Thierry Dumas
email: thierry.dumas@inria.fr

Aline Roumy
email: aline.roumy@inria.fr

Christine Guillemot
email: christine.guillemot@inria.fr

SHALLOW SPARSE AUTOENCODERS VERSUS SPARSE CODING ALGORITHMS FOR IMAGE COMPRESSION

Keywords: Image compression, sparse autoencoders, shallow architectures, complexity

This paper considers the problem of image compression with shallow sparse autoencoders. We use both a T-sparse autoencoder (T-sparse AE) and a winner-take-all autoencoder (WTA AE). A performance analysis in terms of rate-distortion tradeoff and complexity is conducted, comparing with LARS-Lasso, Coordinate Descent (CoD) and Orthogonal Matching Pursuit (OMP). We show that, WTA AE achieves the best rate-distortion trade-off, it is robust to quantization noise and it is less complex than LARS-Lasso, CoD and OMP.

INTRODUCTION

The sparse approximation problem (P 0) corresponds to approximating a signal with the best linear combination of a small number of atoms from a redundant dictionary. At the present time, there exist two approaches to this non-linear approximation. Convex relaxation methods turn (P 0) into a convex program. Greedy methods do a series of locally optimal choices to provide an approximate solution of (P 0). The sparse coding algorithms dedicated to both approaches are somewhat complex. Over the last ten years, considerable effort has been devoted to making their implementation more efficient [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF][START_REF] Sturm | Comparaison of orthogonal matching pursuit implementations[END_REF].

Sparse autoencoders also provides a sparse decomposition of a signal but with a much less complex approach. More precisely, the coefficients of the sparse decomposition are computed by multiplying the signal with a fixed matrix and then only the most significant terms are kept. Therefore, sparse autoencoders are similar to a decomposition onto a DCT basis, but here, the matrix is learned from a set of signals. This paper sets up an image compression experiment that tests two shallow sparse autoencoders against three common sparse coding algorithms by evaluating both rate-distortion trade-off and complexity. We analyze in detail the sub-optimal form (shallow architecture) of sparse autoencoders to figure out whether general sparse autoencoders can hold promise for image compression. The rate cost is a key criterion. We therefore pay attention to sparse autoencoders able to create codes containing zero coefficients. For instance, the type of sparse autoencoder used for image denoising in [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF][START_REF] Agostinelli | Adaptive multi-column deep neural networks with application to robust image denoising[END_REF] is not relevant for image compression.

SPARSE CODING

This section lays the basic equations of the methods we will compare and analyze. Let x ∈ R m represent an image patch.

Shallow sparse autoencoders

An autoencoder is a neural network that takes x as input and provides a reconstruction of x.

T-sparse autoencoder (T-sparse AE) [START_REF] Makhzani | k-sparse autoencoders[END_REF]. For T ∈ N * + , f T : R n → R n is the application that keeps the T largest coefficients in its input vector and sets the rest to 0. Given x, V ∈ R n×m and b ∈ R n , the first layer of T-sparse AE computes a sparse vector z ∈ R n , see [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]. Then, given z, Φ ∈ R m×n and c ∈ R m , the second layer of T-sparse AE gives a reconstruction x ∈ R m of x , see [START_REF] Sturm | Comparaison of orthogonal matching pursuit implementations[END_REF].

z = fT (V x + b) (1)
x = Φz + c (2)
We also introduce a variant of T-sparse AE called T-absolute AE. It is identical to T-sparse AE except that its application f T : R n → R n keeps the T coefficients in its input vector which absolute values are the largest and sets the rest to 0.

Winner-take-all autoencoder (WTA AE) [START_REF] Makhzani | A winner-take-all method for training sparse convolutional autoencoders[END_REF]. p image patches x (1) , ..., x (p) of dimension m are concatenated into a matrix M x ∈ R m×p . p sparse vectors z (1) , ..., z (p) of dimension n are concatenated into a matrix M z ∈ R n×p . p copies of the vector d ∈ R n are concatenated into a matrix C d ∈ R n×p . p copies of the vector e ∈ R m are concatenated into a matrix C e ∈ R m×p . For α ∈]0, 1[, g α : R n×p → R n×p is the application that keeps the α × n × p largest coefficients in its input matrix and sets the rest to 0. Given M x , W ∈ R n×m and d, the first layer of WTA AE computes M z , see [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF]. Then, given M z , U ∈ R m×n and e, the second layer of WTA AE calculates a reconstruction M x ∈ R m×p of M x , see [START_REF] Agostinelli | Adaptive multi-column deep neural networks with application to robust image denoising[END_REF].

Mz = gα (W Mx + C d) (3)
Mx = U Mz + Ce (4)

Sparse coding algorithms

LARS-Lasso and Coordinate Descent (CoD) [START_REF] Li | Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm[END_REF]. Given x, λ ∈ R * + and a dictionary D ∈ R m×n , they both attempt to solve a relaxed version of (P 0) written in [START_REF] Makhzani | k-sparse autoencoders[END_REF] to find a sparse decomposition z ∈ R n of x over D.

z = min zv x -Dzv 2 2 + λ zv 1 (5)
x = Dz (6)

Orthogonal Matching Pursuit (OMP) [START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF]. OMP is the canonical greedy algorithm for (P 0). Given x, K ∈ N * + and a dictionary D ∈ R m×n , its goal is to find a vector of coefficients z ∈ R n with at most K non-zero terms so that Dz equals to x approximatively.

z = min zv x -Dzv 2 2 st. zv 0 ≤ K (7) x = Dz (8)
(1), (3), (5) and [START_REF] Li | Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm[END_REF] illustrate that, unlike T-sparse AE and WTA AE, LARS-Lasso, CoD and OMP go through optimization for encoding.

LEARNING FRAMEWORK

Before running any test, T-sparse AE and WTA AE must train their parameters. Similarly, LARS-Lasso, CoD and OMP need pre-trained dictionaries.

Training data extraction

The CALTECH-256 dataset [START_REF] Griffin | Caltech-256 object category dataset[END_REF]

S = x (1) , x (2) , ..., x (N) where, for i ∈ [|1, N |],
x (i) ∈ R m . We define µ j and σ j as respectively the mean and the standard deviation of the j th pixel x j over all the patches in S. For m ≤ 144 and N ≥ 600000, we have noticed that, ∀j ∈ [|1, m|], µ j ≈ 0 and σ j ≈ σ ∈ R * + . This remark must be kept aside as it will hold importance in section 3.2.

Shallow sparse autoencoders training

Training T-sparse AE. Given S and T ∈ N * + , V , b, Φ and c are optimized to solve [START_REF] Griffin | Caltech-256 object category dataset[END_REF].

min V,b,Φ,c 1 N N i=1 x (i) -x(i) 2 2 st. ∀i ∈ [|1, N |], fT V x (i) + b 0 ≤ T (9)
Training WTA AE. Given S, α ∈]0, 1[and p ∈ N * + , W , d, U and e are optimized to solve [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF].

min W,d,U,e 1 N Np i=1 M (i) x -M (i) x 2 F st. ∀i ∈ [|1, Np|], gα W M (i) x + C d 0 ≤ α × n × p Np = N p (10)
. F stands for the Frobenius norm and . 0 counts the number of non-zero elements in its input matrix. p must be a divisor of N .

For T-sparse AE and WTA AE, the solver is mini-batch gradient descent with momentum [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF], where all gradients are computed by backpropagation. [START_REF] Lecun | Efficient backprop[END_REF] gives many tricks to run backpropagation. In particular, we must be careful that the mean of each input to a neural network over all training examples be zero and all inputs have the same standard deviation. As explained in section 3.1, S satisfies this requirement.

Dictionary learning

We use three different dictionary learning methods tailored to respectively LARS-Lasso, CoD and OMP.

Learning D λ D λ D λ for LARS-Lasso. Given S and λ ∈ R * + , the algorithm in [1] creates D λ 1 .
Learning D δ D δ D δ for CoD. Given S and δ ∈ R * + , algorithm 1 solves [START_REF] Lecun | Efficient backprop[END_REF].

min D δ ,z (1) ,...,z (N) 1 N N i=1 L x (i) , z (i) , D δ , δ L x (i) , z (i) , D δ , δ = x (i) -D δ z (i) 2 2 + δ z (i)
1 [START_REF] Lecun | Efficient backprop[END_REF] Algorithm 1 alternates between sparse coding steps that involve CoD and dictionary updates that use stochastic gradient descent. For j ∈ [|1, n|], D δ,j is the j th column of D δ .

Algorithm 1

Inputs: S, δ and ε ∈ R * + . D δ is randomly initialized. For several epochs do:

∀i ∈ [|1, N |], z (i) = min zv L x (i) , zv, D δ , δ using CoD. D δ ← D δ -ε ∂L x (i) , z (i) , D δ , δ ∂D δ ∀j ∈ [|1, n|], D δ,j ← D δ,j D δ,j 2
Output: D δ . [START_REF] Bryt | Compression of facial images using the k-svd algorithm[END_REF] is the commonly used dictionary learning algorithm for OMP. But K-SVD is too slow for large N . Unlike K-SVD, algorithm 2 can quickly generate D o for large N . In section 5.4, we will compare K-SVD with algorithm 2. Given S and K ∈ N * + , algorithm 2 solves [START_REF] Bryt | Compression of facial images using the k-svd algorithm[END_REF]. Note the similarities between (9) and [START_REF] Bryt | Compression of facial images using the k-svd algorithm[END_REF]. min Do,z (1) ,...,z (N)

Learning D o D o D o for OMP. K-SVD
1 N N i=1 G x (i) , z (i) , Do st. ∀i ∈ [|1, N |], z (i) 0 ≤ K G x (i) , z (i) , Do = x (i) -Doz (i) 2 2 (12)
Algorithm 2 alternates between sparse coding steps that involve OMP and dictionary updates that use stochastic gradient descent. For j ∈ [|1, n|], D o,j is the j th column of D o . Algorithm 2 and K-SVD mainly differ in the scheduling of dictionary updates. At epoch t, for a given training patch of S, algorithm 2 updates all the atoms of D o used in the decomposition of that patch over D o . At epoch t, K-SVD updates only one time each atom of the dictionary; each atom update takes into account the approximation error of all the training patches of S using that atom in their decomposition.

Algorithm 2

Inputs: S, K and ε ∈ R * + . D o is randomly initialized. For several epochs do:

∀i ∈ [|1, N |], z (i) = min zv G x (i) , zv, Do st. zv 0 ≤ K : OMP Do ← Do -ε ∂G x (i) , z (i) , Do ∂Do ∀j ∈ [|1, n|], Do,j ← Do,j Do,j 2
Output: D o .

IMAGE COMPRESSION SCHEME

After training in section 3, each competitor undergoes the same image compression experiment described below.

Testing data extraction

In the CALTECH-256 dataset, the 250 th category gathers 96 images of zebras. We pick them out of the dataset, convert the RGB color space into the YCbCr color space and only keep the luminance channel. It yields the bank of luminance images denoted Γ = X (1) , ..., X (96) . We choose the images of zebras for testing because they have disparate backgrounds. This makes them difficult to reconstruct. Note that the training set S does not contain any patches of zebras.

Performance measures

For each i ∈ [|1, 96|], X (i) passes through the system displayed in figure 1. Note that the 96 images in Γ have different sizes. For i ∈ [|1, 96|], N (i) varies. The quantizer block applies a scalar uniform quantization on the values of the non-zero coefficients in the set {z (1) , ..., z (N (i)) }. The "coding" part draws on the CODEC in [START_REF] Zepeda | Image compression using sparse representations and the iteration-tuned and aligned dictionary[END_REF]. The set of indexes {a

(j) k } j∈[|1,N (i) |] k∈[|1, z (j) 0|
] is encoded using a fixed length code. The set of quantized values {γ

(j) k } j∈[|1,N (i) |]
k∈[|1, z (j) 0|] is entropy coded with an Huffman code. We call PSNR (in dB) the average PSNR over the 96 images in Γ. The mean rate over the 96 images in Γ, denoted R (in bpp), is defined as:

R = 1 96 96 i=1 R (i) R (i) = E (i) + log 2 (n) 1 m × N (i) N (i) j=1 z (j) 0 For i ∈ [|1, 96|
], E (i) refers to the entropy of the distribution of the set of quantized values {γ

(j) k } j∈[|1,N (i) |] k∈[|1, z (j) 0|]
. Note that R does not take into account the encoding cost of the DC components, as this has to be encoded for each evaluated method. R should also include the encoding cost of the number of non-zero coefficients. Note that, for T-sparse AE and OMP, ∀j ∈ [|1, N (i) |], z (j) 0 = z 0 independent of both i and j. For WTA AE, LARS-Lasso and CoD, for each j ∈ [|1, N (i) |], z (j) 0 varies. However, we neglect this contribution as its cost is small with respect to the cost of encoding the set of indexes {a

(j) k } j∈[|1,N (i) |]
k∈[|1, z (j) 0|] and the set of quantized values {γ

(j) k } j∈[|1,N (i) |] k∈[|1, z (j) 0 |] .
Moreover, for OMP, R can be further optimized. Indeed, the coefficients associated to the first iterations of OMP have larger absolute values than the coefficients associated to the last iterations of OMP. Therefore, an entropy coding can be performed per iteration of OMP. For k ∈ [|1, z 0 |], let E (i) k be the entropy of the distribution of the set of quantized values {γ n and λ = δ 2 = 0.1. The relationship between λ and δ comes from the fact that the minimization problem in [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] differs from [START_REF] Lecun | Efficient backprop[END_REF] by a factor 0.5. We have observed that these values for T , K, p, α, λ and δ bring to competitors the best models for section 4.

(j) k } j∈[|1,N (i) |] . For OMP only, R becomes R o . Ro = 1 96 × m 96 i=1 z 0 k=1 E (i) k + log 2 (n)

Analysis for 8-bits uniform quantization

The experiments in figure 2 are conducted when LARS-Lasso uses D λ , CoD uses D δ and OMP uses D o . We also ran other experiments where LARS-Lasso, CoD and OMP shared a common dictionary. We noticed insignificant differences from what is displayed in figure 2. The domination of OMP over LARS-Lasso and CoD has nothing to do with pre-trained dictionaries. It must be related to the nature of OMP. Note that this observation coincides with the conclusions of Adam Coates and al. [START_REF] Coates | The importance of encoding versus training with sparse coding and vector quantization[END_REF]. Their framework differs from ours as it is classification. They also suggest that the quality of pretrained dictionaries has little impact as long as the dictionaries express relatively well the diversity of image patches. However, the sparse coding mechanism matters a lot.

For OMP, we previously compared R with its optimized variant R o used in figure 2. Over the range of PSNRs in figure 2, R -R o typically belonged to [0.01, 0.05] dB. It was not large. The good rate-distortion trade-offs of OMP compared to those of LARS-Lasso and CoD cannot be attributed to the fact that the measure of rate for OMP has been optimized.

We observe that, for equivalent rates, the PSNRs provided by T-sparse AE are below those of OMP. We try to put forward an explanation. The main difference between autoencoders and sparse coding algorithms lies in the relation link-ing an image patch x ∈ R m to its sparse vector z ∈ R n . For autoencoders, this relation simply couples a linear combination and a point-wise non-linear function, see [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]. However, for sparse coding algorithms, it is an iterative process. Given x ∈ R m , autoencoders put more restrictions on the form z can take. This limited diversity of sparse vectors leads to poorer reconstruction of image patches.

WTA AE beats all its competitors in terms of ratedistortion trade-off. This can be explained by the way the sparsity constraint is handled. For OMP and T-sparse AE, the number of non-zero coefficients in the sparse decomposition is fixed per image patch, see (1) and [START_REF] Li | Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm[END_REF]. Instead, for WTA AE, it is fixed per set of patches, see [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF]. This allows to spread the ressources over the patches, using less non-zero coefficients for patches with less complex texture. This WTA AE approach can be viewed as a suboptimal form of the "block sparsity selection using a global rate-distortion criterion" for OMP [START_REF] Zepeda | Image compression using sparse representations and the iteration-tuned and aligned dictionary[END_REF], where the coefficients leading to the largest distortion decrease are kept. Yet, the approach in [START_REF] Zepeda | Image compression using sparse representations and the iteration-tuned and aligned dictionary[END_REF] is highly complex.

Analysis for variable uniform quantization

Unlike OMP, T-sparse AE and WTA AE seem to be rarely affected by the quantization level. For i ∈ [|1, 96|], the nonzero coefficients in the set {z (1) , ..., z (N (i)) } created by OMP are either positive or negative and most of them gather around zero. However, T-sparse AE produces a set {z (1) , ..., z (N (i)) } whose non-zero coefficients are positive and are spreaded over a wide range. We assume that the impact of quantization arises from this difference in the distribution of the non-zero coefficients in the set {z (1) , ..., z (N (i)) }. To verify this, we look at the behavior of T-absolute AE. Basically, the only distinction between T-sparse AE and T-absolute AE comes from the fact that T-absolute AE generates a set {z (1) , ..., z (N (i)) } that contains both positive and negative non-zero coefficients. Like OMP, the 5-bits uniform quantization harms the PSNRs in the T-absolute AE curve. For OMP and T-absolute AE, the quantization operation might cause many confusions between the small positive and negative non-zero coefficients in the set {z (1) , ..., z (N (i)) }. The reconstruction of image patches is damaged by these confusions.

Proof of the equivalence K-SVD/algorithm 2

We restart the entire scheme in sections 3 and 4. N = 50000 and n = 288. This way, K-SVD quickly trains a dictionary. Figure 3 compares two cases: OMP uses the dictionary from K-SVD and OMP uses the dictionary from algorithm 2.

Complexity analysis

Table 1 summarizes the complexity per image patch for OMP based on a fast QR-1 decomposition [START_REF] Sturm | Comparaison of orthogonal matching pursuit implementations[END_REF], T-sparse AE and WTA AE. The basic implementation of LARS-Lasso [START_REF] Efron | Least angle regression[END_REF] has complexity O(n 3), assuming that m ≤ n. [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] suggests an efficient Cholesky-based implementation of LARS-Lasso and processes batches of η ∈ N * + image patches. Using these optimizations, LARS-Lasso becomes only slightly slower than OMP. One iteration of CoD has complexity O(n) [START_REF] Li | Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm[END_REF] and the number of iterations is related to a threshold. CoD can be either faster than OMP or much slower depending on this threshold so we do not show the complexity of CoD. Note that, in our experiments, CoD is much slower than OMP as we set a low threshold to get the best PSNRs from CoD. We clarify the complexity of WTA AE displayed in 1. In [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF], given a set of images patches M x ∈ R m×p and W ∈ R n×m , the complexity of the matrix product W M x is O(nmp). In (3), g α requires a sorting operation of complexity O(np log (np)). At test time, 200 ≤ p ≤ 8000 so O(nmp) dominates O(np log (np)). The complexity per image patch of WTA AE is O(nm).

CONCLUSION

We show that, for image compression, WTA AE provides the best rate-distortion trade-off, it is robust to quantization noise and less complex than LARS-Lasso, CoD and OMP. Interestingly, these first results show that the quadratic complexity of shallow neural networks together with a specific training can outperform the classical sparse coding algorithms for image compression. They are potential avenues to do better image compression at low complexity.

 For each value n ∈ N * + , we start with the training in section 3. N = 600000, m = 144, T = K = 10, p = 20000, α = 10

Fig. 1 :

 1 Fig. 1: Image compression scheme on Γ.

Fig. 2 :

 2 Fig. 2: Evolution of PNSR with R.

 (a) n = 144, 8-bits uniform quantization (b) n = 144, 5-bits uniform quantization (c) n = 288, 8-bits uniform quantization (d) n = 288, 5-bits uniform quantization

Fig. 3 :

 3 Fig. 3: Evolution of PSNR with R, n = 288, 8-bits uniform quantization.

Table 1 :

 1 complexity per image patch assuming that z 0 m ≤ n.Method Complexity OMP O (mn z 0) [2] T-sparse AE O (mn) WTA AE O (mn)

Its implementation is the one from the SPAMS library: http://spamsdevel.gforge.inria.fr/.