform for instance the analysis on
groups 31, we notice that we obtain medians γ1 = 0.56 (for a NSE of
3%) and γ2 = 0.40 (for a NSE of 2%).

It seems to imply that even after the treatment has its efficacy clearly
reduced, it still has an impact, and a noteworthy influence to reduce
tumor growth. The interpretation based on hypoxia that was described
in the ’Expression of the model SunitinibTGI’ subsection could be an
explanation of it.

2. We do not have a sufficient amount of data to be able to model and
compute the optimal drug scheduling, as we would want to. Indeed,
since a scheduling rests on two significant elements (dose and adminis-
tration time), to be able to perform a proper analysis, we would need
to have examples with one of those two features (only) as common
elements, and the data sets that were provided, did not allow us to
obtain this kind of result. Still, the parameters that are computed by
the model can help us make a decision between 2 different scheduling.

For instance, we can note that for group 31, which has the follow-
ing scheduling (60 mg/kg on 40 days), we have medians γ1 = 0.56
(NSE = 2%) and γ2 = 0.40 (NSE = 3%) ; for group 32, with the fol-
lowing scheduling (120 mg/kg on 7 days), we have medians γ1 = 0.57
and γ2 = 0.52 (NSE = 2%).

We may note that a larger dose in a shorter time period, leads to
a ultimate tumor growth much higher later, and to a similar tumor
growth during treatment. Therefore, if we are interested in reducing
as much as possible the tumor size before surgery, for instance, we can
see that we should, generally, privilege treatment 31.

3. For the melanoma data, and the sunitinib-resistant cells, we first notice
that is is statistically, and in terms of fitting capacity, advantageous to
set τ at the value for the time of end of the treatment. We can conclude
from it that in this specific situation (melanoma/sunitinib-resistant
cells), the end of the efficacy phase coincides exactly with the end of
the treatment. We then deduce that in the case of melanoma, there
is no post-treatment efficacy phase ; once the treatment is stopped,
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tumor automatically regrows without any delay. And, more impor-
tantly, the treatment does not look as if its efficacy were significantly
reduced during its whole administration.

4. We also note that the higher the tumor volume is at the beginning
of the treatment, the higher τ will be. Indeed, for the group 31 for
instance, which has an initial tumor volume of 196.7 mm3 we have
τ = 5.28 days (NSE = 39%) ; and for group 51 (initial tumor volume:
439.5 mm3), we have τ ≥ 14.

Hence, the higher the initial tumor volume is, the longer the growth
arrest phase will last. This result tends to give credit to the hypoxia
interpretation of our model that we had made in the subsection ’Ex-
pression of the model SunitinibTGI’: the higher the number of cells
that would grow with the RTK pathway is, the longer the antiangio-
genic drug will have to proceed to completely eliminate those cells to
give place to the hypoxic ones (related to treatment resistance).

4.4.8 Limits of the model

This model is not exempt from problems and limits. Among them, we
can note that no direct and explicit connection to pharmacokinetics
has been clearly established. The impact of pharmacokinetics is obvi-
ously in the parameters, but the exact relationship that connects, for
instance, drug concentration and the value of some of the parameters,
is not obvious at all.

One idea that was developed during this internship to connect them
turned out to be fruitless.

Considering the formula τ = inf{t,
∫
D(t) ≥ s} (where D is the admin-

istered dose, and s a parameter to be optimized) was meaningful, for
it implied that above a certain threshold of concentration, the drug
partly lost its efficiency, and the tumor cold grow again. Unfortu-
nately, as it can be evidenced with the fact that τ depends on the
initial tumor volume, obviously completely unrelated to the adminis-
tered dose, this was not a correct way of seeing the problem.

Establishing an explicit connection with pharmacokinetics would bring
a supplementary layer to the model, but during this internship, it did
not look that obvious to make.
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Figure 29: Correlations overall survival - tumor size pre-resection for control
groups

5 Data correlations

Correlations between various data sets were also calculated. 2 of them
actually stood out from the rest.

The first correlation is between overall survival and the size of the
tumor prior to resection. As shown in figures 29 and 30, we note that
for control groups, the lower the primary tumor size is before resec-
tion, the longer the mouse can be expected to live, which makes sense
from a biological point of view. But, for mice that are treated, this
correlation does not exist any more (and even an inverse correlation
seems to be existing, even though not statistically significant). This is
quite surprising. Among the possible explanations are that some tu-
mors are more affected in their size reduction than others by sunitinib,
making the correlation that was spotted in control groups fade away.
This interpretation would give a neutral role to sunitinib in terms of
evolution of overall survival between control groups and treated ones.
Another possible explanation would be that when sunitinib acts the
most (tumor size reduced before resection), the overall survival would
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Figure 30: Correlations overall survival - tumor size pre-resection for treated
groups
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Figure 31: Correlations tumor size pre-resection - metastatic burden for
control groups

Figure 32: Correlations tumor size pre-resection - metastatic burden for
treated groups
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tend to decrease, which would give a harmful role to sunitinib. From
this analysis only, we cannot choose a perfect interpretation, but it is
still an interesting result to consider.

The second correlation which is interesting to consider (figures 31 and
32) is between the size of the primary tumor before resection, and
the metastatic burden 15 days after resection. What we can note
is that for the control groups, the higher the primary tumor size is,
the higher the metastatic burden will be, which, once more, makes
sense biologically. But for mice that were treated with sunitinib, the
correlation does not exist anymore (and even seems to be, even though
statistically insignificant, inverse). This can also be explained with an
asymmetrical influence of sunitinib: it would affect some tumors more
than others all while not modifying the related metastatic burden, its
role would therefore be neutral in the issue. Or we can see it as, when
the tumor size is lower, then the sunitinib has acted more, and a more
significant metastatic burden can be found, which would, under those
circumstances, show that the sunitinib would indeed provoke more
metastatic burden. It would then be harmful. But once more, from
those singular experiments, we cannot know which interpretation is
sound.

6 Computing the metastatic burden ([7], [18])

Our model for primary tumor growth SunitinibTGI can then be used to
try and describe the metastatic burden, as evidenced by the following
section.

6.1 General equation

Based on [7], we see that the evolution of the metastatic burden can
be evaluated thanks to the following transport equation:


∂ρ
∂t + ∂(ρg)

∂V = 0
g(V0)ρ(t, V0) = µVp(t)
ρ(0, V ) = 0

where ρ(V, t) is the metastatic density that rules the metastatic popu-
lation, for a given volume V at a specific time t ; g is the function that
describes the growth ; Vp(t) describes the volume of the primary tumor
; µ is a parameter that describes the metastatic process (colonization
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Figure 33: Evolution of the metastatic burden (control groups)

and dissemination).

Thanks to the analyses that were led in the previous part, we know
that we have obtained a model allowing to evaluate the volume of
the primary tumor Vp(t) more precisely than classical models. Here,
we then choose Vp(t) following the SunitinibTGI model, g following
a Gomp-Exp model, and we approximate this equation numerically
using the method of characteristics.

6.2 Conclusions

When numerically solved with the method of characteristics, this equa-
tion returns us a ρ, which can be displayed in the graphs on figures
33 and 34. What we can note is that no clear acceleration is actu-
ally found computationally between the cases where no treatment is
administered, and the cases where sunitinib is actually administered.
This tends to show that the results of metastatic acceleration do not
look like they actually have a total relevance on a statistical point of
view.
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Figure 34: Evolution of the metastatic burden (treated groups)

6.3 Prospects

Some work still needs to be done in order to improve the metastatic
process modeling. For instance, being able to distinguish (through an
analysis of µ) the dissemination and the colonization in the metastatic
process could lead us to more insightful results. Indeed, if we were
able to distinguish these two parts of the metastatic process, we would
therefore be able to see how each one of those two phenomena can be
affected with external parameters independently, instead of consider-
ing the whole process as one.

In particular, in this case, to be able to model the impact of hypoxia,
it could prove to be interesting to try and express µ as a function of KV ,
where K is the vascularization and V the volume. This way, a possi-
ble connection between hypoxia and metastatic acceleration could be
shown (or dismissed).

Finally, we have made sure all along that all of our parameters were
statistically significant (low NSE,...). This also gives us hope that it
may be possible to build, from that basis, a predictive model, which
would be able, from a given number of input points for primary tumor
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size and metastatic burden, to predict with a relative accuracy the
evolution of the disease.

7 Conclusion

As a summary, we could say that the mathematical data analysis
of the primary tumor and the metastatic burden evolution for mice
does not show a clear connection between sunitinib administration
and metastatic acceleration.

This result was obtained after an optimization algorithm benchmark
showed that the Nelder-Mead or the Levenberg-Marquardt algorithms
were the most fitted to deal with the problem. Among the classi-
cal models of untreated tumor growth, the Power Law seemed to be
one of the most interesting in terms of statistical results and biologi-
cal meaning. When working on treated tumor data, we saw that no
classical model was really able to describe accurately the evolution of
the primary tumor. For that reason, a new model, whose properties
were checked, was built. This new, more efficient model, allowed to
find new interesting results on the evolution and the primary tumor,
and on correlations between some elements of data. Incorporating this
model into a classical metastatic equation helped show that the accel-
eration was clearly not obvious from a mathematical point of view.
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8 Annex

8.1 Cancer biology ([9])

8.1.1 Overview

Cancer is, in France, the first cause of mortality: about 30% of people
die from this disease. In spite of the intensive research that is being
carried out, cancer remains a disease that is not entirely understood.
The aim of this annex is to describe, as a complement to the rest of
the internship report, the basements of cancer biology.

To describe it in a few words, cancer is a disease which induces the
uncontrolled growth of a group of cells, the primary tumor, within an
organ. At a certain stage, some cells from the primary tumor man-
age to leave the original organ through the blood vessels or the lymph
nodes of the organ, to settle in a new organ. The cells that carry out
this trip through the body are called metastases. Metastases are, in
most cancers, the main cause of death, and they also explain the dif-
ficulty in treating cancers ; fighting the primary tumor is not enough
to cure the patient, since other tumors may grow in other parts of the
body.

This annex deals with two different subjects: a description of the
disease itself and of its biological mechanisms, and a little summary of
the possible treatments.

8.1.2 Detailed description of the disease

During a cancer, some cells will grow and divide abnormally. The new
structure that then rises from this uncontrolled growth is called a tu-
mor. But for the tumor to actually trigger a cancer, it must satisfy a
certain range of conditions, such as:

• the ability to sustain proliferative signals. The cancer cells are not
controlled in their proliferation by the environment, as opposed
to normal cells in organism.

• the ability to evade growth suppressors. The cancer cells have
the ability to ignore the signals that restrict cell growth and pro-
liferation.

• the ability to resist cell death, in particular apoptosis. Apoptosis
is the programmed cell death, which notably occurs when the cell
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is abnormal. The deactivation of the signal can then prevent the
organism from destroying cancer cells.

• the ability to get replicative immortality. Unlike all normal cells,
cancer cells can process an unlimited number of cell cycles, and
undergo mitosis an unlimited number of times.

• the ability to induce angiogenesis: the primary tumor can send
itself signals to create blood vessels, which will supply the tumor
in nutrients, and will allow it to grow even more.

• the ability to invade the full body (with metastases) through
blood vessels and the lymph system.

All these properties, common to all cancers, are the core ideas of what
the disease is capable of, and of how it proceeds. In the following sec-
tions, we will focus more precisely on the evolution of the disease.

Genetics

Like all biological phenomena, cancer is a disease in which genetics
plays an important part. Indeed, cancer is born from mutations which
affect specific genes, and which lead to malfunctions in various phases
of the cell cycle. The three main genes responsible for it are:

Oncogenes: oncogenes are mutated genes, which send signals to cause
uncontrolled cell growth. The said cells are then liberated from the
constraint of limited cell proliferation. If an oncogene appears after a
gene mutation, the first step to cancer is reached.

Tumor suppressor genes: even once the oncogenes have appeared, de-
fense mechanisms against cancer still exist in the organism. Among
these mechanisms, we can count tumor suppressor genes. These are
genes which have the ability to slow down (or even arrest) the cell cy-
cle. This way, even if a cell proliferates too much because of oncogenes,
the tumor suppressor genes still retain control on how it divides, and
can stop the process or even induce the apoptosis (programmed cell
death) of the cell. But if a mutation occurs, reducing (or erasing) the
power of the gene, then the first defense mechanism of the organism
is neutralized. In most cancers, the mutation of these genes occurs in
the early stages of the disease.

DNA repair genes: another defense mechanism in the organism. These
genes code for proteins which will solve the errors due to a mutation.
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Therefore, they widely reduce the development of tumor cells. But
they only reduce it, because these genes have limited repairing power,
and if the error rate is considerably larger than the repairing capacity
of the gene, the cells will still uncontrollably grow. And of course, a
mutation of these genes, if it leads to a reduced power or a vanished
power, greatly accelerates the development of the tumor cell.

If those conditions are verified, we have then reached the first stage of
cancer. Due to these genetic mutations, the cells will grow uncontrol-
lably in the organ, and give birth to a large cell structure, the tumor.
Yet, at this point, the tumor can still be benign, and can fail to de-
velop more. For it to happen, several events need to occur.

Development of the tumor inside the organ

The first thing that comes to mind is the fact that to grow, the tumor
needs to be supplied in nutrients through the blood. In some cases, the
tumor cells, perceived as abnormal by the organism, are not supplied.
This way, the tumor cells cannot live long, and are destroyed not long
after they are created. Thus, even if the tumor cells undergo uncon-
trollable growth, since they can not stay alive, it is not an immediate
problem.

The issue is raised when the tumor is supplied in blood and nutrients.
This is related to the fact that the tumor, in most situations, is not
made of cells which are all abnormal. Indeed, the tumor often manages
to include normal cells in the structure (the normal cell tissue within a
tumor is called the stroma). This way, the organism, recognizing these
cells as normal ones, will supply the tumor in nutrients and blood. The
tumor will then be able to grow, while being fed by the organism itself.

It is good to note that at this stage, the tumor can still be considered
as benign. Therefore, it is not -yet- really dangerous for the patient,
unless the tumor is located in a very fragile and specific organ (such
as the brain for instance). If the illness is treated at this step, it can
be cured with no problem.

The tumor has then managed to grow to a much larger size (gener-
ally around 1mm3). But it is still limited in its development by the
amount of blood that is supplied; as it is now, it is still not a danger
for the individual. For it to grow more, the tumor has to receive more
nutrients. The tumor, in all cancers, ends up being able to induce a
phenomenon called angiogenesis.
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Angiogenesis is a physiological process through which new blood ves-
sels are created. It is a normal and vital process (crucial for wound
healing for instance), but it may be impeded by the tumor so that
it can grow more. In all cancers, the tumor will be able to induce
angiogenesis, leading to the development of a vascular system within
the tumor. This way, the tumor will be supplied in more nutrients,
and will be able to grow even more and to considerably develop. Once
this step has been reached, the likelihood of cancer development con-
siderably rises and the illness needs to be treated as quickly as possible.

On a biological level, angiogenesis in induced by the tumor through
the VEGF protein (Vascular Endothelial Growth Factor). This protein
is part of the system that restores the supply in oxygen when blood
circulation is inadequate. Signals leading to the production of VEGF
proteins are emitted by the tumor itself. The tumor, through previous
mutations, carries VEGF-R, receptors for the VEGF proteins. This
way, the tumor stimulates the production of VEGF proteins for itself,
which makes the local vascular system expand. The tumor, being sup-
plied in more nutrients, can therefore grow again. It is noteworthy
that all the receptors related to this type of protein signals can be
called receptor tyrosine kinases (RTKs).

We have then reached the second stage of cancer.

Metastatic process

The tumor is now a very large cell structure located inside an organ,
and which is able to grow because of angiogenesis. Yet, the cancer is
not (unless it is located near the brain) a deadly threat for now on. It
will become one if it is capable to metastasize.

Metastatic dissemination is the process by which some cells from the
tumor will leave the organ in which they are located to reach a new
organ (through the blood vessels or the lymphatic system), where they
will settle and create a new tumor. This way, the cancer can dissemi-
nate in the entire organism. This metastatic process is responsible for
90 % of patients’ death. For this reason, many studies are carried out
to try and understand te phenomenon.

Epithelial to Mesenchymal Transition
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The EMT (Epithelial to Mesenchymal Transition) is a recent discov-
ery, which may explain the process by which cells from the tumor can
leave it to join a blood vessel or a lymph node.

Epithelium is a type of organic tissue, which lines the surface of blood
vessels and organs. It is made of a large number of epithelial cells
bound together. The epithelial cells are not free to move, they are all
connected with very tight junctions.

On the other hand, mesenchyme is a type of tissue which is character-
ized by associated cells (mesenchymal cells), loosely bound together.
The mesenchymal cells can move rather freely and are not tightly con-
nected to one another.

It has recently been shown that some cancerous cells, mostly located
in the periphery of the tumor, were able to move from an epithelial
cell state to a mesenchymal one. Thanks to this transition, the cells
are able to move more freely, and they can then join blood vessels
or the lymph nodes, in order to reach another organ. They become
metastases. Once this step has been reached, we are at the third stage
of cancer.

Dissemination and colonization

Once in the blood vessels, the metastases have to escape the immune
system (few cells will actually survive), which often perceives them as
stranger cells, and then destroys them. What ensues can be divided
into two parts: dissemination and colonization.

During the dissemination phase, the metastases will be in the blood
or the lymph nodes.

At some point, the metastases can reach a new organ and settle there,
through MET (Mesenchymal to Epithelial Transition), the inverse of
the EMT process. Thanks to this, the metastases can form a new
structure (secondary tumor) where they will be jointly bound (as an
epithelial tissue) in the new organ. They have thus colonized the or-
gan, and the secondary tumor will start to grow again, and eventually
to metastasize. Once an organ has been colonized, we have reached
the fourth stage of cancer.
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It can be interesting to note that the early stages of the colonization
phase can be very long, and even seem like dormancy. Indeed, for a
while, at the beginning of the colonization, the size of the tumors do
not change, and the health of the patient does not worsen either.

But once this dormancy phase is over, metastases will grow more and
more aggressive, and the health of the patient will just go declining.

8.1.3 Current treatments

Some treatments exist to improve the life and the health of ill patients.
If they are presented separately in this part, they are very often com-
bined for more efficacy.

Chirurgy

The first - and seemingly more obvious - treatment is the resection
(surgical removal) of the primary tumor. It seems like a pretty in-
tuitive step, but the effects of such an operation are contrasted. If
for some patients, a notable improvement in health was noticed, it
is not the case for all in general. Indeed, one interesting aspect con-
cerning the primary tumor is that it both sends proliferative signals
to itself, but that it also sends inhibition signals. Removing it has
led, in some cases, to a notable acceleration of metastatic growth, and
then a worsening of the state of the patient. Therefore, the issue of
whether removing surgically the tumor is the best option, when it is
not located in an organ where it is directly lethal, is still an open one.

Chemotherapy

The chemotherapy is the administration of the combination of sev-
eral drugs, which will have as a common behaviour, to target the cells
that divide very quickly. Of course, the idea is this way to destroy
the tumor and metastatic cells, which divide uncontrollably. But not
only cancerous cells are destroyed through this process: some blood
cells, hair cells, among others, will also be targeted. For that reason,
chemotherapy is a very important type of treatment, but with a lot of
adverse effects.

Targeted therapies
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The idea of targeted therapies is, instead of destroying the cells di-
rectly, to attack it through its biological mechanisms, through extra-
cellular (outside the cell) or intracellular pathway. One of the most
useful ways to fight cancer is to combat angiogenesis, with what is
called antiangiogenic drugs. Let us consider the example of sunitinib.

The sunitinib is a molecule which inhibits cellular signaling by tar-
geting receptor tyrosine kinases (RTKs), including receptors for vas-
cular endothelial growth factor receptors (VEGF-Rs). The inhibition
of these targets allow to reduce tumor vascularization, and can lead
to the apoptosis of several cancer cells. This may allow to shrink the
tumor.
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8.2 Statistical tools

We display here a little overview of the various statistical tools used
for data analysis in the report.

Let us consider a data set (yi)i∈[1,n] and f the model considered to fit
the data (with (ti)i∈[1,n] the time range)

8.2.1 Sum of squared errors (SSE)

The sum of squared errors (SSE) can be defined as:

SSE =
n∑
i=1

(yi − f(xi))
2 (14)

This statistical value is then simply the error, added for all points,
committed by considering the model instead of the data. The best
model, in that regard, is then the model for which the error is the
smallest.

But the criterion, as helpful as it may be, is often insufficient to fully
compare 2 different models.

8.2.2 Root mean squared error (RMSE)

The root mean squared error (RMSE) can be written as:

RMSE =

√∑n
i=1(yi − f(xi))2

n
(15)

RMSE is a criterion which is very close to SSE.

8.2.3 Akaike Information Criterion (AIC)

Let L be the maximum value of the likelihood function for the model,
and k its number of parameters. The AIC is then defined as:

AIC = 2k − 2 ln(L) (16)

The model that has the lowest AIC is then the model that has to be
favored. We notice that as the likelihood maximum is high, the AIC
goes down, and that AIC grows with the number of parameters. This
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criterion is then a way to choose the best model, all while penalizing
the number of parameters. Indeed, the more parameters we add, the
lowest the error will be ; but the number of parameters is also an im-
portant criterion to consider. This criterion takes it into account, by
considering it as a penalty for a model.

This criterion is therefore adapted to the comparison of models with
different number of parameters.

8.2.4 R2 coefficient

Let us denote

ȳ = 1
n

∑n
i=1 yi

SStot =
∑

i(yi − ȳ)2

SSreg =
∑

i(f(ti)− ȳ)2

SSres =
∑

i(yi − f(ti))
2

R2 = 1− SSres
SStot

(17)

The R2 coefficient is then a measure of how much better it is to con-
sider the model to fit the data instead of simply choosing the constant
function, equal to the average of all data. R2 can be negative ; in that
case, it means that it is better to consider the constant function to fit
the data. A negative R2 is a sign that the model considered is not
able to fit the data at all.

8.2.5 Log-likelihood ratio

The likelihood ratio test is a statistical test which allows to compare 2
models, when they do not have the same number of parameters. Let
us call Ln the likelihood for the model with fewer parameters, La the
likelihood for the model with more parameters. Then, the likelihood
ratio is calculated this way:

D = −2 ln(
Ln
La

) (18)

The likelihood ratio allows therefore to evaluate which one of the two
models considered is to be favored.
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8.3 Optimization methods for the Gompertz model

8.3.1 Introduction

Setting of the problem

As of today, the phenomenon of tumor growth is still an open prob-
lem. Indeed, no equation is considered as the equation which would
perfectly model the data. Yet, for, notably, biological reasons, the
Gompertz model is one of the most acclaimed models to describe this
growth ([1], [2]). During this project, a simplified model of Gompertz
growth, depending on 2 parameters, α and β, was considered. The
goal of this project was to compute several optimization algorithms in
order to find the values of α and β that allowed the best fit for the
tumor growth data provided. This work is interesting for the results
that were found about the efficiency of the optimization algorithms for
a rather simple model can be extended to more complicated ones.

All the following results were computed using Python and its numeri-
cal (numpy) and graphical (matplotlib) libraries.

The Gompertz model

The Gompertz model is a model which is commonly used in the liter-
ature to describe tumor growth. It can be written as follows:


dV

dt
= (α− β ln(V ))V

V (0) = V0

(19)

We notice that the form of the solution curve (figure 35) is compatible
with a phenomenon of tumor growth. During the early stages of can-
cer, there are very few tumor cells, restricting, therefore, the growth
rate. Once the number of tumor cells rises, the growth rate will un-
doubtedly increase until a certain stage. Indeed, since the resources
for all cells are limited, the scarcity of the nutrients when there are too
many tumor cells tends to gradually decrease the growth rate. This
function seems to fit well the phenomenon of tumor growth.

In this project, we made the assumption that the tumor is 1mm3-long
initially (V0 = 1). Our work was to try and estimate the parameters
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α and β which allowed the best fit for the data provided.

Data provided

The data that was provided to calibrate the model represent the growth
of a tumor made from a lung cell line (LLC: Lewis Lung Carcinoma),
subcutaneously injected into mice. The volumes were measured using
a caliper. The largest (L) and smallest (w) diameters were measured
subcutaneously using calipers and the formula V = π

6w
2L was used to

compute the volume (ellipsoid).
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Figure 35: Data provided

8.3.2 Optimization problem

Optimization criterion

We want, in this project, to find the values of α and β that will lead
us to a solution as close as possible to the data. For this reason, we
choose our optimization criterion F as (with n the number of data
provided, yi the volume attained in ti in the data, and M the exact
solution to the Gompertz ODE):
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F (α, β) =

n∑
i=1

(yi −M(ti;α, β))2 (20)

We will consider log(F ) as the criterion instead of F for the gradient
descent algorithms, since it makes convergence easier. We will then
try to find the α and β minimizing the criterion.

Analytic solution to the Gompertz ODE

In this section, we calculate the function which solves the Gompertz
ODE. By carrying out a variable separation method (function of the
form − 1

β
u′

u ), we end up obtaining the analytic solution, displayed on
figure 36:

M(t;α, β) = exp(
α− exp(−βt)(α− β ln(V0))

β
) (21)
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Figure 36: Solution to the Gompertz differential equation, with V0 = 1,
α = 1, β = 0.1

Analysis of the optimization criterion
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We plot on figure 37 the optimization criterion depending on the two
parameters α and β. We can notice that there is a large number of lo-
cal minima (”valley” of pseudo-minima), especially on figure 38, which
will be a problem for some optimization algorithms that we will use
afterwards.

This problem is clearly illustrated on figure 39, since we see that the
contour lines of F depict very thin areas close to the global minimum,
which may cause the algorithm to stop even if the point reached is not
the one we wanted.

Besides, if we get a little further from the area with the more common
values of α and β, we notice that the function is somewhat trouble-
some. Indeed, figure 40 shows that log(F ) can take extreme values,
which will make F impossible to evaluate numerically. This issue will
be addressed in the part devoted to the Levenberg-Marquard algo-
rithm.

8.3.3 Optimization algorithms

All the optimization algorithms which are studied in this report in-
duce a propagation of the considered point in the descent direction
of the optimization criterion. A descent direction is a direction along
which the criterion has a strictly negative directional derivative; fol-
lowing it will then undoubtedly lead to a minimization of the function.

Gradient descent with constant step

Theory

The algorithm of gradient descent draws its logic from the fact that
a function F will decrease the most in the direction that is opposed
to the direction of the gradient. It takes for input an initial value
x0, which will be the starting point of the algorithm. The gradient
descent algorithm generates a sequence of iterated points x1, x2, ... and
is stopped when a test is satisfied, sending as output the last point xn
generated. It follows 4 phases:

(a) Simulation: we first calculate ∇F (xk).

(b) Test: we check if ||∇F (xk)|| ≤ ε. If this is the case, then the
algorithm stops, and the output xk is returned.

(c) Calculation of the step: here, we consider a constant step αk.
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Figure 37: F depending on α and β

(d) New point: we consider a new point xk+1 = xk−αk∇F (xk), and
we start over to phase 1.

This way, we end up reaching a local extremum. But nothing, in this
algorithm, can guarantee us than the value returned is a global mini-
mum.

Analysis of the results

This algorithm was implemented (αk = 0.01, ε = 0.0001), and applied
to the function log(F ).
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Figure 38: Zoom on one part of the pseudo-minimum ”valley” from the
surface of F

If we consider a starting point close to the global minimum, such as
(0.8, 0.13) for instance, we notice (figure 41) that our algorithm con-
verges towards this global minimum. If we start from a point which is
further from the global minimum (such as (1.0, 0.2)), we notice that
we do not reach this global minimum (figure 42). This can be under-
stood if we take a look at figure 38, for we then notice the presence
of a ”valley” of local minima, making the choice of the starting point
crucial for the convergence of the algorithm towards a global minimum.
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Besides, we notice that the calculation time is quite important com-
pared to the other algorithms studied. Indeed, for an initial point (0.8,
0.13), the convergence time is about 0.142 s.

Moreover, as it can be seen from figure 43, we notice that for a start-
ing point (1.0, 0.1), the algorithm converges after about 750 iterations
(which is a lot, compared to the other optimization algorithms). We
also notice a bigger fall as the function gets closer to its extremum.

All these conclusions can be confirmed if we watch figure 44, which
shows the trajectory of the parameters α and β on the contour lines
of F. Indeed, we see that there is a high number of iterations, and
that the algorithm does not necessarily converge towards the global
minimum. Besides, we can note the “oscillations” in the value of the
parameters, which may explain the lack of efficiency of the algorithm.

More details concerning the comparison of the optimization methods
are given in part IV.

Gradient descent with variable step

In order to improve the efficiency of the algorithm and to reduce the
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Figure 40: Extreme values of F for a range of α and β

calculation time, we start to consider a variable step, which will be
iterated with the sequence of points xi at phase 3 of each iteration.
To determine the value of the step, we perform line search, with the
Fletcher-Lemarechal algorithm, and the Wolfe conditions.

Theory

The main issue with the gradient descent with constant step is that the
step does not adapt with the context and the course of the function.
This may be a problem: indeed, on the one hand, a too large step
value will have a hard time getting closer, with accuracy, to the global
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Figure 41: Solution obtained for the optimized parameters, starting from
(0.8, 0.13) (gradient with constant step).
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Figure 42: Solution obtained for the optimized parameters, starting from
(1.0, 0.20) (gradient with constant step).
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Figure 43: Value of the criterion as the constant gradient algorithm is carried
out (depending on the number of the considered iteration)

minimum, since every iteration will keep the point to a non-negligible
distance from the minimum. But on the other hand, a too small step
might converge very slowly (or not converge towards an extremum !)
and lead to a tremendous calculation time. The problem being that
“too small” or “too large” is not a global point of view, but a local
one ; at each iteration, the algorithm must make sure that the step,
compared to the context of the function, remains moderate.

These two check-up in our algorithm are carried out at each iteration
through the 2 Wolfe conditions, defined as follows (where αk is the
considered step, dk is the descent direction, which is for the gradient
algorithm −∇F (xk), ω1 and ω2 real values such as 0 < ω1 < ω2 < 1):

F (xk + αkdk)− F (xk) ≤ ω1αk〈∇F (xk), dk〉 (22)

〈∇F (xk + αkdk), dk〉 ≥ ω2〈∇F (xk), dk〉 (23)

The first Wolfe condition (4), called “sufficient decrease condition” or
“Armijo rule”, forces the step αk to reduce sufficiently the optimiza-
tion criterion F between two iterations of the optimization algorithm.
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Figure 44: Value of the parameters α and β in the course of the constant
gradient algorithm, compared with the contour lines of log(F ) for a starting
point (0.7, 0.1)

It can be noted in this rule that for a minimization problem, both
the left-hand term and right-hand terms are negative (for dk is a de-
scent direction). Hence, this condition states that the choice of the
step value αk must induce a decrease in the optimization criterion at
least equal to ω1αk〈∇F (xk), dk〉. This “sufficient decrease condition”
forces to choose a step value that ensures that a minimal decrease in
F actually takes place.

The right-hand term (the minimal decrease in F) depends on the gra-
dient of F, which means that the minimal decrease is decided locally:
if the gradient is small, the condition will expect a small minimal de-
crease in F, and if it is large, then we can expect a larger decrease in F.
More precisely, we can understand the “sufficient decrease condition”
as: the step αk must be chosen so that the minimal decrease in F
between two iterations is at least a fraction ω1 of what would happen
if we could neglect all second-order terms in the Taylor development
of F. This specific choice of right-hand term is interesting, for, as said
before, it involves the presence of the gradient of F, but also because
it guarantees that for some values of step, the condition is necessarily
satisfied. Indeed, when αk is “small enough”, then the second order
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terms in the Taylor development can be neglected. Therefore, we have
the equality:

F (xk + αkdk)− F (xk) = αk〈∇F (xk), dk〉+ o(||α2
k||). (24)

Since the right-hand term is negative, if we multiply it by ω1 < 1 we
indeed get a value which is larger than the difference in F.

The point of this rule is that it chooses a step αk that allows a minimal
decrease in F between 2 iterations. This minimal decrease is defined
locally (gradient at this point), and there is always a step value that
satisfies the inequality. There is still a problem: we are sure that a
step value satisfies the equation, but as we have seen before, an ex-
tremely small step can then be chosen. This might of course reduce
the convergence speed. For this reason, this rule is combined with the
second Wolfe condition, called the “curvature condition” (5).

This second condition ensures that the step αk chosen is “large enough”.
The idea is this time to check the directional derivative of F (depending
on the descent direction dk) for the two successive values of considered
points. If the difference is not large enough, which implies that the
step is too small (the two successive points are too close), inequality
is not satisfied. This allows us to solve the problem caused by the
previous rule, of a too small step value.

To calculate the proper step, and use the two previous Wolfe condi-
tions, we use the Fletcher-Lemarechal algorithm, which is described
below:

(a) We first consider two values αb and αh, which will represent re-
spectively the lower boundary, and the upper boundary of our
possible step value. They will be updated as the algorithm is
carried out. We start with αb = 0, αh = +∞. We consider an
initial step α.

(b) We check if, with the step α, the first Wolfe condition is sat-
isfied. While this is not the case, we proceed to the following
instructions: αh = α, α = αb+αh

2 .

(c) The first condition is satisfied, now we check whether the second
condition is satisfied. If not, we choose αb = α. We have two
possibilities: if αh = +∞ (the first condition was directly satis-
fied), then α = 2αb. Else, we pick α = αb+αh

2 . We check if the
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second condition is satisfied with this step ; if it is not the case,
we restart this phase.

(d) We return the step α obtained: it is an optimal step.

Analysis of the results

This algorithm was implemented, and applied to the function log(F )
(ε = 0.0001, ω1 = 0.001, ω2 = 0.99) for several starting points (figure
45).
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Figure 45: Solution obtained for the optimized parameters, starting from
(0.8, 0.13) (gradient with variable step).

We notice that we are faced with the same problem as in the case of the
gradient descent algorithm with constant step: if we choose a starting
point too far from the global minimum, then the algorithm will stop
at an extremum which is not the global minimum (as illustrated on
figure 46).

Though, we notice on figure 47 that the algorithm converges in only 6
iterations for the starting point (0.7, 0.1), and even if each iteration is
far more costly than in the case of the constant gradient algorithm, it
still leads to a calculation time significantly reduced (divided by 10).
Besides, the value of the criterion is slightly diminished as we use this
variable gradient algorithm instead of the constant gradient one for

68



4 6 8 10 12 14 16 18 20

Time (days)

0

200

400

600

800

1000

1200

1400

T
u
m

o
r 

v
o
lu

m
e
 (

m
m

3
)

Solution with optimal parameters

Data provided

Figure 46: Solution obtained for the optimized parameters, starting from
(1.0, 0.20) (gradient with variable step).

the considered points. This algorithm is therefore to be favored com-
pared with the constant gradient one.

Once more, these results are confirmed if we look at figure 48, which
shows the trajectory of (α, β) on the contour lines of log(F ) for the
starting point (0.7, 0.1). We can see that the algorithm converges after
a very small number of iterations, to a point which is not the global
minimum.

More details concerning the comparison of the optimization methods
are given in part IV.

The Gauss-Newton algorithm

Even though the variable gradient algorithm seems better than the
constant gradient algorithm, an important issue remains: the algo-
rithm does not necessarily return the global minimum that we are
looking for. To try and correct this situation, a new algorithm is stud-
ied in the following section: the Gauss-Newton algorithm.

Theory
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Figure 47: Value of the criterion as the variable gradient algorithm is carried
out (depending on the number of the considered iteration) for a starting point
(0.7, 0.1)

The Gauss-Newton algorithm is an optimization algorithm which is
applied on a specific set of problems: the minimization of the sum of
squared functions. It is, therefore, totally adapted to our situation.

Let us consider m functions ri (i = 1...m) (written in a matrix r), de-
pending on n variables γ = (γ1, ...γn). The Gauss-Newton algorithm
allows to find the γ that will minimize

∑m
i=1 r

2
i (γ). Here of course,

ri = yi − M(ti;α, β), γ = (α, β) and the function that we want to
minimize is F. We will call Y the vector (y1, ..., ym) afterwards.

The Gauss-Newton method is based on expanding M(ti; γ) as a Taylor
series for a small variation in γ, and keeping only the first-order terms.
It gives us:

M(ti; γ + δ) = M(ti; γ) +
n∑
j=1

∂M(ti; γ)

∂γj
δj + o(||δ||2) (25)

Or, if we write is as a matrix equation ((M0)i = M(ti; γ), and Ji being
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Figure 48: Value of the parameters α and β in the course of the variable
gradient algorithm, compared with the contour lines of log(F ) for a starting
point (0.7, 0.1)

the i-th line of J the Jacobian matrix of M(t; γ) depending on γ):

M(ti; γ + δ) = (M0)i + Ji.δ (26)

We want to select the δ that will minimize F. For this reason, we
calculate the δ that will solve the equation ∂F

∂δ = 0. We obtain:

∂F

∂δ
= 2

m∑
i=1

∂M(ti; γ + δ)

∂δ
(yi −M(ti; γ + δ)) (27)

Or:

2

m∑
i=1

JTi (yi − (M0)i − Jiδ) = 0 (28)

It leads to:

m∑
i=1

JTi Ji.δ =

m∑
i=1

JTi (yi − (M0)i) (29)
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And if we denote A = JTJ , g = JT (Y −M0) we find that:

Aδ = g (30)

When we solve this equation, we find:

δ = (JTJ)−1JT (Y −M0) = J−1(JT )−1JT (Y −M0) = J−1(Y −M0)
(31)

The previous equation shows us that we find an optimal step which
is a generalization of the step employed for the Newton method for a
function g depending on only one variable (gġ ).

The algorithm is then defined as follows for an initial point x = (α, β)
and the required accuracy ε specified in the input:

(a) We check whether ||∇F || > ε. If it is not the case, then we return
x. Else, we continue onto the next step.

(b) We calculate the coefficients of the vector r applied in x (ri =
yi−M(ti;α, β)) as well as the value of M(ti;α, β) applied at the
same point x.

(c) We calculate the Jacobian matrix J of the functions M(ti;α, β).

(d) We calculate the value δ = (JTJ)−1JT r.

(e) We iterate: x = x+ δ.

(f) We restart at phase 1.

We may notice that the algorithm involves the inversion of the Jaco-
bian matrix of the functions M(ti;α, β). If at one iteration, the matrix
is not invertible, or ill-conditioned, the algorithm can encounter diffi-
culties.

Analysis of the results

This algorithm was implemented, and applied to the function F (with
an accuracy equal to 0.01) for several starting points.

We noticed this time that the algorithm converges to the global min-
imum, for a range of initial values far wider. Indeed, starting from
(1.7, 0.2), or (1.0, 0.13), we ended up each time at the global minimum
of the function (figures 49 and 50). Besides, the calculation time was,
in the two cases, very little compared to the calculation times for the
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Figure 49: Solution obtained for the optimized parameters, starting from
(1.7, 0.2) (Gauss-Newton).
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Figure 50: Solution obtained for the optimized parameters, starting from
(1.0, 0.13) (Gauss).
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two other algorithms. Indeed, the Gauss-Newton algorithm leads in
this case to a calculation time inferior to 0.0001 s, which is really low
when compared with the previous algorithms considered.

Plotting the value of the criterion when the Gauss-Newton algorithm
is applied depending on the number of the considered iteration, we no-
tice several elements (figure 51). First, that the algorithm converges
very quickly (only 8 iterations), and that it indeed converges to a far
better criterion value than the two previous algorithms.

These results are confirmed in figure 52, where we can see that the
algorithm converges towards the global minimum in a small number
of iterations.
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Figure 51: Value of the criterion as the Gauss-Newton algorithm is carried
out (depending on the number of the considered iteration)

But, with a starting point (0.8, 0.13), we notice (figure 53) that the
algorithm does not converge towards a global minimum at all. Indeed,
the final values obtained for α and β are about (-11, -4), very far
from the global minimum, and even from the starting point. It is also
good to note that with such a starting point, the gradient algorithms
reached the global minimum without a difficulty. This shows that the
problem of the Gauss-Newton algorithm is a stability one, for it in-
volves a matrix inversion. And if this matrix is ill-conditioned, this
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Figure 52: Value of the parameters α and β in the course of the Gauss-
Newton algorithm, compared with the contour lines of log(F ) for a starting
point (0.7, 0.1)

may lead to a far higher step value that what would be the optimal
step. And since the step value is very high, the approximation carried
out in the beginning of the theoretical framework of the algorithm
(that all second-order terms in the Taylor development could be ne-
glected) becomes of course a wrong assumption. The algorithm can
thus diverge.

The Gauss-Newton algorithm is therefore a very efficient algorithm,
but which lacks of stability : some starting points can make the algo-
rithm diverge.

More details concerning the comparison of the optimization methods
are given in part IV.

The Levenberg-Marquardt algorithm

The Gauss-Newton algorithm is a very powerful algorithm, but which
lacks of stability depending on the starting points. Not all starting
points lead to convergence. For that reason, Levenberg and Marquardt
([3], [4]) developed an optimization algorithm which allows to combine
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Figure 53: Solution obtained for the optimized parameters, starting from
(0.8, 0.13) (Gauss-Newton).

the efficiency of the Gauss-Newton algorithm and the stability of the
gradient algorithms.

Theory

Outline of the method

Let us choose the same notations as the ones used in the section de-
voted to the Gauss-Newton algorithm. The descent direction δt sat-
isfies the following equation in the case of a Gauss-Newton algorithm
(as a reminder, A = JTJ , g = JT (Y −M0)):

Aδt = g (32)

We also notice that g = −1
2∇F . Since the orientation of the direction

is the element that will really matter in our algorithm, we will consider
from now on that g = −∇F . Therefore, we can write that, in the case
of a gradient descent algorithm, the direction δg satisfies the following
equation:
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δg = g (33)

The idea of Marquardt in [4] is to try and combine the two previous
direction equations, to create a third equation that will be used to
calculate the direction δ0 in this algorithm, with λ ≥ 0:

(A+ λI)δ0 = g (34)

The relevance of the parameter λ can be seen quite easily: when λ is
close to 0, then the equation that needs to satisfy the direction is very
close to equation (14). Therefore, the calculated direction δ0 will be
close to the one calculated for a Gauss-Newton algorithm δt. On the
opposite, when λ is extremely high, we see that the equation will be
closer to equation (15), and that the direction δ0 calculated will be
very close to the opposite of the gradient. This intuitive thought is
rigorously shown in [4], where it is even stated that as λ grows, the
calculated direction δ0, starting at δt turns more and more towards δg.
In the same article, is also shown that as λ grows, the norm of the
direction decreases.

Relevance of the method

One interrogation that may legitimately arise is whether the direction
calculated thanks to equation (16) is a descent direction ∀λ. Basing
ourselves on [4], we will demonstrate properly this through the follow-
ing theorem:

Theorem : For any positive λ, if δ0 satisfies the equation (16), then
δ0 minimizes F (γ + δ) on the sphere of radius ||δ0||.

Proof : The function C that we want to minimize can be written as
C(γ, δ) = ||Y − M0 − Jδ||2 for any direction δ. The minimization
problem described in the theorem can therefore be written this way:

min
δ

||Y −M0 − Jδ||2

subject to ||δ||2 = ||δ0||2
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To solve the optimization problem, we consider the Lagrangian, with
λ a Lagrange multiplier:

u(δ, λ) = ||Y −M0 − Jδ||2 + λ(||δ||2 − ||δ0||2) (35)

By the method of Lagrange, we know that a stationary point neces-
sarily satisfies the equations ∂u

∂δ = 0, ∂u
∂λ = 0.

Thus, we have:

−2JT (Y −M0 − Jδ) + 2λδ = 0 (36)

and

||δ||2 = ||δ0||2 (37)

From equation (18), we find:

(JTJ + λI)δ0 = JT (Y −M0) (38)

This means that if δ0 satisfies equation (16), then it is a stationary
point for F (γ+ δ). Since A+λI is a definite positive matrix, then the

calculation of ∂2u
∂δ2

and of ∂2u
∂λ2

shows us that the stationary point δ0 is
indeed a minimum.

This way, we are able to show that the δ0 direction is indeed a direc-
tion that minimizes F (γ + δ).

Rescaling

The solution of Gauss-Newton, δt, is invariant under linear transfor-
mation, but it is not the case for the solution of the gradient algorithm.
For this reason, we will scale the definition space, by considering the
standard deviation of the gradient function as unit. More explanations

78



about this procedure are given in [4]. This leads us to consider the
following formulas, where * represents the rescaled values (aj,j′ being
the coefficients of the matrix A, and gj the coefficients of the vector g
as defined in equation (16)):

A∗ = (a∗j,j′) =
aj,j′√

aj,j
√
aj′,j′

(39)

g∗ = (g∗j ) =
gj√
aj

(40)

δ0 =
δ∗0√
aj,j

(41)

Evaluation of F

Before describing precisely the method, it is crucial to be able to under-
stand exactly how the λ parameter intervenes. For this, let us suppose
we are at the p-th iteration. We then have to solve the equation, and
calculate the δ∗0 such as:

(A∗ + λ(p)I)δ∗0 = g∗ (42)

Once δ∗0 is calculated, we calculate δ0 using equation (23). We then
consider a new point γnew (in the next part, γ will be called the “start-
ing point”):

γnew = γ + δ0 (43)

The next step is then to evaluate F (γnew). The previous algorithm
will be what we will refer to when, in the precise description of the
algorithm that will be displayed in the next section, we will talk about
evaluating F.

Course of the algorithm

The algorithm takes as inputs a real number ν > 1 and the first value
of λ considered, λ0, the accuracy ε and a starting point γ0. We suppose
that we are currently at the p-th iteration of the algorithm (so, we have
as values λp−1, γp and F p, which is the value of F finally obtained for
λ = λp−1 in equation (24) and a starting point γp−1):
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(a) We check whether ||∇F || < ε. If it is the case, then we return γp.
Else, we proceed onto the following phases.

(b) We rescale A and g, as stated in the subsection “Rescaling”.

(c) Let us call F pλ the value of F finally obtained for λ = λp−1 in
equation (24) and a starting point γp. Let us call F pν the value

of F finally obtained for λ =
λp−1

ν in equation (24) and a starting
point γp.

(d) We compare F p and F pν : if F pν ≤ F p, then we set λp =
λp−1

ν , and
F p+1 = F pν . γp+1 is also valued with the final value of γ in the
evaluation of F pν . We then return to phase 1 for a new iteration
or the end of the algorithm.

(e) If not, we compare F p and F pλ : if F pλ ≤ F
p, then we set λp = λp−1

and F p+1 = F pλ . γp+1 is also valued with the final value of γ in the
evaluation of F pλ . We then return to phase 1 for a new iteration
or the end of the algorithm.

(f) Else, we will increase the value of λ. For this, let us call F pw
the value of F finally obtained for λ = λp−1ν in equation (24)
and a starting point γp. If F pw ≤ F p then we set λp = λp−1ν
and F p+1 = F pw. Else, we consider F pw as the F obtained for a
λp−1ν2, and we compare once more. While F pw > F p, we increase
λ by multiplying it by ν. When this condition is not verified
anymore (let us say it is after w iterations), we set λp = λp−1ν

w,
F p+1 = F pw and γp+1 is valued with the final value of γ in the
evaluation of F pw. We then return to phase 1 for a new iteration
or the end of the algorithm.

The relevance of the algorithm is quite clear. First, we notice that
we consider a new iteration only when the optimization criterion F
is reduced, which makes sense in the framework of a minimization
problem. But we notice that we do not try to compute the maximal
decrease in F between two iterations (indeed, as stated in [4], this local
minimal decrease would be a poor choice from a global point of view).
Instead, we try whenever it is possible, and when we are sure that it
will lead to a local decrease in F, to decrease λ. This is quite logical ;
indeed, the smaller λ is, the more the algorithm gets closer from the
Gauss-Newton algorithm, which is very efficient as shown in previous
parts.

But the point of the algorithm is that when it is not possible to de-
crease λ without increasing the optimization criterion (typically areas
where the Gauss-Newton algorithm would not be stable), then other
options are considered. We can keep the same values of λ or, when
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there is no other choice if we want to minimize F, increase it until
reaching a stage where we have a local decrease of F.

We know that, if we are not already at an extremum (where the con-
dition on the norm of the gradient in the algorithm would be satisfied
anyway), we will necessarily reach, for some high value of λ, a local
decrease in F. Indeed, for this range value of λ, we are closer to the
gradient algorithms, which are stable.

Marquardt, in [4], stated that default values of 0.01 for λ and 10 for ν
were often a good choice.

Analysis of the results

This algorithm was implemented and applied to the function F (ε =
0.001, ν = 10, and if not explicitly defined, λ0 = 0.01). Applied to
the starting point (0.7, 0.1), we notice that, like the Gauss-Newton
algorithm, it converges towards the global minimum (figure 54). If we
choose a starting point even further from the global minimum, such
as (1.7, 0.2) for instance, we notice a convergence towards the global
minimum as well (figure 55).

But one interesting feature of the algorithm is that, starting from a
point which made the Gauss-Newton algorithm diverge (such as (0.8,
0.13) for instance), we really reach the global minimum required. The
Levenberg-Macquardt algorithm seems to have corrected the stability
of the Gauss-Newton algorithm, while keeping the ability to converge
towards a global minimum from a wide range of starting points (figure
56).

One interesting aspect which can be studied is the evolution of λ as the
algorithm goes on. We notice that, depending on the starting point,
the evolution will be extremely different. When the starting point is a
point that is totally fit for a Gauss-Newton algorithm, then λ decreases
very quickly: it is indeed in this case better to get closer to the Gauss-
Newton algorithm. On the other hand, when we start with a point
such as (0.8, 0.13), which leads to a divergence for Gauss-Newton, λ
will increase a lot in the early stages of the algorithm, denoting the
fact that it is necessary to copy the properties of the gradient descent
algorithms to attain a proper minimum value.
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Figure 54: Solution obtained for the optimized parameters, starting from
(0.7, 0.1) (Levenberg-Marquardt).
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Figure 55: Solution obtained for the optimized parameters, starting from
(1.7, 0.2) (Levenberg-Marquardt).
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Figure 56: Solution obtained for the optimized parameters, starting from
(0.8, 0.13) (Levenberg-Marquardt).

If we study the calculation time, we notice that it is far better than the
gradient descent algorithms for these starting points, but slightly less
good than the Gauss-Newton algorithm, which makes perfect sense: in
the best-case scenario as far as efficiency is concerned, λ will be close
to 0 (but will never really reach it), which will make the algorithm as
similar as possible to the Gauss-Newton, without equalizing its out-
standing performance in this specific situation.

Yet, the choice of some starting points still leads to numerical prob-
lems for the algorithm (notably (1,2)). We notice that the points that
seem to challenge the algorithm were also troublesome for the Gauss-
Newton algorithm.

Indeed, if we consider figure 39, we notice that the function F can
have extreme values, which can create a numerical error if it has to be
evaluated by the program. The issue is the evaluation of F 1λ and F 1

ν ,
since the first value λ0 is given by the user and not, like all the other λ,
evaluated by the algorithm depending on the optimization criterion.
If the first λ is badly chosen as an input, then we can reach a F which
will be impossible to calculate numerically. Indeed, we can see that if
we increase the initial value of λ0 for these troublesome starting points,
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then the Levenberg-Marquardt actually converges towards the global
minimum. But the fact that the convergence depends on the value of
λ0 is an element that should not be neglected.

If we study the evolution of the optimization criterion (figure 57), and
of the parameters related to the contour lines of F (figure 58), we no-
tice a very fast and accurate convergence, even though the algorithm
is rather less efficient (but considerably more stable) than the Gauss-
Newton algorithm.

More details concerning the comparison of the optimization methods
are given in part IV.

8.3.4 Statistical comparison of the optimization algorithms

Theoretical framework

In this part, we will compare the various optimization algorithms more
rigorously: instead of comparing the results of the algorithm on a
rather restricted number of points, we will apply a statistical proce-
dure in order to get an approximation of the average error (value of
the optimization criterion) and calculation time of the algorithm.

To do that, we will use a Monte Carlo method: we will simulate a
large number of times the algorithm that we want to study, for a given
required accuracy and for various starting points, and we will consider
the global calculation time as the average of the calculation time of
every simulation. We will do the same thing for the error.

One issue remains: which starting points do we have to consider, so
that the results are really significant ? The first matter is: how many
points should we consider ? The second one is related to the fact that
choosing only random coordinates for the starting points could be a
problem. Indeed, since many algorithms (like the gradient descents)
have an important dependence on the starting point, a random draw
can then lead to very close points, which will not represent well the
true properties of the algorithm. For that reason, we tried and per-
form a statistical analysis more representative.

To carry out the analysis, we followed the advice from [5]. Basing our-
selves on the experiments carried out in the article, we decided to per-
form 100 successive simulations. Besides, as [5] suggests, to choose our
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starting points, we used a multi-start strategy based on latin square
sampling. This strategy is developed in the following paragraph.

Let us suppose that we want n independent points. The idea of the
latin square sampling is to divide the range of values that can take
our point coordinates in n smaller domains of equal size. Then, each
point is picked randomly within a different domain. This way, we end
up getting n points, which are able to represent the whole coordinates
range. Besides, since the points are still picked randomly, every sta-
tistical analysis will return a different average value.

Results of the statistical analysis

We performed the previous statistical analysis of the 4 optimization
algorithms, for the same 100 starting points defined by latin square
sampling, an accuracy of 0.01, and we obtained the results displayed
on figure 59 (for the Levenberg-Marquardt algorithm, λ0 = 1000). The
analysis was performed on Python 2.7, on a computer having an Intel
Core processor with a 2 GHz frequency and a 16 Go RAM. The initial
conditions were chosen within an arbitrary range: [0.5, 1.5] for α and
[0.05, 0.2] for β. The function does not have extreme values on this
range, hence the decision to choose it.

We noticed several useful pieces of information. First, we saw how hard
it is to perform a statistical analysis on the Gauss-Newton method,
since its instability leads very often to a numerical error for at least
1 of the 100 simulations. As for the results themselves, we noticed
that most of what we had seen and concluded from a reduced set of
points seems to be verified. Indeed, the constant gradient algorithm is
clearly the slowest algorithm, whereas the Gauss-Newton algorithm is
the fastest. As for the error, the gradient descents are far less efficient
than the other two algorithms. We also noted that the Levenberg-
Marquardt algorithm is the algorithm which combines the best, among
the 4 presented algorithms, stability and efficiency.

Still, some surprises arose: the variable gradient algorithm is not more
accurate on average than the constant gradient algorithm. This is due
to the fact that for some starting points, the variable gradient algo-
rithm will lead to much higher errors than the constant gradient one.
But for a high majority of starting points, we still saw that the variable
gradient algorithm is seemingly better than the constant gradient one.
Moreover, they had a very significant difference as far as calculation
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time was concerned.

Another noticeable thing is the difference in accuracy between the
Gauss-Newton algorithm and the Levenberg-Marquardt one. This is
due to the instability of the first algorithm. Indeed, for some starting
points, we reach values which may induce very important errors. But,
there again, for nearly all the starting points which do not induce in-
stability, the accuracy obtained is very similar.

The table 59 can quite clearly show us why the Levenberg-Marquardt
algorithm is generally favored in the least-squares minimization for
biological data. Accurate, robust and fast, it is clearly the best opti-
mization algorithm to solve our problem.

Comparison to a pre-implemented algorithm: the Nelder-Mead algorithm

The Levenberg-Marquardt algorithm was then integrated into a least-
squares minimization code used by the team at inria. So far, the op-
timization algorithm that was used was the Nelder-Mead algorithm.
Integrating the Levenberg-Marquardt algorithm into the code was a
useful step (the algorithm is not in the standard library of numpy, so
having a functional code of it was helpful), and was also the opportu-
nity to compare the performance of the two algorithms for the same
data set. In this section, the considered data set is independent from
the data studied before.

A statistical analysis analogous to the one carried out in the previ-
ous part (for, when not specified, λ0 = 100 and an accuracy of 10−6

for Levenberg-Marquardt) led to the following results. On the stud-
ied data, the average calculation time of the Levenberg-Marquardt
algorithm was slightly more significant. As for the average error com-
mitted, we noticed that the Nelder-Mead algorithm was a little less
accurate, but the difference is extremely small (and could almost be
neglected): we have indeed an average difference of 2.31.10−6 for de-
fault parameters.

As for the parameters of Levenberg-Marquardt, obviously, reducing
the required accuracy increases the error, and reduces the calculation
time. Increasing the starting value of λ0 increases the calculation
time, but if it is too small, the error sharply increases. All these
results are summed up on table 60. If we have a negative value in the
second column (average relative difference between the method and the

86



Nelder-Mead algorithm), then this means that for those parameters,
the Levenberg-Marquardt algorithm is less efficient than the Nelder-
Mead algorithm. In this figure, LM stands for Levenberg-Marquardt
and N-M for Nelder-Mead.

8.3.5 Numerical implementation of the Levenberg-Marquardt
algorithm

All these algorithms were coded using Python 2.7. The previous anal-
ysis showed that the Levenberg-Marquardt algorithm was the most
efficient and interesting to use.

For this reason, an easy-to-handle version of the Levenberg-Marquardt
function had to be implemented from the version that had already
been coded within the framework of the previous analysis. The writ-
ten code was integrated into a research numerical code developed by
the MONC team at inria, aiming at the analysis of preclinical data in
oncology. This part of the work was quite challenging, for it required a
clean-up, series of tests and an optimization of the code, so that a user
who did not know how it was coded could find it easy to use and effi-
cient, and for a good understanding of the research code was necessary.

To integrate it into the code, several elements had to be added or
modified. Among them, the functionality of automatic calculation of
the Jacobian matrix through finite differences was added. The various
Levenberg parameters were also grouped within a class. The code was
finally integrated into the research numerical code, and was functional.
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8.4 Numerical methods for the Gompertz model

8.4.1 Introduction

Setting of the problem

As of today, the phenomenon of tumor growth is still an open prob-
lem. Indeed, no equation is considered as the equation which would
perfectly model the data. Yet, for, notably, biological reasons, the
Gompertz model is one of the most acclaimed models to describe this
growth ([1], [2]). During this project, a simplified model of tumor
growth was considered, deriving from the Gompertz model, from which
an exact solution can be found rather easily . The work was to try
several numerical methods to see how close their results were to the
exact solution, and how various parameters affected this difference.
This work is interesting for the results that were found about the effi-
ciency of various numerical methods for a rather simple model can be
extended to more complicated ones.

All the following results were computed using Python and its numeri-
cal (numpy) and graphical (matplotlib) libraries.

The Gompertz model

The Gompertz model is a model which is commonly used in the liter-
ature to describe tumor growth. It can be written as follows:


∂V

∂t
= (α− β ln(V ))V

V (0) = V0

(44)

We notice that the form of the solution curve (figure 61) is compatible
with a phenomenon of tumor growth. During the early stages of can-
cer, there are very few tumor cells, restricting, therefore, the growth
rate. Once the number of tumor cells rises, the growth rate will un-
doubtedly increase until a certain stage. Indeed, since the resources
for all cells are limited, the scarcity of the nutrients when there are too
many tumor cells tends to gradually decrease the growth rate. This
function seems to fit well the phenomenon of tumor growth.

α and β (and sometimes even V0) are usually parameters which are not
given, and which have to be found through estimations. Since what
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we want in this project is to evaluate the accuracy of several methods,
we will consider a reference, fixed model with α = 1, V0 = 1mm3 and
β = 0.1. Besides, it was decided to consider a time span of 30 days.

8.4.2 Analysis of numerical methods for the Gompertz dif-
ferential equation

Runge-Kutta method

Description of the method

The Runge-Kutta method (which will be called RK4 from now on) is
an iterative method, which allows to find the approximation of time-
depending solutions y of ordinary differential equations (which can be
written as follows): {

ẏ = f(t, y)

y(t0) = y0
(45)

The RK4 method is defined, for a step h, a time span [t0, tn] and
∀i ∈ {0, ..., n}, an approximation yi = y(ti) , such as: yi+1 = yi +

h

6
(k1 + 2k2 + 2k3 + k4)

ti+1 = ti + h
(46)

where: 

k1 = f(ti, yi)

k2 = f(ti +
h

2
, yi +

h

2
k1)

k3 = f(ti +
h

2
, yi +

h

2
k2)

k4 = f(ti +
h

2
, yi +

h

2
k3)

(47)

The RK4 method is a fourth-order method ; the error is on the order
of O(h4).

Comparison of the RK4 approximation to the exact solution

We then computed the RK4 method and plotted the approximation
obtained, for various steps h (figures 62, 63, 64).
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We calculate the relative error L∞ (the maximal relative difference
between the values of the exact solution, and the one of the RK4 ap-
proximation). We obtain the results displayed figure 65.

We notice of course that the relative error decreases with the step, but
that the calculation time rises, for a smaller step involves more calcu-
lations. We also notice that the relative error decreases very quickly
with the step. Therefore, even a rather important step value (2) can
lead to very accurate results.

Euler method

Description of the method

Using the same notations as the ones that were used in the previous
part, the approximations yi are defined, for the Euler method, as:{

yi+1 = yi + hf(ti, yi)

ti+1 = ti + h
(48)

The Euler method is a first-order method ; the error is on the order
of O(h).

Comparison of the Euler approximation to the exact solution

We then computed the Euler method and plotted the approximation
obtained, for various steps h (figures 66, 67, 68). We also calculated
the error (defined as before) figure 69.

We may notice that the Euler method is clearly less accurate than the
RK4 method to approximate the solution. It is less accurate, but the
calculation time is shorter.

Comparison of the two methods

We now try and compare the two methods. For this, we seek for the
maximal step that we can choose in each method to obtain a relative
error inferior to various tolerance thresholds. These steps being chosen,
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we compare the calculation time, and we can therefore find the faster
method to reach a given relative error.

We choose 3 error thresholds (10 %, 1 %, 0.1 %) and we compute a
heuristic method which allows us to approximate each time the bigger
step that leads to a relative error inferior to these thresholds. Then, by
performing several tests in the neighborhood of the step given by the
heuristic, we end up finding the bigger step that leads to this specific
error threshold. We also write the calculation time. We get the results
displayed on figure 71.

We notice that for the same relative error, the RK4 method is faster
than the Euler method. Nevertheless, we also see, by comparing fig-
ures 65 and 69, that for a given step value (2 for instance), without
considering the accuracy of the method at all, the Euler method is con-
siderably faster. This seems to indicate that when the same number
of steps is performed in the two methods, the Euler method is faster,
which leads to the logical conclusion that one iteration in the Euler
method is considerably faster than one iteration in the RK4 method.
The RK4 method is nevertheless to be favored ; this is due to the fact
that the number of steps that need to be carried out in the RK4 model
to attain a certain accuracy is far lower than for the Euler method,
since the step value is higher.

To approximate this type of problem, it is therefore better to use the
RK4 method.

8.4.3 Derivation of the order of the methods

In this part, we try and determine the order of the two methods em-
ployed from the calculations that we have performed.

Theoretical reasoning

The consistency error of a numerical method is a sequence which can
be defined as (where y is the exact solution of the ODE):

en = y(tn+1)− yn+1 (49)
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A method is defined as a p-th order method if en = o(hp+1).

The simplest way to evaluate the order of a numerical method is to
consider the following relationship, deduced from the definition of en:

ln(y(tn+1)− yn+1) = ln(en(h)) (50)

So, if we plot ln(y(tn+1)−yn+1)) depending on ln(h), we should obtain
a line, the slope being the order of the method.

Numerical results

Order of the RK4 method

We plot this graph, and we obtain the result displayed figure 72.

A linear interpolation gives a slope coefficient of 3.71. We find, indeed,
that the RK4 method is a fourth-order method.

Order of the Euler method

The same thing is done for the Euler method, with the result displayed
figure 73.

A linear interpolation gives a slope coefficient of 0.87. We therefore
find, indeed, that the Euler method is a first-order method.

9 Thanks and acknowledgments

This internship was, for me, an amazing experience, and I would re-
ally like to thank Sebastien for his patience throughout the internship
(and long after), for his kindness, support, guidance and good advice
throughout the six months. Scientifically and humanly, this internship
was an extremely positive experience for me, and I am very grateful
to Sebastien for it.

I would also like to thank Thierry Colin for accepting me into the team
and for his everyday human warmth. I am also very grateful to Olivier
Saut for his guidance and help throughout those six months. I would

92



also like to thank Etienne, Thomas and Cynthia, for their kindness,
and their contribution to some of the scientific contents of this report.
Finally, I would also like to thank all other members of the monc team
for their warmful welcome in Bordeaux.

93



10 Bibliography

[1] Benzekry S., Lamont C., Beheshti A., Tracz A., Ebos J., et al.
(2014) Classical Mathematical Models for Description and Prediction
of Experimental Tumor Growth. PLoS Computational Biology, 10(8):
e1003800. doi:10.1371/journal.pcbi.1003800

[2] Gerlee P. (2013) The model muddle: in search of tumor growth
laws. Cancer Research, 73(8), 2407-11.

[3] Levenberg K. (1944) A method for the solution of certain non-
linear problems in least squares. Quarterly Appl Math 2:1648

[4] Marquardt D. (1963) An Algorithm for Least-Squares Estimation
of Nonlinear Parameters. Journal of the Society for Industrial and
Applied Mathematics, Vol 11, no2, 431-441

[5] Raue A., Schilling M., Bachmann J., Matteson A, Schelke M, et
al. (2013) Lessons Learned from Quantitative Dynamical Modeling in
Systems Biology. PLoS

[6] Ebos J., Lee C., Crus-Munoz W., Bjarnason G., Christensen J.
(2009) Accelerated metastasis after short-term treatment with a po-
tent inhibitor of tumor angiogenesis. Cancer Cell, 15 :232-239.

[7] Benzekry S. (2011). Modélisation et analyse mathématique de
thérapies anti-cancéreuses pour les cancers métastatiques, PhD the-
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Figure 57: Value of the criterion as the Levenberg-Marquardt algorithm is
carried out (depending on the number of the considered iteration) for a start-
ing point (0.7, 0.1)

0.6 0.8 1.0 1.2 1.4

alpha

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

b
e
ta

2.16

2.32

2.48

2.64

2.80

2.96

3.12

3.28

3.44

3.60

Figure 58: Value of the parameters α and β in the course of the Levenberg-
Marquardt algorithm, compared with the contour lines of log(F ) for a start-
ing point (0.7, 0.1)
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Method Average error (log(F )) Average calculation time (s)

Constant gradient 14.729 0.2286

Variable gradient 15.629 0.0079

Gauss-Newton 10.423 0.0024

Levenberg-Marquardt 8.478 0.0073

Figure 59: Average error and calculation time for the considered optimiza-
tion algorithms

Method and parameters Relative difference with the NM method (%) Calculation time (s)

L-M (default values) 2.31.10−6 2.67

L-M (accuracy: 1E-3) −2.82.10−6 2.66

L-M (λ0 = 1000) 6.81.10−6 2.71

L-M (λ0 = 0.01) -81,56 2.67

N-M / 2.64

Figure 60: Results obtained, by comparison with the Nelder-Mead algorithm
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Figure 61: Solution to the Gompertz differential equation, with V0 = 1mm3,
α = 1, β = 0.1
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Figure 62: RK4 approximation for h = 6.
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Figure 63: RK4 approximation for h = 4.
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Figure 64: RK4 approximation for h = 2.
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Value of the step Relative error Calculation time (s)

6 10.1 % < 0.0001

4 4.2 % < 0.0001

2 0.7 % 0.001

Figure 65: Relative errors and calculation times for the RK4 approximation
depending on the value of the step h
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Figure 66: Euler approximation for h = 2.
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Figure 67: Euler approximation for h = 1.
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Figure 68: Euler approximation for h = 0.5
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Value of the step Relative error Calculation time (s)

2 46.2 % < 0.0001

1 26.4 % < 0.0001

0.5 14.8 % < 0.0001

Figure 69: Relative errors and calculation times for the RK4 approximation
depending on the value of the step h
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Figure 70: Euler approximation and RK4 approximation for h = 3.5

Relative error Bigger step (RK4 / Euler) Calculation time (s) (RK4 / Euler)

10 % 6.85 / 0.32 < 0.0001 / < 0.0001

1 % 2.2 / 0.03 < 0.0001 / 0.003

0.1 % 1.07 / 0.003 < 0.001 / 0.004

Figure 71: Bigger steps allowing to get a specific relative error for the two
numerical methods and corresponding calculation times
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Figure 72: Evaluation of the order of the RK4 method
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Figure 73: Evaluation of the order of the Euler method
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