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 proved the same asymptotic properties for the maximum likelihood estimator. Our proof includes several original or more involved components, compared to that of Ying. Also, while the asymptotic variance of maximum likelihood does not depend on the triangular array of observation points under consideration, that of cross validation does, and is shown to be lower and upper bounded. The lower bound coincides with the asymptotic variance of maximum likelihood. We provide examples of triangular arrays of observation points achieving the lower and upper bounds. We illustrate our asymptotic results with simulations, and provide extensions to the case of an unknown mean function. To our knowledge, this work constitutes the first fixed-domain asymptotic analysis of cross validation.

Introduction

Kriging [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] consists in inferring the values of a Gaussian random field given observations at a finite set of observation points. It has become a popular method for a large range of applications, such as geostatistics [START_REF] Matheron | La Théorie des Variables Régionalisées et ses Applications[END_REF], numerical code approximation [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF][START_REF] Bachoc | Improvement of code behavior in a design of experiments by metamodeling[END_REF] and calibration [START_REF] Paulo | Calibration of computer models with multivariate output[END_REF][START_REF] Bachoc | Calibration and improved prediction of computer models by universal Kriging[END_REF] or global optimization [START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF]. Before Kriging can be applied, a covariance function must be chosen. The most common practice is to statistically estimate the covariance function, from a set of observations of the Gaussian process, and to plug [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]Ch.6.8] the estimate in the Kriging equations. Usually, it is assumed that the covariance function belongs to a given parametric family (see [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF] for a review of classical families). In this case, the estimation boils down to estimating the corresponding covariance parameters. For covariance parameter estimation, maximum likelihood (ML) is the most studied and used method, while cross validation (CV) [START_REF] Sundararajan | Predictive approaches for choosing hyperparameters in Gaussian processes[END_REF][START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecification[END_REF] is an alternative technique. CV has been shown to have attractive properties, compared to ML, when the parametric family of covariance functions is misspecified [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecification[END_REF][START_REF] Bachoc | Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case[END_REF]. There is a fair amount of literature on the asymptotic properties of ML. In this regard, the two main frameworks are increasing-domain and fixed-domain asymptotics [35, p.62]. Under increasing-domain asymptotics, the average density of observation points is bounded, so that the infinite sequence of observation points is unbounded. Under fixed-domain asymptotics, this sequence is dense in a bounded domain. Consider first increasing-domain asymptotics. Generally speaking, for all (identifiable) covariance parameters, the ML estimator is consistent and asymptotically normal under some mild regularity conditions. The asymptotic covariance matrix is equal to the inverse of the (asymptotic) Fisher information matrix. This result was first shown in [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF], and then extended in different directions in [START_REF] Cressie | The asymptotic distribution of REML estimators[END_REF][START_REF] Cressie | Asymptotics for REML estimation of spatial covariance parameters[END_REF][START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF]. The situation is significantly different under fixed-domain asymptotics. Indeed, two types of covariance parameters can be distinguished: microergodic and non-microergodic parameters [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. A covariance parameter is microergodic if, for two different values of it, the two corresponding Gaussian measures are orthogonal, see [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. It is non-microergodic if, even for two different values of it, the two corresponding Gaussian measures are equivalent. Non-microergodic parameters cannot be estimated consistently, but have an asymptotically negligible impact on prediction [START_REF] Stein | Asymptotically efficient prediction of a random field with a misspecified covariance function[END_REF][START_REF] Stein | Bounds on the efficiency of linear predictions using an incorrect covariance function[END_REF][START_REF] Stein | Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure[END_REF][START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF]. On the other hand, it is at least possible to consistently estimate microergodic covariance parameters, and misspecifying them can have a strong negative impact on prediction. Under fixed-domain asymptotics, there exist results indicating which covariance parameters are microergodic, and providing the asymptotic properties of the corresponding ML estimator. Most of these available results are specific to particular covariance models. In dimension d = 1 when the covariance model is exponential, only a reparameterized quantity obtained from the variance and scale parameters is microergodic. It is shown in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] that the ML estimator of this microergodic parameter is strongly consistent and asymptotically normal. These results are extended in [START_REF] Chen | Infill asymptotics for a stochastic process model with measurement error[END_REF], by taking into account measurement errors, and in [START_REF] Chang | Mixed domain asymptotics for a stochastic process model with time trend and measurement error[END_REF], by taking into account both measurement errors and an unknown mean function. When d > 1 and for a separable exponential covariance function, all the covariance parameters are microergodic, and the asymptotic normality of the ML estimator is proved in [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF]. Other results in this case are also given in [START_REF] Van Der | Maximum likelihood estimation under a spatial sampling scheme[END_REF][START_REF] Abt | Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes[END_REF]. Consistency of ML is shown as well in [START_REF] Loh | Estimating structured correlation matrices in smooth Gaussian random field models[END_REF] for the scale parameters of the Gaussian covariance function and in [START_REF] Loh | Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields[END_REF] for all the covariance parameters of the separable Matérn 3/2 covariance function. Finally, for the entire isotropic Matérn class of covariance functions, all parameters are microergodic for d > 4 [START_REF] Anderes | On the consistent separation of scale and variance for Gaussian random fields[END_REF], and only reparameterized parameters obtained from the scale and variance are microergodic for d 3 [START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF]. In [START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF], the asymptotic normality of the ML estimators for these microergodic parameters is proved, from previous results in [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF] and [START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF]. Finally we remark that, beyond ML, quadratic variation-based estimators have also been extensively studied, under fixed-domain asymptotics (see for instance [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF]). In contrast to ML, CV has received less theoretical attention. Under increasing-domain asymptotics, the consistency and asymptotic normality of a CV estimator is proved in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]. Also, under increasing-domain asymptotics, it is shown in [START_REF] Bachoc | Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case[END_REF] that this CV estimator asymptotically minimizes the integrated square prediction error. To the best of our knowledge, no fixed-domain asymptotic analysis of CV exists in the literature. In this paper, we provide a first fixed-domain asymptotic analysis of the CV estimator minimizing the CV logarithmic score, see [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] Equation (5.11) and [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF]. We focus on the case of the one-dimensional exponential covariance function, which was historically the first covariance function for which the asymptotic properties of ML were derived [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. This covariance function is particularly amenable to theoretical analysis, as its Markovian property yields an explicit (matrix-free) expression of the likelihood function. It turns out that the CV logarithmic score can also be expressed in a matrix-free form, which enables us to prove the strong consistency and asymptotic normality of the corresponding CV estimator. We follow the same general proof architecture as in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] for ML, but our proof, and the nature of our results, contain several new elements. In terms of proofs, the random CV logarithmic score, and its derivatives, have more complicated expressions than for ML. [This is because the CV logarithm score is based on the conditional distributions of the observations, from both their nearest left and right neighbors, while the likelihood function is solely based on the nearest left neighbors. See Lemma 3.1 and Lemma 1 in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] for details.] As a consequence, the computations are more involved, and some other tools than in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] are needed. In particular, many of our asymptotic approximations rely on Taylor expansions of functions of several variables (where each variable is an interpoint distance going to zero, see the proofs for details). In contrast, only Taylor approximations with one variable are needed in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. In addition, we use central limit theorems for dependent random variables, while only independent variables need to be considered in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. The nature of our asymptotic normality result also differs from that in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. In this reference, the asymptotic variance does not depend on the triangular array of observation points. On the contrary, in our case, different triangular arrays of observation points can yield different asymptotic variances. We exhibit a lower and an upper bound for these asymptotic variances, and provide examples of triangular arrays reaching them. The lower bound is in fact equal to the asymptotic variance of ML in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. Interestingly, the triangular array given by equispaced observation points attains neither the lower nor the upper bound. It is also pointed out in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] that equispaced observation points need not provide the smallest asymptotic variance for covariance parameter estimation. Finally, the fact that the asymptotic variance is larger for CV than for ML is a standard finding in the well-specified case considered here, where the covariance function of the Gaussian process does belong to the parametric family of covariance functions under consideration. In contrasts, as mentioned above, CV has attractive properties compared to ML when this well-specified case does not hold [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecification[END_REF][START_REF] Bachoc | Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case[END_REF]. The rest of the paper is organized as follows. In Section 2, we present in more details the setting and the CV estimator under consideration. In Section 3, we give our strong consistency result for this estimator. In Section 4, we provide the asymptotic normality result, together with the analysis of the asymptotic variance. In Section 5, we present numerical experiments, illustrating our theoretical findings. In Section 6, we extend the results of Sections 3 and 4 to the case of an unknown mean function. In Section 7, we give a few concluding remarks. All the proofs are postponed to Section 8.

The context and the cross-validation estimators

We consider a centered Gaussian process Y on [0, 1] with covariance function

K 0 (t 1 , t 2 ) = σ 2 0 exp{-θ 0 |t 1 -t 2 |}
for some fixed and unknown parameters θ 0 > 0 and σ 2 0 > 0. This process is commonly known as the Ornstein-Uhlenbeck process. It satisfies the following stochastic differential equation, called the Langevin's equation,

dY (t) = -θ 0 Y (t)dt + 2θ 0 σ 0 dB(t),
where (B(t)) t denotes a standard Brownian motion process. The Ornstein-Uhlenbeck process has been widely used to model physical, biological, social, and many other phenomena. It also possesses many useful mathematical properties that simplify the analysis. We introduce the parametric set of covariance functions {K θ,σ 2 , a θ A, b σ 2 B} for some fixed 0 < a A < +∞ and 0 < b B < +∞ where

K θ,σ 2 (t 1 , t 2 ) = σ 2 exp{-θ|t 1 -t 2 |}.
For any n ∈ N, we consider a design of observation points {s 1 , ..., s n }. Without loss of generality, we may assume that 0 = s 1 < ... < s n = 1. Similarly as in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], there is no need to assume that the sequences of observation points are nested. We consider the vector of observations at locations s 1 , ..., s n , (Y (s 1 ), . . . , Y (s n )) . Now let ∆ i := s i -s i-1 , for i = 2, ..., n, and y i := Y (s i ), for i = 1, ..., n. For ease of redaction, we do not mention in s i and ∆ i the dependency in n. We define R θ as the variance-covariance matrix of (y 1 , ..., y n )

under covariance function K θ,1 , R θ :=          1 e -θ∆ 2 • • • e -θ n i=2 ∆ i e -θ∆ 2 1 • • • e -θ n i=3 ∆ i . . . . . . . . . . . . e -θ n i=2 ∆ i e -θ n i=3 ∆ i • • • 1         
.

From [START_REF] Antognini | Exact optimal designs for computer experiments via Kriging metamodelling[END_REF], we have

R -1 θ =          1 1-e -2θ∆ 2 -e -θ∆ 2 1-e -2θ∆ 2 0 • • • 0 -e -θ∆ 2 1-e -2θ∆ 2 1 
1-e -2θ∆ 2 + e -2θ∆ 3

1-e -2θ∆ 3 . . . . . . . . .

0 . . . . . . 0 . . . . . . 1 1-e -2θ∆ n-1 + e -2θ∆n
1-e -2θ∆n

-e -θ∆n 1-e -2θ∆n

0 • • • 0 -e -θ∆n 1-e -2θ∆n 1 1-e -2θ∆n          . ( 1 
)
We now address the CV estimators of θ 0 and σ 2 0 considered in [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF]

. Let Ŷθ,-i (s i ) = E θ,σ 2 (Y (s i )|Y (s 1 ), ..., Y (s i-1 ), Y (s i+1 ), ..., Y (s n )),
where the conditional expectation E θ,σ 2 is calculated assuming that Y is centered and has covariance function K θ,σ 2 . We remark that Ŷθ,-i (s i ) does not depend on σ 2 . We define similarly

σ2 θ,σ 2 ,-i (s i ) = Var θ,σ 2 (Y (s i )|Y (s 1 ), ..., Y (s i-1 ), Y (s i+1 ), ..., Y (s n )).
Then, the CV estimators are given by

( θ, σ2 ) ∈ argmin a θ A,b σ 2 B S n (θ, σ 2 ),
where

S n (θ, σ 2 ) = n i=1 log(σ 2 θ,σ 2 ,-i (s i )) + (y i -Ŷθ,-i (s i )) 2 σ2 θ,σ 2 ,-i (s i ) (2) 
is the logarithmic score. The rationale for minimizing the logarithmic score is that log(2π)+ log(σ 2 θ,σ 2 ,-i (s i )) +

(y i -Ŷθ,-i (s i )) 2 σ2 θ,σ 2 ,-i (s i )
is equal to -2 times the conditional log-likelihood of y i , given (y 1 , ..., y i-1 , y i+1 , ..., y n ) , with covariance parameters θ, σ 2 . The term cross-validation underlines the fact that we consider leave-one-out quantities. As already known [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF][START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF], it is not possible to consistently estimate simultaneously θ 0 and σ 2 0 (the ML estimator of θ 0 is a non-degenerate random variable, even if (Y (t)) t∈[0,1] is observed continuously [START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF]), but it is possible to consistently estimate θ 0 σ 2 0 . As a consequence, we have considered three different cases, as in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]

. (i) Set σ 2 = σ 2 1 in (2) with σ 2
1 > 0 being a predetermined constant and consider the CV estimator θ1 of

θ 1 = θ 0 σ 2 0 /σ 2 1 that minimizes (2) with σ 2 = σ 2 1 . (ii) Set θ = θ 2 in (2)
with θ 2 > 0 being a predetermined constant and consider the CV estimator σ2 2 of σ 2 2 = θ 0 σ 2 0 /θ 2 that minimizes (2) with θ = θ 2 . (iii) Consider the estimator θσ 2 of θ 0 σ 2 0 , where θ and σ2 are the CV estimators of θ 0 and σ 2 0 . Ying [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] considers the ML estimators of θ and σ 2 and establishes their consistency and asymptotic normality. We carry out a similar asymptotic analysis for the above CV estimators. More precisely, we prove that θσ 2 (resp. θ1 and σ2

2 ) converges almost surely to θ 0 σ 2 0 (resp. θ 1 and σ 2 2 ) in the next section. In section 4, we establish that, for a sequence τ n which is lower and upper-bounded, (

√ n/[θ 1 τ n ])( θ1 -θ 1 ), ( √ n/[σ 2 2 τ n ])(σ 2 2 -σ 2 2 ) and ( √ n/[θ 0 σ 2 0 τ n ])( θσ 2 -θ 0 σ 2 0 )
all converge in distribution to a standard Gaussian random variable. We remark that the asymptotic variance τ 2 n depends on how the underlying design points {s 1 , ..., s n } are chosen. On the contrary, considering the ML estimators [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], the asymptotic variance is the same for any triangular array of design points.

Consistency

In this section, we establish the strong consistency of the CV estimator θσ 2 of θ 0 σ 2 0 described in the previous section. In that view, we consider S n (θ, σ 2 ) defined by [START_REF] Abt | Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes[END_REF]. As done in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], we base our analysis on the Markovian property of the Ornstein-Uhlenbeck process in order to handle the fact that, as n increases, the observed sample (y 1 , . . . , y n ) becomes more and more correlated. We have

Ŷθ,-i (s i ) = - j=1,...,n; j =i (R -1 θ ) ij (R -1 θ ) ii y j (3) 
and

σ2 θ,σ 2 ,-i (s i ) = σ 2 (R -1 θ ) ii
, from [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecification[END_REF][START_REF] Dubrule | Cross validation of Kriging in a unique neighborhood[END_REF]. Then, using Equation (1), we get the following lemma after some tedious computations.

Lemma 3.1 (Logarithmic score). With S n (θ, σ 2 ) as in (2), we have

S n (θ, σ 2 ) = n log(σ 2 ) + log(1 -e -2θ∆ 2 ) + log(1 -e -2θ∆n ) + (y 1 -e -θ∆ 2 y 2 ) 2 σ 2 (1 -e -2θ∆ 2 ) + (y n -e -θ∆n y n-1 ) 2 σ 2 (1 -e -2θ∆n ) - n-1 i=2 log 1 1 -e -2θ∆ i + e -2θ∆ i+1 1 -e -2θ∆ i+1 + 1 σ 2 n-1 i=2 1 1 -e -2θ∆ i + e -2θ∆ i+1 1 -e -2θ∆ i+1   y i - e -θ∆ i 1-e -2θ∆ i y i-1 + e -θ∆ i+1
1-e -2θ∆ i+1 y i+1

1 1-e -2θ∆ i + e -2θ∆ i+1
1-e 

∆ i = 0. ( 4 
)
Let J = [a, A] × [b, B],
where a, A, b and B are fixed and have been defined in the previous section. Assume that there exists ( θ, σ2 ) in J so that θσ 2 = θ 0 σ 2 0 . Define ( θ, σ2 ) ∈ J as a solution of

S n ( θ, σ2 ) = min (θ,σ 2 )∈J S n (θ, σ 2 ). (5) 
Then ( θ, σ2 ) exists and

θσ 2 a.s. → θ 0 σ 2 0 . (6) 
In particular, let σ 2 1 > 0 and θ 2 > 0 be predetermined constants satisfying

σ 2 0 θ 0 /σ 2 1 ∈ [a, A] and σ 2 0 θ 0 /θ 2 ∈ [b, B]. Define θ1 ∈ [a, A] and σ2 2 ∈ [b, B] as solutions of S n ( θ1 , σ 2 1 ) = min θ∈[a,A] S n (θ, σ 2 1 ) (7) 
and

S n (θ 2 , σ2 2 ) = min σ 2 ∈[b,B] S n (θ 2 , σ 2 ). (8) 
Then θ1

a.s.

→ θ 1 := σ 2 0 θ 0 /σ 2 1 and σ2 2 a.s.

→ σ 2 2 := σ 2 0 θ 0 /θ 2 . Remark 3.3. It is worth remarking that the asymptotically preponderant terms in Lemma 3.1 are the same as those obtained in the context of ML estimation (see [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] and Section 8.2 for more details).

Asymptotic normality

Once the consistency has been established, the natural question of the convergence speed arises. We address this point in this section. We first provide a central limit result in the following theorem. Theorem 4.1 (Central Limit Theorem). Consider the same notation and assumptions as in Theorem 3.2. Assume further that either aB < θ 0 σ 2 0 ; Ab > θ 0 σ 2 0 or aB > θ 0 σ 2 0 ; Ab < θ 0 σ 2 0 hold. Then the estimators are asymptotically normal. More precisely, we have

√ n θ 0 σ 2 0 τ n ( θσ 2 -θ 0 σ 2 0 ) D ---→ n→∞ N (0, 1). (9) 
Also, when (σ

2 0 θ 0 )/σ 2 1 ∈ (a, A) we have √ n θ 1 τ n ( θ1 -θ 1 ) D ---→ n→∞ N (0, 1). ( 10 
)
Finally, when (σ

2 0 θ 0 )/θ 2 ∈ (b, B) we have √ n σ 2 2 τ n (σ 2 2 -σ 2 2 ) D ---→ n→∞ N (0, 1). ( 11 
)
The quantity τ 2 n depends on how the underlying design points {s 1 , . . . , s n } have been chosen. More precisely,

τ 2 n = 2 n n-1 i=3 ∆ i+1 ∆ i + ∆ i+1 + ∆ i-1 ∆ i + ∆ i-1 2 + 2 ∆ i ∆ i+1 (∆ i + ∆ i+1 ) 2 . ( 12 
)
Remark 4.2. The condition aB < θ 0 σ 2 0 ; Ab > θ 0 σ 2 0 or aB > θ 0 σ 2 0 ; Ab < θ 0 σ 2 0 ensures that (∂/∂θ)S n ( θ, σ2 ) or (∂/∂σ 2 )S n ( θ, σ2 ) will be equal to zero for n large enough almost surely, by applying Theorem 3.2. This is used in the proof of Theorem 4.1. A similar assumption is made in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], where the parameter domain for (θ,

σ 2 ) is (0, ∞) × [b, B] or [a, A] × (0, ∞).
In the following proposition, we show that the quantity τ 2 n in Theorem 4.1 is lower and upper bounded, so that the rate of convergence is always √ n in this theorem.

Proposition 4.3. We have, for any choice of the triangular array of design points {s 1 , ..., s n } satisfying (4),

2 lim inf n→∞ τ 2 n lim sup n→∞ τ 2 n 4. ( 13 
)
Remark 4.4.

1. The asymptotic variance of the limiting distribution of θσ 2 -θ 0 σ 2 0 can be easily estimated. By the previous proposition, this asymptotic variance is always larger than the one of the ML estimator. Indeed, with θML and σ2 M L the ML estimators of θ and σ 2 we have (

√ n/[θ 0 σ 2 0 ])( θML σ2 M L -θ 0 σ 2 0 ) D ---→ n→∞ N (0, 2)
, see [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. This fact is quite expected as ML estimates usually perform best when the covariance model is well-specified, as is the case here.

As one can check easily, the regular design ∆ i ≡ 1

n-1 for all i = 2, . . . , n, does not yield the limiting variance of the ML estimator. Instead, we have τ 2 n → n→∞ 3 for this design. However, in Proposition 4.5, we exhibit a particular design realizing the limiting variance of the ML estimator:

lim n→∞ τ 2 n = 2.
In fact, the bounds in [START_REF] Cressie | Asymptotics for REML estimation of spatial covariance parameters[END_REF] are sharp as shown in the following proposition. Proposition 4.5. (i) Let {s 1 , . . . , s n } be such that s 1 = 0, for i = 2, ..., n -1,

∆ i = (1 -γ n ) 2 n if i is even, 2γn n if i is odd,
where γ n ∈ (0, 1), and

∆ n = 1 -n-1 i=2 ∆ i . Then, taking γ n = 1/n, we get τ 2 n → n→∞ 4.
(ii) Let {s 1 , . . . , s n } and 0 < α < 1 be such that

s 1 = 0, ∆ i = 1/(i !) for i = n α + 1, . . . , n and ∆ 2 = • • • = ∆ n α ≡ (1 -r n )/( n α -1) with r n := n i= n α +1 ∆ i . Then n i=2 ∆ i = 1 and τ 2 n → n→∞ 2.
Remark 4.6. Intuitively, in Proposition 4.5 (ii), ∆ i+1 will be much smaller than ∆ i for most of the indices i, so that the quantities 12) will be negligible. We refer to the proof of Proposition 4.5 for further details.

∆ i+1 ∆ i +∆ i+1 and ∆ i ∆ i+1 (∆ i +∆ i+1 ) 2 in (

Numerical experiments

We illustrate Theorem 4.1 by a Monte Carlo simulation. We set θ 0 = 3 and σ 2 0 = 1 and we consider three sample size values, n = 12, 50, 200. For the sample size n = 12, we address three designs {s 1 , ..., s n }. The first one is the 'minimal' design given by Proposition 4.5 (ii) with α = 0.5, which asymptotically achieves the minimal estimation variance. The second one is the 'regular' design given by {s 1 , ..., s n } = {0, 1/(n -1), ..., 1}. The third one is the 'maximal' design given by Proposition 4.5 (i) with γ n = 1/n, which asymptotically achieves the maximal estimation variance. These three designs are show in Figure 1. For the sample sizes n = 50 and n = 200, the 'minimal' design is not amenable to numerical computation anymore, as the values of ∆ i become too small; so that we only address the 'regular' and 'maximal' designs. q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 qq qq qq qq qq q q 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Plot of the points {s 1 , ..., s n } for the 'minimal', 'regular' and 'maximal' designs of the numerical experiments for n = 12 (from left to right). For the 'minimal' design, nine points form a dense cluster around one and the asymptotic variance of the CV estimator is 2 (Proposition 4.5 (i)), for the 'regular' design, the asymptotic variance is 3, and for the 'maximal' design, the asymptotic variance is 4 (Proposition 4.5 (ii)).

For a given configuration of n and a given design {s 1 , ..., s n }, we repeat N = 2.000 data generations and estimations. That is, we independently sample N Gaussian vectors of size n with zero mean vector and covariance matrix [σ 2 0 e -θ 0 |s i -s j | ] 1 i,j n . For each of these Gaussian vectors, we compute the CV estimators θ and σ2 , with parameter space [0.1, 10] × [0. [START_REF] Anderes | On the consistent separation of scale and variance for Gaussian random fields[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF], so that we consider case (9) of Theorem 4.1. The computation of θ and σ2 is not challenging since, from Lemma 3.1, the logarithmic score S n (θ, σ 2 ) can be computed quickly, with a O(n) complexity. [For more general covariance functions, the computation of CV or ML criteria is more costly, with a O(n 3 ) complexity.] The criterion S n is minimized over (θ, σ 2 ) by repeating the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, with several starting points for (θ, σ 2 ), and by keeping the value of (θ, σ 2 ) with smallest logarithmic score, over all the repetitions. The R software was used, with the optim function. [We remark that, for fixed θ, one could find an explicit expression of σ2 (θ) ∈ argmin σ 2 >0 S n (θ, σ 2 ) (see also [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecification[END_REF] for a different CV criterion). Hence, it would be possible to minimize the profile logarithmic score min σ 2 >0 S n (θ, σ 2 ) over θ only. As mentioned earlier, this improvement is not needed here, since the criterion S n (θ, σ 2 ) can be computed quickly.] For the N values of ( θ, σ2 ), we compute the N values of ( √ n/[θ 0 σ 2 0 ])( θσ 2 -θ 0 σ 2 0 ). In Figure 2, we report the histograms of these latter N values, for the seven configurations under consideration. In addition, we report the probability density functions of the seven corresponding Gaussian distributions with mean 0 and variance τ 2 n , to which the histograms converge when n → ∞, in view of Theorem 4.1.

In Figure 2, we observe that, for n = 12, the asymptotic Gaussian distributions are already reasonable approximations of the empirical histograms. For n = 50, the asymptotic distributions become very close to the histograms, and for n = 200 the asymptotic distributions are almost identical to the histograms. Hence, the convergence in distribution of Theorem 4.1 provides a good approximation of the finite sample situation already for small to moderate n. The case n = 12 illustrates the benefit of the 'minimal' design for estimation, as the histogram is most concentrated around zero for this design. Similarly, the value of τ 2 12 is the smallest for this design, compared to the 'regular' and 'maximal' designs. For n = 50 and 200, we also observe that the estimation is more accurate for the 'regular' design than for the 'maximal' design, which also confirms Remark 4.4 and Proposition 4.5. Finally, we have obtained similar conclusions for the case where either θ 0 or σ 2 0 is known in the computation of θ, σ2 (cases of ( 10) and ( 11)). We do not report the corresponding results for concision.

Extension to regression models

In this section, we extend Theorems 3.2 and 4.1 to the case of regression models. We assume that, instead of Y , we observe the Gaussian process Z defined by Z(t) = β 01 f 1 (t) + ... + β 0p f p (t) + Y (t). In the definition of Z, β 0 = (β 01 , ..., β 0p ) ∈ R p is fixed and unknown and, for k = 1, ..., p, f k : [0, 1] → R is a known function. Hence, we estimate jointly (θ, σ 2 , β 0 ) from the observation vector z = (z 1 , ..., z n ) , with

z i = Z(s i ). Let F be the n × p matrix [f j (s i )] i=1,...,n,j=1,...,p . Then β = (F R -1 θ F ) -1 F R -1
θ z is the best linear unbiased predictor of β 0 given z, under covariance function K θ,σ 2 for all σ 2 , see e.g. [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. We now address CV estimation. Let

f i = (f 1 (s i ), ..., f p (s i )) , let z -i = (z 1 , ..., z i-1 , z i+1 , ..., z n ) ,
let F -i be the matrix obtained by removing line i of F , and let R θ,-i be the (n -1) × (n -1) matrix obtained by removing line and column i of R θ . Then, for all σ 2 ,

β-i = (F -i R -1 θ,-i F -i ) -1 F -i R -1 θ,-i z -i is the best linear unbiased predictor of β 0 given z -i , under covariance function K θ,σ 2 .
We also let r θ,-i = (K θ,1 (s i , s 1 ), ..., K θ,1 (s i , s i-1 ), K θ,1 (s i , s i+1 ), ..., K θ,1 (s i , s n )) . Then, from e.g. [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF],

Ẑθ,-i (

s i ) = f i β-i + r θ,-i R -1 θ,-i (z -i -F -i β-i ) (14) 
is the best linear unbiased predictor of z i given z -i . We let 

σ2 θ,σ 2 ,-i (s i ) = E θ,σ 2 Ẑθ,-i (s i ) -Z(s i ) 2 .
( √ n/[θ 0 σ 2 0 ])( θσ 2 -θ 0 σ 2 0
), together with the corresponding asymptotic Gaussian probability density functions with mean 0 and variances τ 2 n (red lines). The sample size is n = 12 (top row), n = 50 (middle row) and n = 200 (bottom row). For the top row, the designs are the 'minimal' design (left), achieving the smallest asymptotic variance; the 'regular' design (middle), with equispaced observation points; and the 'maximal' design (right), achieving the largest asymptotic variance. For the middle and bottom rows, the designs are the 'regular' design (left) and the 'maximal' design (right).

Then, the CV estimator of (θ, σ 2 ) we shall study in this section is

( θ, σ2 ) ∈ argmin a θ A,b σ 2 B Sn (θ, σ 2 ) with Sn (θ, σ 2 ) = n i=1 log(σ 2 θ,σ 2 ,-i (s i )) + (z i -Ẑθ,-i (s i )) 2 σ2 θ,σ 2 ,-i (s i )
.

We remark that [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF] suggests to use a similar CV criterion, with the notable difference that β-i is replaced by β in [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF]. The benefit of the CV predictor ( 14), compared to that considered in [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF], is that, in [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF], no use of z i is made at all for predicting z i . In [START_REF] Dubrule | Cross validation of Kriging in a unique neighborhood[END_REF], the following relations are shown, extending those of Section 3. We have

Ẑθ,-i (s i ) = - j=1,...,n; j =i (Q - θ ) ij (Q - θ ) ii z j and σ2 θ,σ 2 ,-i (s i ) = σ 2 (Q - θ ) ii , (15) 
with

Q - θ = R -1 θ -R -1 θ F (F R -1 θ F ) -1 F R -1 θ .
Based on the two displays above, and again using the explicit matrix inverse in [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF], we are able to prove the consistency and asymptotic normality of θσ 2 where the asymptotic distribution is identical to that of Section 4. ∆ i = 0 and that there exists ( θ, σ2 ) in J so that θσ 2 = θ 0 σ 2 0 . Assume also that f 1 , ..., f p are twice continuously differentiable and are linearly independent on [0, 1]. Then ( θ, σ2 ) exists and

θσ 2 a.s. → θ 0 σ 2 0 . ( 16 
)
Theorem 6.2 (Central Limit Theorem). Assume that the conditions of Theorem 6.1 hold and that aB > θ 0 σ 2 0 and Ab < θ 0 σ 2 0 . Then, with τ n as in [START_REF] Cressie | The asymptotic distribution of REML estimators[END_REF], we have

√ n θ 0 σ 2 0 τ n ( θσ 2 -θ 0 σ 2 0 ) D ---→ n→∞ N (0, 1). (17) 
In Theorems 6.1 and 6.2, the twice differentiability condition for f 1 , ..., f p is mostly technical, and could be replaced by a continuous differentiability condition, at the price of more technical proofs. [We remark that Theorems 6.1 and 6.2 apply in particular to polynomial functions f 1 , ..., f p which are widely considered, for instance in the framework of computer experiments [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF].] As remarked in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], when f 1 , ..., f p are continuously differentiable, the parameter β 0 is non-microergodic and can not be consistently estimated. Finally, assume now that f 1 , ..., f p satisfy the conditions given in Theorem 3 (ii) in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF].

Then, one can show from the proof of this theorem that, for any sequence or random variables ( θ, σ2 ) ∈ J (and in particular for ( θ, σ2 )), the estimator β = β( θ) given above is consistent and asymptotically normal, with asymptotic distribution given in (4.5) in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. In this setting, it would be interesting to study the joint asymptotic distribution of ( θ, σ2 , β).

Concluding remarks

We have proved the consistency and asymptotic normality of the CV estimator of the microergodic parameter θ 0 σ 2 0 , based on the logarithmic score. While the ML asymptotic variance of (

√ n/[θ 0 σ 2 0 ])( θML σ2 M L -θ 0 σ 2 0
) is 2 for any triangular array of observation points, the corresponding CV asymptotic variance is simply bounded between 2 and 4, those bounds being tight. The triangular array we exhibit, achieving the asymptotic variance 2 for CV, is based on some ratios between interpoint distances (of the form (s i+1 -s i )/(s j+1s j )) going to zero as n → ∞, which makes it too challenging to simulate numerically for large n. It would be interesting to find the smallest possible asymptotic variance for CV, when the ratios between interpoint distances are bounded away from zero. One interesting agenda for future research would be to extend this asymptotic analysis of CV in the other settings where such an analysis was possible for ML. These settings include the case of measurement errors for the exponential covariance function in dimension one [START_REF] Chen | Infill asymptotics for a stochastic process model with measurement error[END_REF][START_REF] Chang | Mixed domain asymptotics for a stochastic process model with time trend and measurement error[END_REF], the case of the separable exponential covariance function in higher dimension [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF] (consistency and asymptotic normality), of the separable Matérn 3/2 covariance function [START_REF] Loh | Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields[END_REF] (consistency) and of the Gaussian covariance function [START_REF] Loh | Estimating structured correlation matrices in smooth Gaussian random field models[END_REF] (consistency). In these references, tractable approximations of the inverse covariance matrices are provided, which could also be exploited in the case of CV. Finally, using techniques which are more spectral in nature, [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF][START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF][START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF] prove central limit theorems for the ML estimation of the microergodic parameter in the isotropic Matérn model. An extension to CV would also be valuable.

Proofs

Notation and auxiliary results

Remind that ∆ i = s i -s i-1 and introduce W i := [y i -e -θ∆ i y i-1 ] and its normalized version W i := [y i -e -θ∆ i y i-1 ]/[σ 2 (1 -e -2θ∆ i )] 1/2 for i = 2, . . . , n (the dependency in n is not mentioned in W i and W i to lighten notation). When (θ, σ 2 ) = (θ 0 , σ 2 0 ), the random variables will be denoted W i,0 and W i,0 . By the Markovian and Gaussian properties of Y , it follows that for each i 2, W i,0 is independent of {y j , j i -1}. Therefore, {W i,0 , 2 i n} is an i.i.d. sequence of random variables having the standard normal distribution N (0, 1). It is convenient to have short expressions for terms that converge in probability to zero. We follow [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. The notation o P (1) (respectively O P (1)) stands for a sequence of random variables that converges to zero in probability (resp. is bounded in probability) as n → ∞. More generally, for a sequence of random variables R n ,

X n = o P (R n ) means X n = Y n R n with Y n P → 0 X n = O P (R n ) means X n = Y n R n with Y n = O P (1).
For deterministic sequences X n and R n , the stochastic notation reduce to the usual o and O. Throughout the paper, by K, we denote a generic constant (i.e. K may or may not be the same at different occurrences) that does not depend on (Y, θ, σ 2 , n). We also denote by δ n and δn two sequences of random variables satisfying

sup (θ,σ 2 )∈J |δ n | = O P (1)
and sup

(θ,σ 2 )∈J | δn | = o(n), a.s.
The definition of δ n and δn may change from one line to the other. Similarly, we denote by δ i,n a triangular array of deterministic scalars satisfying

sup n∈N,i=1,...,n (θ,σ 2 )∈J |δ i,n | K.
The definition of δ i,n may change from one line to the other, and possibly also in different occurrences within the same line. We also use several times that,

n-1 i=2 ∆ i = 1, (18) 
sup

t∈[0,1] |Y (t)| < +∞ a.s. ( 19 
)
Before turning to the proof of Theorems 3.2 and 4.1, we state five auxiliary lemmas that will be required in the sequel.

Lemma 8.1. (i) Let λ i > 0, i = 1, 2 be fixed. Then as x → 0,

1 -e -λ 1 x 1 -e -λ 2 x = λ 1 λ 2 + O(x).
(ii) Let λ > 0 be fixed. Then as x, y → 0,

1 + e -λy 1 -e -λx 1 -e -λy =

x + y y (1 + O(x + y)).

Lemma 8.2. For any constant δ > 0, there exists a constant η > 0 such that

inf |x-1| δ x>0 (x -1 -log x) η. ( 20 
)
Lemma 8.3. Suppose that for each n, the random variables Z, Z 1,n , . . . , Z n,n are independent and identically distributed and centered. Suppose also that for some t > 0 and p > 0, E[exp{t|Z| p }] < ∞. Then for all α > 0, a.s

sup 1 k n |Z k,n | = o(n α ) (21) 
n k=2 Z k,n = o(n (1/2)+α ). (22) 
The proof of Lemma 8.1 is direct and these of Lemmas 8.2 and 8.3 can be found in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF].

Lemma 8.4. Let for any i ∈ {2, ..., n -1},

η i = ∆ i+1 ∆ i + ∆ i+1 (1 + δ i,n (∆ i + ∆ i+1 ))
and

τ i = ∆ i ∆ i + ∆ i+1 (1 + δ i,n (∆ i + ∆ i+1 ))
.

Then (i) sup (θ,σ 2 )∈J n-1 i=2 η i W i,0 y i = O P (1); (ii) sup (θ,σ 2 )∈J n-1 i=2 η i W i y i = O P (1); (iii) sup (θ,σ 2 )∈J n-1 i=2 τ i W i+1,0 y i-1 = O P (1); (iv) sup (θ,σ 2 )∈J n-1 i=2 τ i W i+1 y i-1 = O P (1).
Proof of Lemma 8.4. We only prove (iii) and (iv), the proof of (i) and (ii) being similar.

(iii) We have

n-1 i=2 τ i W i+1,0 y i-1 n-1 i=2 ∆ i ∆ i + ∆ i+1 W i+1,0 y i-1 + K n-1 i=2 ∆ i |W i+1,0 y i-1 | =: L 1 + L 2 .
Using the fact that

∆ i ∆ i +∆ i+1
1 and that for i = j,

E[W i+1,0 y i-1 W j+1,0 y j-1 ] = 0, we get E[L 2 1 ] n-1 i=2 E[W 2 i+1,0 y 2 i-1 ] = n-1 i=2 E[y 2 i-1 ]E[W 2 i+1,0 ] K n-1 i=2 (1 -e -2θ 0 ∆ i+1 ) K n-1 i=2 ∆ i+1 = O(1),
using the fact that W i+1,0 and y i-1 are independent and a Taylor expansion of ∆ i+1 → 1 -e -2θ 0 ∆ i+1 . Now, by Cauchy-Schwarz,

E(|L 2 |) K n-1 i=2 ∆ i E(|W i+1,0 ||y i-1 |) K n-1 i=2 ∆ i E(W 2 i+1,0 ) E(y 2 i-1 ) = O(1).
Hence, since L 1 and L 2 do not depend on θ and σ 2 , we have sup

(θ,σ 2 )∈J n-1 i=2 τ i W i+1,0 y i-1 = O P (1).
(iv) Now, we use the decomposition 

W i+1 = W i+1,0 + (e -θ 0 ∆ i+1 -e -θ∆ i+1 )y i (23) to get n-1 i=2 τ i W i+1 y i-1 = n-1 i=2 τ i W i+1,0 y i-1 + n-1 i=2 τ i (e -θ 0 ∆ i+1 -e -θ∆ i+1 )y i y i-1 n-1 i=2 τ i W i+1,0 y i-1 + n-1 i=2 τ i |e -θ 0 ∆ i+1 -e -θ∆ i+1 ||y i y i-1 |.
|τ i ||e -θ 0 ∆ i+1 -e -θ∆ i+1 | ∆ i+1 K.
Hence sup

(θ,σ 2 )∈J n-1 i=2 τ i W i+1 y i-1 = O P (1).
We can show, after some tedious but straightforward calculations, the following Taylor expansions.

Lemma 8.5. Let

α i := (σ 2 (1 -e -2θ∆ i )) -1 , for i = 2, ..., n, (24) 
α i,0 := (σ 2 0 (1 -e -2θ 0 ∆ i )) -1 , for i = 2, ..., n, (25) 
q i := ∆ i+1 ∆ i + ∆ i+1 + ∆ i-1 ∆ i + ∆ i-1 , for i = 3, ..., n -1, (26) 
A i := α i + α i+1 e -2θ∆ i+1 , for i = 2, ..., n -1, (27) 
B i := 1 A i + e -2θ∆ i A i-1 , for i = 3, ..., n -1, (28) 
C i := (α i α i+1 e -θ∆ i+1 )/A i , for i = 2, ..., n -1. ( 29 
)
Let α i = ∂α i /∂θ, A i = ∂A i /∂θ, B i = ∂B i /∂θ and C i = ∂C i /∂θ. Note that we have

C i = e -θ∆ i+1 A i α i α i+1 + α i α i+1 -α i α i+1 ∆ i+1 - α i α i+1 A i A i . ( 30 
)
We have,

sup n∈N,i=2,...,n, (θ,σ 2 )∈J α i - 1 2σ 2 θ∆ i K (31) sup n∈N,i=2,...,n, (θ,σ 2 )∈J α i - 1 2σ 2 θ 2 ∆ i K (32) 
α 2 i = 1 4σ 4 θ 2 ∆ 2 i + δ i,n 1 ∆ i (33) sup n∈N,i=2,...,n-1, (θ,σ 2 )∈J A i - 1 2σ 2 θ 1 ∆ i + 1 ∆ i+1 K (34) sup n∈N,i=2,...,n-1, (θ,σ 2 )∈J A i - 1 2σ 2 θ 2 1 ∆ i + 1 ∆ i+1 K (35) 
A i A i = 1 θ + δ i,n ∆ i ∆ i+1 ∆ i + ∆ i+1 (36) 
α i B i = - 1 θ q i + δ i,n (∆ i-1 + ∆ i + ∆ i+1 ) (37) 
α i B i = 1 θ q i + δ i,n (∆ i-1 + ∆ i + ∆ i+1 ) (38) 
sup n∈N,i=2,...,n-1, (θ,σ 2 )∈J C i - 1 2σ 2 θ 2 1 ∆ i + ∆ i+1 K. ( 39 
)
8.2 Proof of Theorem 3.2

The existence of θ and σ2 is a consequence of the fact that S n is a continuous function defined on a compact set. Now, it suffices to show (16) since θ1 → θ 1 (resp. σ2 2 → σ 2 2 ) is a particular case of ( 16) with b = B = σ 2 1 (resp. a = A = θ 2 ). Moreover, in view of (5), the result ( 16) holds if we can show that for every ε > 0, a.s.

inf (θ,σ 2 )∈J, |θσ 2 -θ σ 2 | ε {S n (θ, σ 2 ) -S n ( θ, σ 2 )} → ∞ (40) 
where ( θ, σ 2 ) ∈ J can be any non-random vector such that θ σ 2 = θ 0 σ 2 0 .

Let us compute the difference S n (θ, σ 2 ) -S n ( θ, σ 2 ) and determine the preponderant terms.

After some computations, we naturally have

y i - α i e -θ∆ i y i-1 + α i+1 e -θ∆ i+1 y i+1 A i = 1 A i α i W i -α i+1 e -θ∆ i+1 W i+1 , (41) 
where α i and A i have already been defined in Equations ( 24) and [START_REF] Paulo | Calibration of computer models with multivariate output[END_REF]. Hence, from Lemma 3.1,

S n (θ, σ 2 ) =n log(σ 2 ) + log(1 -e -2θ∆ 2 ) + log(1 -e -2θ∆n ) - n-1 i=2 log σ 2 A i (42) 
+ (y 1 -e -θ∆ 2 y 2 ) 2 σ 2 (1 -e -2θ∆ 2 ) + W 2 n σ 2 (1 -e -2θ∆n ) (43) 
+ n-1 i=2 1 A i α i W i -α i+1 e -θ∆ i+1 W i+1 2 . ( 44 
)
In the following, we prove that the terms in [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF] and those obtained by developing [START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF], except one, are o(n) uniformly in (θ, σ 2 ) ∈ J, a.s. More precisely, we establish the following lemma (see the proof in Section 8.3).

Lemma 8.6. One has

S n (θ, σ 2 ) =n log(σ 2 ) + log(1 -e -2θ∆ 2 ) + log(1 -e -2θ∆n ) - n-1 i=2 log σ 2 A i + n-1 i=3 α 2 i B i W 2 i,0 + δn .
As a consequence, we find that,

S n (θ, σ 2 ) -S n ( θ, σ 2 ) =n log σ 2 σ 2 + log 1 -e -2θ∆ 2
1 -e -2 θ∆ 2 + log 1 -e -2θ∆n

1 -e -2 θ∆n -

n-1 i=2 log A i / A i + n-1 i=3 α 2 i B i -α 2 i B i W 2 i,0 + δn (45) 
where α i , B i and A i are the analogs of α i , B i and A i defined in Equations ( 24), ( 27) and ( 28) with θ = θ and σ 2 = σ 2 . More precisely, they are naturally defined by

α i = ( σ 2 (1 -e -2 θ∆ i )) -1 , A i = α i + α i+1 e -θ∆ i+1 and B i = 1 A i + e -2 θ∆ i A i-1
.

Using the fact that ( θ, σ 2 ) has been chosen such as θ σ 2 = θ 0 σ 2 0 and making some more computations, we get the following lemma (see the proof in Section 8.3). Lemma 8.7. Uniformly in (θ, σ 2 ) ∈ J, a.s.

S n (θ, σ 2 ) -S n ( θ, σ 2 ) = n θ 0 σ 2 0 θσ 2 -1 -log θ 0 σ 2 0 θσ 2 + o(n).
Hence by Lemma 8.7, a.s.

inf (θ,σ 2 )∈J, |θσ 2 -θ σ 2 | ε {S n (θ, σ 2 ) -S n ( θ, σ 2 )} inf (θ,σ 2 )∈J, |θσ 2 -θ σ 2 | ε n θ 0 σ 2 0 θσ 2 -1 -log θ 0 σ 2 0 θσ 2 + o(n) (46) 
which by Lemma 8.2, for every ε > 0, is strictly positive, for n large enough, a.s. Then the proof of Theorem 3.2 is now complete.

Proofs of the lemmas of Section 8.2

Proof of Lemma 8.6. (i) First, we study the terms in [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF]. We have, from ( 31)

y 1 -e -θ∆ 2 y 2 2 σ 2 (1 -e -2θ∆ 2 ) K y 1 -e -θ∆ 2 y 2 2 σ 2 0 (1 -e -2θ 0 ∆ 2 ) (47) K y 1 -e -θ 0 ∆ 2 y 2 2 σ 2 0 (1 -e -2θ 0 ∆ 2 ) + K e -θ 0 ∆ 2 -e -θ∆ 2 2 σ 2 0 (1 -e -2θ 0 ∆ 2 ) y 2 2 K sup 2 i n W 2 i,0 + K∆ 2 sup t∈[0,1] Y 2 (t) = o(n) a.s. ( 48 
) from Lemma 8.3. The random variable W 2 n /(σ 2 (1 -e -2θ∆n
)) can be treated in the same manner leading to the same result.

(ii) Second, we turn to the term in [START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF] that we aim at approximating by a sum of independent random variables. In this goal, we first show the relation

W 2 i = W 2 i,0 + [e -θ 0 ∆ i -e -θ∆ i ] 2 y 2 i-1 + 2[e -θ 0 ∆ i -e -θ∆ i ]y i-1 W i,0 . (49) 
Hence, by (49), one has

n-1 i=2 1 A i α i W i -α i+1 e -θ∆ i+1 W i+1 2 = n-1 i=2 α 2 i A i W 2 i + n-1 i=2 α 2 i+1 e -2θ∆ i+1 A i W 2 i+1 -2 n-1 i=2 α i α i+1 e -θ∆ i+1 A i W i W i+1 = n-1 i=3 α 2 i 1 A i + e -2θ∆ i A i-1 W 2 i + α 2 2 A 2 W 2 2 + α 2 n e -2θ∆n A n-1 W 2 n -2 n-1 i=2 C i W i W i+1 = n-1 i=3 α 2 i B i W 2 i,0 + n-1 i=3 α 2 i B i (e -θ 0 ∆ i -e -θ∆ i ) 2 y 2 i-1 + 2 n-1 i=3 α 2 i B i (e -θ 0 ∆ i -e -θ∆ i )W i,0 y i-1 + α 2 2 A 2 W 2 2 + α 2 n e -2θ∆n A n-1 W 2 n -2 n-1 i=2 C i W i W i+1 =:Σ 1 + Σ 2 + 2Σ 3 + T 2 + T n -2Σ 4 , (50) 
where α i , A i , B i and C i have been defined in ( 24), ( 27), ( 28) and [START_REF] Sacks | Design and analysis of computer experiments[END_REF]. We prove that all the previous terms are o(n), uniformly in θ and σ 2 a.s, except Σ 1 that still appears in the expression of S n (θ, σ 2 ) in Lemma 8.6.

• Term T 2 : For n large enough, since α 2

A 2

1, we get

|T 2 | = α 2 2 A 2 W 2 2 α 2 W 2 2 .
Hence, we can show sup

(θ,σ 2 )∈J |T 2 | = o(n) a.
s. in the same way as for (47).

• Term T n : For n large enough, since αne -2θ∆n

A n-1

1, we get

|T n | = α 2 n e -2θ∆n A n-1 W 2 n α n W 2 n .
Hence, we can show sup

(θ,σ 2 )∈J |T n | = o(n) a.
s. in the same way as for (47).

• Term Σ 2 : The deterministic quantity α i ∆ i (e -θ 0 ∆ i -e -θ∆ i ) 2 is bounded for n large enough, uniformly in (θ, σ 2 ) ∈ J (trivial inequalities and ( 31)) while

α i A i 1 and α i e -2θ∆ i A i-1 1. Then, we are led to n-1 i=3 α 2 i B i (e -θ 0 ∆ i -e -θ∆ i ) 2 y 2 i-1 = n-1 i=3 ∆ i α i B i α i ∆ i (e -θ 0 ∆ i -e -θ∆ i ) 2 y 2 i-1 K sup t∈[0,1] Y (t) 2 n-1 i=3 ∆ i = K sup t∈[0,1] Y (t) 2
from which, by [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF], we deduce sup

(θ,σ 2 )∈J Σ 2 = o(n) a.s.
• Term Σ 3 : By the Cauchy-Schwarz inequality,

|Σ 3 | n-1 i=3 α 4 i α i,0 B 2 i (e -θ 0 ∆ i -e -θ∆ i ) 2 1/2 n-1 i=3 y 2 i-1 W 2 i,0 1/2 . ( 51 
)
As already mentioned, the deterministic term

α i ∆ i (e -θ 0 ∆ i -e -θ∆ i ) 2 is bounded uniformly in (θ, σ 2 ) ∈ J. Furthermore, α i /α i,0 is bounded uniformly in (θ, σ 2 ) ∈ J from (31). Finally, α 2 i B 2 i Kα 2 i (1/α i ) 2 = K.
Hence the first term on the right-hand side of (51) is bounded uniformly in (θ, σ 2 ) ∈ J. Now Lemma 8.3 yields that n-1 i=3 (W 

2 i,0 -1) = o(n (1/2)+α ) a.s. for any α > 0 leading to n-1 i=3 W 2 i,0 = O(n) a.s and n-1 i=3 y 2 i-1 W 2 i,0 1/2 sup t∈[0,1] Y 2 (t) n-1 i=3 W 2 i,0 1/2 = O(n 1/2 ) a.s.
W i W i+1 = [y i -e -θ∆ i y i-1 ][y i+1 -e -θ∆ i+1 y i ] = [y i -e -θ 0 ∆ i y i-1 ][y i+1 -e -θ 0 ∆ i+1 y i ] + [y i -e -θ 0 ∆ i y i-1 ](e -θ 0 ∆ i+1 -e -θ∆ i+1 )y i + [y i+1 -e -θ∆ i+1 y i ](e -θ 0 ∆ i -e -θ∆ i )y i-1 = W i,0 W i+1,0 + (e -θ 0 ∆ i+1 -e -θ∆ i+1 )W i,0 y i + (e -θ 0 ∆ i -e -θ∆ i )W i+1 y i-1 . ( 52 
)
Thus Σ 4 rewrites

n-1 i=2 C i W i,0 W i+1,0 + n-1 i=2 C i (e -θ 0 ∆ i+1 -e -θ∆ i+1 )W i,0 y i + n-1 i=2 C i (e -θ 0 ∆ i -e -θ∆ i )W i+1 y i-1 . ( 53 
)
We can show that

C i α 1/2 i,0 α 1/2 i+1,0 = σ 2 0 θ 0 σ 2 θ 2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 + δ i,n (∆ i + ∆ i+1 ).
Hence the first random variable of (53) rewrites [START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF]. Now, we have

sup (θ,σ 2 )∈J n-1 i=2 C i W i,0 W i+1,0 = sup (θ,σ 2 )∈J n-1 i=2 C i α 1/2 i,0 α 1/2 i+1,0 W i,0 W i+1,0 sup (θ,σ 2 )∈J n-1 i=2 σ 2 0 θ 0 σ 2 θ 2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + n-1 i=2 δ i,n (∆ i + ∆ i+1 )|W i,0 W i+1,0 | K n-1 i=2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + n-1 i=2 δ i,n (∆ i + ∆ i+1 )|W i,0 W i+1,0 | = K n-1 i=2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + δn , from ( 
n-1 i=2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 i=2,...,n-1 i odd √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + i=2,...,n-1 i even √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 .
In each of the two sums above, the summands constitute two triangular arrays of independent random variables. Thus, applying Theorem 2.1 in [START_REF] Hu | On the strong law for arrays and for the bootstrap mean and variance[END_REF] with a n = n, each of the two sums is a o(n) a.s. Hence finally sup

(θ,σ 2 )∈J n-1 i=2 C i W i,0 W i+1,0 = o(n) a.
s. Let us now address the second term in (53) that by the Cauchy-Schwarz inequality is bounded from above by

n-1 i=2 C 2 i α i,0 (e -θ 0 ∆ i+1 -e -θ∆ i+1 ) 2 1/2 n-1 i=2 y 2 i W 2 i,0 1/2 = o(n) a.s.
where the last equality comes from similar computations as from the term Σ 3 above, and from the fact that

sup n∈N sup 2 i n-1 sup (θ,σ 2 )∈J C 2 i α i,0 ∆ i+1 (e -θ 0 ∆ i+1 -e -θ∆ i+1 ) 2 K.
The third term in the right-hand side of (53) yields

sup (θ,σ 2 )∈J n-1 i=2 C i (e -θ 0 ∆ i -e -θ∆ i )W i+1 y i-1 sup (θ,σ 2 )∈J n-1 i=2 C i (e -θ 0 ∆ i -e -θ∆ i )W i+1,0 y i-1 + sup (θ,σ 2 )∈J n-1 i=2 C i (e -θ 0 ∆ i -e -θ∆ i ) 2 y i y i-1 . ( 54 
)
Since trivially C i (e -θ 0 ∆ i -e -θ∆ i ) = δ i,n , the second term in (54) is bounded by

K n-1 i=2 ∆ i |y i y i-1 | = O(1) a.s.
The first term in (54) is bounded by

K n-1 i=2 |W i+1,0 y i-1 | K sup t∈[0,1] |Y (t)| n-1 i=2 | Wi+1,0 |α -1/2 i,0 K sup t∈[0,1] |Y (t)| n-1 i=2 W 2 i+1,0 n-1 i=2 α -1 i,0 = O( √ n) a.s. since n-1 i=2 W 2 i+1,0 = O(n) a.
s. has been shown when handling Σ 3 after (51). One may conclude that sup (θ,σ 2 )∈J Σ 4 = o(n) a.s. The proof of Lemma 8.6 is then complete.

Proof of Lemma 8.7. We address each of the terms in (45).

• Using Lemma 8.1(i), we get that

sup θ∈[a,A] log 1 -e -2θ∆ 2
1 -e -2 θ∆ 2 = O(1).

In the same way, sup θ∈[a,A] log 1-e -2θ∆n 1-e -2 θ∆n = O(1).

• We have, using Lemmas 8.1 (i) and (ii),

log(A i / A i ) = log 1 1 -e -2θ∆ i + e -2θ∆ i+1 1 -e -2θ∆ i+1 / 1 1 -e -2 θ∆ i + e -2 θ∆ i+1 1 -e -2 θ∆ i+1 = log 1 -e -2 θ∆ i 1 -e -2θ∆ i + log 1 + e -2θ∆ i+1 1 -e -2θ∆ i 1 -e -2θ∆ i+1 / 1 + e -2 θ∆ i+1 1 -e -2 θ∆ i 1 -e -2 θ∆ i+1 = log θ θ + δ i,n (∆ i + ∆ i+1 ).
Thus, by summation we have,

sup θ∈[a,A] n-1 i=2 log A i Ãi -n log θ θ = O(1) = o(n).
• We want to show that sup

(θ,σ 2 )∈J n-1 i=3 α 2 i B i W 2 i,0 -n θ 0 σ 2 0 θσ 2 = o(n) a.s.
By [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF], one has

n-1 i=3 α 2 i B i W 2 i,0 = n-1 i=3 α 2 i α i,0 1 A i W 2 i,0 + n-1 i=3 α 2 i α i,0 e -2θ∆ i A i-1 W 2 i,0 = n-2 i=3 α 2 i α i,0 1 A i W 2 i,0 + α 2 i+1 α i+1,0 e -2θ∆ i+1 A i W 2 i+1,0 + α 2 3 e -2θ∆ 3 A 2 W 2 3,0 + α 2 n-1 A n-1 W 2 n-1,0 .
Then we use [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF] to develop α i /α i,0 (respectively α i+1 /α i+1,0 ) and Lemma 8.1 (ii) to develop α i /A i (respectively α i+1 e -2θ∆ i+1 /A i ). We get

α 2 i α i,0 1 A i = θ 0 σ 2 0 θσ 2 ∆ i+1 ∆ i + ∆ i+1 + δ i,n (∆ i + ∆ i+1 ) (55) 
α 2 i+1 α i+1,0 e -2θ∆ i+1 A i = θ 0 σ 2 0 θσ 2 ∆ i ∆ i + ∆ i+1 + δ i,n (∆ i + ∆ i+1 ). (56) 
In addition, we easily show, as in (47), that sup

(θ,σ 2 )∈J α 2 3 e -2θ∆ 3 A 2 W 2 3,0 = o(n) a.s. and that sup (θ,σ 2 )∈J α 2 n-1 A n-1 W 2 n-1,0 = o(n) a.s. Then, n-1 i=3 α 2 i B i W 2 i,0 -n θ 0 σ 2 0 θσ 2 = n-2 i=3 α 2 i α i,0 1 A i W 2 i,0 + α 2 i+1 α i+1,0 e -2θ∆ i+1 A i W 2 i+1,0 - n-2 i=3 θ 0 σ 2 0 θσ 2 + δn = n-2 i=3 α 2 i α i,0 1 A i W 2 i,0 + α 2 i+1 α i+1,0 e -2θ∆ i+1 A i W 2 i+1,0 - θ 0 σ 2 0 θσ 2 n-2 i=3 ∆ i+1 ∆ i + ∆ i+1 + ∆ i ∆ i + ∆ i+1 + δn n-2 i=3 α 2 i α i,0 1 A i - θ 0 σ 2 0 θ 2 σ 2 ∆ i+1 ∆ i + ∆ i+1 W 2 i,0 + n-2 i=3 α 2 i+1 α i+1,0 e -2θ∆ i+1 A i - θ 0 σ 2 0 θ 2 σ 2 ∆ i ∆ i + ∆ i+1 W 2 i+1,0 + θ 0 σ 2 0 θσ 2 n-2 i=3 ∆ i+1 ∆ i + ∆ i+1 (W 2 i,0 -1) + θ 0 σ 2 0 θσ 2 n-2 i=3 ∆ i ∆ i + ∆ i+1 (W 2 i+1,0 -1) + | δn | K n-2 i=3 (∆ i + ∆ i+1 )W 2 i,0 + K n-2 i=3 (∆ i + ∆ i+1 )W 2 i+1,0 + | δn | (57) 
+ θ 0 σ 2 0 θσ 2 n-2 i=3 ∆ i+1 ∆ i + ∆ i+1 (W 2 i,0 -1) + θ 0 σ 2 0 θσ 2 n-2 i=3 ∆ i ∆ i + ∆ i+1 (W 2 i+1,0 -1) . 
Let us show that the terms in the right-hand side of (57) are a.s. o(n). We have

n-2 i=3 (∆ i + ∆ i+1 )W 2 i,0 K sup i=3,...,n-2 W 2 i,0 1 + sup i=3,...,n-2 |W 2 i,0 -1| = o(n), a.s. from Lemma 8.3. Similarly n-2 i=3 (∆ i + ∆ i+1 )W 2 i+1,0 = o(n)
a.s. Also, using theorem 2.1 in [START_REF] Hu | On the strong law for arrays and for the bootstrap mean and variance[END_REF] with a n = n, we have

n-2 i=3 ∆ i+1 ∆ i + ∆ i+1 (W 2 i,0 -1) = o(n) a.s. and n-2 i=3 ∆ i ∆ i + ∆ i+1 (W 2 i+1,0 -1) = o(n) a.s. Hence finally sup (θ,σ 2 )∈J n-1 i=3 α 2 i B i W 2 i,0 -n θ 0 σ 2 0 θσ 2 = o(n) a.s.
• We can now conclude the proof. We have

S n (θ, σ 2 ) -S n ( θ, σ2 ) = n log σ 2 σ2 -n log θ θ + n θ 0 σ 2 0 θσ 2 -n θ 0 σ 2 0 θ σ2 + δ n = n log σ 2 θ σ 2 0 θ 0 + θ 0 σ 2 0 θσ 2 -1 + δ n ,
by reminding that θ σ2 = θ 0 σ 2 0 . The proof of Lemma 8.7 is thus complete.

Proof of Theorem 4.1

Let us first prove (9) in the case aB < θ 0 σ 2 0 ; Ab > θ 0 σ 2 0 . We shall then discuss the other cases at the end. In that view, let

ψ(θ, σ 2 ) = ∂ ∂θ S n (θ, σ 2 ). (58) 
Then from Theorem 3.2, a.s. for n large enough, θ ∈ (a, A). Thus a.s. for n large enough ( θ, σ2 ) satisfies ψ( θ, σ2 ) = 0. We shall approximate ψ(θ, σ 2 ) uniformly in (θ, σ 2 ) ∈ J.

Starting from ( 42), ( 43), ( 44) and (50) we can write

ψ(θ, σ 2 ) = 2∆ 2 e -2θ∆ 2 1 -e -2θ∆ 2 + 2∆ n e -2θ∆n 1 -e -2θ∆n + 2∆ 2 e -θ∆ 2 y 2 (y 1 -e -θ∆ 2 y 2 ) σ 2 (1 -e -2θ∆ 2 ) - 2∆ 2 e -2θ∆ 2 (y 1 -e -θ∆ 2 y 2 ) 2 σ 2 (1 -e -2θ∆ 2 ) 2 + 2∆ n e -θ∆n y n-1 W n σ 2 (1 -e -2θ∆n ) - 2∆ n e -2θ∆n W 2 n σ 2 (1 -e -2θ∆n ) 2 - n-1 i=2 A i A i + Σ 1 + Σ 2 + 2Σ 3 + T 2 + T n -2Σ 4
where

• Σ 1 = ∂ ∂θ Σ 1 = n-1 i=3 α i D i W 2 i,0 ; • Σ 2 = ∂ ∂θ Σ 2 = n-1 i=3 α i D i (e -θ 0 ∆ i -e -θ∆ i ) + 2α i B i ∆ i e -θ∆ i y 2 i-1 (e -θ 0 ∆ i -e -θ∆ i ); • Σ 3 = ∂ ∂θ Σ 3 = n-1 i=3 α i D i (e -θ 0 ∆ i -e -θ∆ i ) + α i B i ∆ i e -θ∆ i W i,0 y i-1 ; • T 2 = ∂ ∂θ T 2 = 2α 2 α 2 W 2 2 A 2 + α 2 2 2∆ 2 e -θ∆ 2 y 1 W 2 A 2 -W 2 2 A 2 A 2 2 ; • T n = ∂ ∂θ T n = α n e -2θ∆n A n-1 (2α n -2α n ∆ n - A n-1 A n-1 α n )W n + 2α n ∆ n e -θ∆n y n-1 W n ; • Σ 4 = ∂ ∂θ Σ 4 = n-1 i=2 C i W i W i+1 + n-1 i=2 C i ∆ i e -θ∆ i W i+1 y i-1 + n-1 i=2 C i ∆ i+1 e -θ∆ i+1 W i y i
where C i is the derivative of C i w.r.t. θ defined in [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF] and

D i := 2α i B i + α i B i , for i = 3, . . . , n -1. (59) 
First, we consider the terms Σ 1 and Σ 4 in the following lemma (proved in Section 8.6).

Σ 1 = θ 0 σ 2 0 θ 2 σ 2 n-1 i=3 q i W 2 i,0 + δ n and Σ 4 = θ 0 σ 2 0 θ 2 σ 2 n-1 i=3 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + δ n ,
where q i and C i have been defined in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF] and [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF].

Now we prove that the remaining terms in ψ(σ 2 , θ) are O P (1), uniformly in (θ, σ 2 ) ∈ J, at the exception of n-1 i=2 A i /A i , leading to the following lemma (proved in Section 8.6).

Lemma 8.9. We obtain

ψ(θ, σ 2 ) = θ 0 σ 2 0 θ 2 σ 2 n-1 i=3 q i W 2 i,0 -2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 - n θ + δ n .
Since θ2 σ2 ψ( θ, σ2 ) = 0 with probability going to 1, and since we can show that n-1 i=3 q i = n + O(1), we have

n( θσ 2 -θ 0 σ 2 0 ) = θ 0 σ 2 0 n-1 i=3 q i (W 2 i,0 -1) -2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + O P (1). (60) 
We want to establish a Central Limit Theorem for √ n( θσ 2 -θ 0 σ 2 0 ). In that view, we define

X i := q i (W 2 i,0 -1) -2 √ ∆ i ∆ i+1 ∆ i +∆ i+1 W i,0 W i+1,
0 and we apply Theorem 2.1 in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF] for weakly dependent variables (since X i is not necessarily independent with X i-1 and X i+1 but is independent with X k for |i -k| 2).

Note that we can show easily that τ 2 n = 1 n Var( n-1 i=3 X i ), and assume 

√ n ( θσ 2 -θ 0 σ 2 0 ) θ 0 σ 2 0 τ n D → n→∞ N (0, 1
√ n ( θσ 2 -θ 0 σ 2 0 ) θ 0 σ 2 0 τ εn D → n→∞ N (0, 1).
The triangular array X i / √ ε n i=3,...,εn-1 satisfies the conditions of [26, Theorem 2.1], thus we obtain

1 √ n n-1 i=3 X i D → n→∞ N (0, τ 2 ).
Now, from (60),

√ n ( θσ 2 -θ 0 σ 2 0 ) θ 0 σ 2 0 τ εn = 1 √ n εn-1 i=3 X i τ εn + o P (1) = 1 √ n εn-1 i=3 X i τ + 1 τ n - 1 τ 1 √ n εn-1 i=3 X i + o P (1). Since 1 √ n εn-1 i=3 X i = O P (1) and 1 τ n -1 τ = o(1)
, we get by Slutsky's lemma

√ n ( θσ 2 -θ 0 σ 2 0 ) θ 0 σ 2 0 τ εn D → n→∞ N (0, 1),
which is contradictory and ends the proof of ( 9). Now ( 10) is under consideration only when b = B = σ 2 1 and so when aB < θ 0 σ 2 0 ; Ab > θ 0 σ 2 0 . Thus ( 10) is a special case of [START_REF] Bachoc | Calibration and improved prediction of computer models by universal Kriging[END_REF]. Now, when aB > θ 0 σ 2 0 ; Ab < θ 0 σ 2 0 , we have almost surely for n large enough (∂/∂σ 2 )S n ( θ, σ2 ) = 0, so that the estimator σ2 2 can be expressed explicitly, by differentiating the terms in ( 42), ( 43) and ( 44) w.r.t. σ 2 . Hence, ( 9) can be proved in the case aB > θ 0 σ 2 0 ; Ab < θ 0 σ 2 0 by using identical techniques as in the case aB < θ 0 σ 2 0 ; Ab > θ 0 σ 2 0 . We omit the details to save space. Finally, ( 11) is under consideration only when a = A = θ 2 and so when aB > θ 0 σ 2 0 ; Ab < θ 0 σ 2 0 . Thus ( 11) is a special case of (9).

Proof of Propositions 4.3 and 4.5

Proof of Proposition 4.3. We have

τ 2 n = 2 n n-1 i=3 q 2 i + 2 ∆ i ∆ i+1 (∆ i + ∆ i+1 ) 2 . (i) Upper bound for τ 2 n . Let a i = ∆ i+1 ∆ i + ∆ i+1 , note that ∆ i-1 ∆ i + ∆ i-1 = 1 -a i-1 and q i = a i + 1 -a i-1
. First, we have after some trivial computations,

τ 2 n = 2 n n-1 i=3 [(a i + 1 -a i-1 ) 2 + 2a i (1 -a i )] = 2 n n-1 i=3 (1 + 2a i -2a i a i-1 ) + o(1) (61) 
2 + 4m + o [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF],

where m := 1 n -3 n-1 i=3 a i .
Also, since for k = 2, ..., n -1, 0 a k 1, we have 1 + 2(1 -a i-1 )a i 3 -2a i-1 . Thus, from (61), (ii) Lower bound for τ 2 n . Note that

1 n n-1 i=3 q i = 1 + o(1). Since ∆ i ∆ i+1 (∆ i + ∆ i+1 ) 2 0, we get τ 2 n 2 n n-1 i=3 q 2 i 2 1 n n-1 i=3 q i 2 + o(1) = 2 + o(1). ( 62 
)
Proof of Proposition 4.5. (i) After some computation, we have

τ 2 n =4γ 2 n -4γ n + 4 + o(1). Since γ n = 1/n, then τ 2 n → n→∞ 4.
(ii) We have

τ 2 n 2 n n-1 i= n α +2 1 i + 2 + i i + 1 2 + 2(i + 1) (i + 2) 2 + o(1) 2 + o(1).
As a consequence, this particular design realizes τ 2 n = 2 + o(1) by (62).

8.6 Proofs of the lemmas of Section 8.4

Proof of Lemma 8.8. (i) From ( 37) and [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF],

Σ 1 = 1 θ n-1 i=3 α i α i,0 q i W 2 i,0 + n-1 i=3 α i α i,0 δ i,n (∆ i-1 + ∆ i + ∆ i+1 )W 2 i,0
where q i has been defined in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF]. By [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF], we have

α i α i,0 = θ 0 σ 2 0 σ 2 θ 2 + δ i,n ∆ i . Moreover, since E[W 2 i,0 ] = 1, one clearly has n-1 i=3 α i α i,0 δ i,n (∆ i-1 + ∆ i + ∆ i+1 )W 2 i,0 = O P (1)
that leads to the desired result.

(ii) Now we study the first sum of Σ 4 that rewrites n-1 i=2 C i (M i,1 + M i,2 + M i,3 ) using ( 52) and where C i has been defined in [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF] and

       M i,1 := W i,0 W i+1,0 α 1/2 i,0 α 1/2 i+1,0 M i,2 := (e -θ 0 ∆ i+1 -e -θ∆ i+1 )W i,0 y i M i,3 := (e -θ 0 ∆ i -e -θ∆ i )W i+1 y i-1 .
• First, we consider

n-1 i=2 C i M i,1
. By [START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF] and [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF] we can show

C i α 1/2 i,0 α 1/2 i+1,0 = θ 0 σ 2 0 θ 2 σ 2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 + δ i,n (∆ i + ∆ i+1 ).
Furthermore we have

E n-1 i=2 δ i,n (∆ i + ∆ i+1 )W i,0 W i+1,0 K n-1 i=2 (∆ i + ∆ i+1 ) E[W 2 i,0 ]E[W 2 i+1,0 ] =K n-1 i=2 (∆ i + ∆ i+1 ) K. Thus n-1 i=2 C i α 1/2 i,0 α 1/2 i+1,0 W i,0 W i+1,0 = θ 0 σ 2 0 θ 2 σ 2 n-1 i=2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + δ n . Hence n-1 i=2 C i M i,1 = θ 0 σ 2 0 θ 2 σ 2 n-1 i=2 √ ∆ i ∆ i+1 ∆ i + ∆ i+1 W i,0 W i+1,0 + δ n .
• Second, one clearly has

n-1 i=2 C i M i,2 = θ -θ 0 2θ 2 σ 2 n-1 i=2 ∆ i+1 ∆ i + ∆ i+1 (1 + δ i,n (∆ i + ∆ i+1 ))W i,0 y i . Hence sup (θ,σ 2 )∈J n-1 i=2 C i M i,2 = O P ( 
1) by Lemma 8.4 (i).

• Third, we get

n-1 i=2 C i M i,3 = θ -θ 0 2θ 2 σ 2 n-1 i=2 ∆ i ∆ i + ∆ i+1 (1 + δ i,n (∆ i + ∆ i+1 )) W i+1 y i-1
and sup

(θ,σ 2 )∈J n-1 i=2 C i M i,3 = O P (1)
by Lemma 8.4 (iv).

(iii) We now consider the second and third sums in Σ 4 . Using ( 31) and ( 34), we can show

C i ∆ i e -θ∆ i = 1 2θσ 2 ∆ i ∆ i + ∆ i+1 (1 + δ i,n (∆ i + ∆ i+1 ))
and

C i ∆ i+1 e -θ∆ i+1 = 1 2θσ 2 ∆ i+1 ∆ i + ∆ i+1 (1 + δ i,n (∆ i + ∆ i+1 )).
Hence by Lemma 8.4 (iv) and (ii), sup

(θ,σ 2 )∈J n-1 i=2 C i (∆ i e -θ∆ i W i+1 y i-1 + ∆ i+1 e -θ∆ i+1 W i y i ) = O P (1).
Proof of Lemma 8.9. • We have

sup a θ A 2∆ 2 e -2θ∆ 2 1 -e -2θ∆ 2 + 2∆ n e -2θ∆n
1 -e -2θ∆n = O(1).

• For n large enough,

sup (θ,σ 2 )∈J 2∆ 2 e -θ∆ 2 y 2 [y 1 -e -θ∆ 2 y 2 ] σ 2 (1 -e -2θ∆ 2 ) K sup a θ A |y 2 ||y 1 -e -θ∆ 2 y 2 | K sup t∈[0,1] Y (t) 2 = O P (1). • Using W 2 i = W 2 i,0 + (e -θ 0 ∆ i -e -θ∆ i )y i-1 W i + W i,0 (e -θ 0 ∆ i -e -θ∆ i )y i-1 we can eas- ily show sup (θ,σ 2 )∈J 2∆ 2 e -2θ∆ 2 (y 1 -e -θ∆ 2 y 2 ) 2 σ 2 (1-e -2θ∆ 2 ) 2 = O P (1), sup (θ,σ 2 )∈J 2∆ n e -θ∆n y n-1 W n σ 2 (1 -e -2θ∆n ) = O P (1) and sup (θ,σ 2 )∈J 2∆ne -2θ∆n W 2 n σ 2 (1-e -2θ∆n ) 2 = O P (1).
• Term Σ 2 : First, using (37), [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] and the definition (26) of q i , the deterministic quantity D i is bounded uniformly in (θ, σ 2 ) ∈ J, and so is (e -2θ 0 ∆ i -e -2θ∆ i ) 2 α i /∆ i from [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF]. By [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF], we are led to

sup (θ,σ 2 )∈J n-1 i=3 ∆ i α i ∆ i (e -θ 0 ∆ i -e -θ∆ i ) 2 y 2 i-1 D i = O P (1). Similarly, sup (θ,σ 2 )∈J n-1 i=3 2α 2 i B i ∆ i e -θ∆ i (e -θ 0 ∆ i -e -θ∆ i )y 2 i-1 = O P (1) and thus sup (θ,σ 2 )∈J |Σ 2 | = O P (1) 
.

• Term Σ 3 : First, from (37), ( 38) and ( 31), we have

sup n∈N,i=2,...,n-1,(θ,σ 2 )∈J α i D i (e -θ 0 ∆ i -e -θ∆ i ) - θ -θ 0 2σ 2 θ 2 q i K.
Hence, proceeding as in the proof of Lemma 8.4, we can show

sup (θ,σ 2 )∈J n-1 i=3 α i D i (e -θ 0 ∆ i -e -θ∆ i )W i y i-1 = O P (1).
Second, we can show

sup n∈N,i=3,...,n-1,(θ,σ 2 )∈J α 2 i B i ∆ i e -θ∆ i - 1 2σ 2 θ ∆ i+1 ∆ i + ∆ i+1 + ∆ i-1 ∆ i + ∆ i-1 K.
Hence we can show • Term T 2 : From (27), we have

sup (θ,σ 2 )∈J n-1 i=3 α 2 i B i ∆ i e -θ∆ i W i,0 y i-1 = O P (1) 
|T 2 | 2|α 2 |W 2 2 + |α 2 |∆ 2 e -θ∆ 2 |y 1 | + W 2 2 |A 2 |.
We can show sup

(θ,σ 2 )∈J (|α 2 |W 2 2 + W 2 2 |A 2 |) = O P (1) by using W 2 2 = W 2 2,0 + (e -θ 0 ∆ 2 -e -θ∆ 2 )y 1 W 2 + W 2,0 (e -θ 0 ∆ 2 -e -θ∆ 2 )y 1 . Finally, sup (θ,σ 2 )∈J |α 2 |∆ 2 e -θ∆ 2 = O P (1), which finally shows sup (θ,σ 2 )∈J |T 2 | = O P (1).
• Term T n : Using (31), [START_REF] Stein | Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure[END_REF] say. We have, using [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF], and that f k is continuously differentiable,

a 1 = 1 2θ∆ 2 + δ 1,n f 1 y 1 (1 -e -θ∆ 2 ) + (f 1 -f 2 )y 1 e -θ∆ 2 + y 2 f 2 (1 -e -θ∆ 2 ) + e -θ∆ 2 y 2 (f 2 -f 1 ) = 1 2 (f 1 y 1 + y 2 f 2 ) + f 1 -f 2 2θ∆ 2 (y 1 -y 2 ) + δ 1,n ∆ 2 sup t∈[0,1] |Y (t)| and 
m i = y i f i -e -θ∆ i f i-1 1 -e -2θ∆ i + y i-1 e -2θ∆ i f i-1 -e -θ∆ i f i 1 -e -2θ∆ i = y i f i -f i-1 + f i-1 (1 -e -θ∆ i ) 1 -e -2θ∆ i + y i-1 f i-1 (e -2θ∆ i -e -θ∆ i ) + (f i-1 -f i )e -θ∆ i 1 -e -2θ∆ i = (y i -y i-1 ) f i -f i-1 2θ∆ i + 1 2 (y i -y i-1 )f i-1 + δ i,n ∆ i sup t∈[0,1] |Y (t)|. Hence, using that f k is continuously differentiable, f R -1 θ y = 1 2 (f 1 y 1 + y 2 f 2 ) + f 1 -f 2 2θ∆ 2 (y 1 -y 2 ) + δ 1,n ∆ 2 sup t∈[0,1] |Y (t)| + n i=3 (y i -y i-1 ) f i -f i-1 2θ∆ i + 1 2 (y i -y i-1 )f i-1 + δ i,n ∆ i sup t∈[0,1] |Y (t)| = δ 1,n sup t∈[0,1] |Y (t)| + n-1 i=3 f i -f i-1 2θ∆ i (y i -y i-1 ) + 1 2 n-1 i=3 (y i -y i-1 ) f i-1 .( 63 
)
The absolute value of first sum in (63) is equal to, after a summation by part, and using that f k is twice continuously differentiable,

- n-1 i=3 y i f i+1 -f i 2θ∆ i+1 - f i -f i-1 2θ∆ i + δ n,n sup t∈[0,1] |Y (t)| 1 2θ n-1 i=3 y i (f (s i ) + δ i,n ∆ i+1 -f (s i ) + δ i,n ∆ i ) + δ n,n sup t∈[0,1] |Y (t)| = δ n,n sup t∈[0,1] |Y (t)|.
The second sum in (63) is equal to, using that f k is continuously differentiable,

n-1 i=3 (y i f i-1 -y i-1 f i-2 + y i-1 (f i-2 -f i-1 )) = δ n,n sup t∈[0,1] |Y (t)|. Hence |f R -1 θ y| K sup t∈[0,1] |Y (t)|.
Lemma 8.13. We have, for k = 1, ..., p,

|e i,n R -1 θ f (k) | K(∆ i + ∆ i+1 ) when i ∈ {1, n} K when i ∈ {1, n} . Proof of Lemma 8.13. Let f = (f 1 , ..., f n ) = f (k) . i) When i / ∈ {1, n}, from (1), e i,n R -1 θ f = - e -θ∆ i 1 -e -2θ∆ i f i-1 + 1 1 -e -2θ∆ i f i + e -2θ∆ i+1 1 -e -2θ∆ i+1 f i - e -θ∆ i+1 1 -e -2θ∆ i+1 f i+1 = f i (1 -e -θ∆ i ) + e -θ∆ i (f i -f i-1 ) 1 -e -2θ∆ i + f i (e -2θ∆ i+1 -e -θ∆ i+1 ) + (f i -f i+1 )e -θ∆ i+1 1 -e -2θ∆ i+1 = f i 2 + f (s i ) 2θ + δ i,n ∆ i - f i 2 - f (s i ) 2θ + δ i,n ∆ i+1 = δ i,n (∆ i + ∆ i+1 ),
where we have used [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF] and that f is twice continuously differentiable. ii) Similarly, 

e 1,n R -1 θ f = f (0) 2 - f (0) 2θ + δ 1,n ∆ 2 .
[I f ] kl = f k (0)f l (0)+ 1 2θ 1 0 f k (t)f l (t)dt+ θ 2 1 0 f k (t)f l (t)dt+ 1 2 1 0 (f k (t)f l (t)+f k (t)f l (t))dt.
Furthermore, I f is invertible.

Proof of Lemma 8.14. Let k, l ∈ {1, ..., p} and let g = f k , h = f l , g = (g 1 , ..., g n ) = f (k) and h = (h 1 , ..., h n ) = f (l) . From (1), we have,

[F R -1 θ F ] kl = g R -1 θ h = g 1 h 1 1 -e -2θ∆ 2 + g n h n 1 -e -2θ∆n - n i=2 e -θ∆ i 1 -e -2θ∆ i g i h i-1 - n i=2 e -θ∆ i 1 -e -2θ∆ i g i-1 h i + n-1 i=2 1 1 -e -2θ∆ i + e -2θ∆ i+1 1 -e -2θ∆ i+1 g i h i = g 1 h 1 -e -θ∆ 2 (g 2 h 1 + g 1 h 2 ) + g 2 h 2 1 -e -2θ∆ 2 + n i=3 g i -e -θ∆ i g i-1 h i -e -θ∆ i h i-1 1 -e -2θ∆ i = (g 1 -g 2 )(h 1 -h 2 ) + θ∆ 2 (g 2 h 1 + g 1 h 2 ) + δ 1,n ∆ 2 2 2θ∆ 2 + δ 1,n ∆ 2 2 + n i=3
1 1 -e -2θ∆ i (g i -g i-1 )(h i -h i-1 ) + g i-1 (1 -e -θ∆ i )h i-1 (1 -e -θ∆ i ) (64) +g i-1 (1 -e -θ∆ i )(h i -h i-1 ) + (g i -g i-1 )h i-1 (1 -e -θ∆ i ) , where we have used [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF]. Since f k and f l are continuously differentiable we have

(g 1 -g 2 )(h 1 -h 2 ) + θ∆ 2 (g 2 h 1 + g 1 h 2 ) 2θ∆ 2 + δ 1,n ∆ 2 2 = g(0)h(0) + δ 1,n ∆ 2 .
Also, the element i of the sum in (64) is equal to Hence, if p k,l=1 λ k λ l [I f ] kl = 0, then p k=1 λ k f k (0) = 0 and for all t ∈ [0, 1], p k=1 λ k f k (t) = -θ p k=1 λ k f k (t) so that, by linear independence, λ 1 = ... = λ p = 0. Hence I f is invertible. Proof of Lemma 8.15. For i ∈ {1, ..., n}, using [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF], We now prove Lemma 8.11.

y i -Ŷθ,-i (s i ) = 1 A i (α i W i -α i+1 e -θ∆ i+1 W i+1 ) = δ i,n W i + δ i,n W i+1 = δ i,
Proof of Lemma 8.11. • Term r 1 (θ):

r 1 (θ) = n i=1 log (R -1 θ ) ii -¯ -i -log((R -1 θ ) ii ) = n i=1 log 1 - ¯ -i (R -1 θ ) ii = n i=1 log 1 - (e i,n R -1 θ F )(F R -1 θ F ) -1 (F R -1 θ e i,n ) (R -1 θ ) ii = n i=1 log 1 - δ i,n (R -1 θ ) ii
, from Lemmas 8.13 and 8.14. Now, from (1), for i = 2, . . . , n, we have sup θ

1 (R -1 θ ) ii = δ i,n ∆ i and sup θ 1 (R -1 θ ) 11 = δ 1,n ∆ 2 .
Hence r 1 (θ) = log (1 -δ 1,n ∆ 2 ) + n i=2 log (1 -δ i,n ∆ i ) so that sup θ∈[a,A] |r 1 (θ)| is bounded as n → ∞.

• Term r 2 (θ):

For k ∈ N, let f (k)
-i be obtained by removing component i of f (k) . We observe that f k (s i )r θ,-i R -1 θ,-i f (k)

-i can be interpreted as a leave-one-out prediction error for a n-dimensional observation vector equal to f (k) . Hence from (3),

r 2 (θ) = n i=1 (R -1 θ ) ii 2 -i = p k,l=1 n i=1 1 (R -1 θ ) ii (β 0 -β-i ) k (β 0 -β-i ) l e i,n R -1 θ f (k) e i,n R -1 θ f (l) .
For i ∈ {1, ..., n}, one can show that Lemmas 8.12 and 8.14 remain true with F , R θ , y replaced by F -i , R θ,-i , y -i . In addition, these (modified) lemmas can be shown to be uniform over i = 1, ..., n. As a consequence, we have, for i = 1, . . . , n,

|| β-i -β 0 || = ||(F -i R -1 θ,-i F -i ) -1 F -i R -1 θ,-i y -i || K sup t∈[0,1] |Y (t)|. (65) 
Also, since from (1) max i=1,...,n

1 (R -1 θ ) ii K, we have n i=1 1 (R -1 θ ) ii e i,n R -1 θ f (k) e i,n R -1 θ f (l) K + n-1 i=2 δ i,n (∆ i + ∆ i+1 ) 2 ,
from Lemma 8.13. Hence, we have

r 2 (θ) K sup t∈[0,1] Y (t) 2 K + n-1 i=2 (∆ i + ∆ i+1 ) 2 .
Hence finally, sup θ∈[a,A] |r 2 (θ)| is a.s. bounded as n → ∞.

• Term r 3 (θ):

r 3 (θ) = n i=1 (R -1 θ ) ii -i (y i -Ŷθ,-i (s i )) = p k=1 n i=1 (R -1 θ ) ii (β 0 -β-i ) k [f k (s i ) -r θ,-i R -1 θ,-i f (k) 
-i ](y i -Ŷθ,-i (s i )).

We make the same observation on f k (s i ) -r θ,-i R -1 θ,-i f 

Y (t) 2 .
Hence, r 3 (θ) is almost surely bounded as n → ∞.

• Term r 4 (θ): From Lemmas 8.13 and 8.14, we have for i ∈ {2, ..., n -1}, ¯ -i K(∆ i + ∆ i+1 ) 2 and for i ∈ {1, n}, ¯ -i K. Hence 

Y (t) 2 + K n-1 i=2 (∆ i + ∆ i+1 ) 2 sup t∈[0,1] Y (t) 2 ,

Figure 2 :

 2 Figure 2: Illustration of Theorem 4.1. Histograms of N = 2.000 independent realizations of( √ n/[θ 0 σ 2 0 ])( θσ 2 -θ 0 σ 2 0), together with the corresponding asymptotic Gaussian probability density functions with mean 0 and variances τ 2 n (red lines). The sample size is n = 12 (top row), n = 50 (middle row) and n = 200 (bottom row). For the top row, the designs are the 'minimal' design (left), achieving the smallest asymptotic variance; the 'regular' design (middle), with equispaced observation points; and the 'maximal' design (right), achieving the largest asymptotic variance. For the middle and bottom rows, the designs are the 'regular' design (left) and the 'maximal' design (right).
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  As a consequence, sup(θ,σ 2 )∈J |Σ 3 | = O(n 1/2 ) a.s. and naturally sup (θ,σ 2 )∈J |Σ 3 | = o(n) a.s. • Term Σ 4 : Using the trivial equality ab = ab -a 0 b 0 + a 0 b 0 = a 0 b 0 + a 0 (b -b 0 ) + b(a -a 0 ), one gets

( 3 -Finally, τ 2 n 2 n 4 +

 3224 2a i-1 ) + o(1) = 6 -4m + o(1). min (2 + 4m, 6 -4m) + o(1). Since sup m∈[0,1] min (2 + 4m, 6 -4m) = 4, τ o(1).

,

  as in the proof of Lemma 8.4. Hence finally, sup (θ,σ 2 )∈J Σ 3 = O P (1).

  n,n ∆ n . Lemma 8.14. We have F R -1 θ F = I f + W (θ) with sup θ∈[a,A] ||W (θ)|| → n→∞ 0 and with I f the p × p matrix defined by

λ

  k λ l [I f ] kl =

Lemma 8 . 15 .

 815 We have max i=1,...,n sup a θ A |y i -Ŷθ,-i (s i )| K sup t∈[0,1] |Y (t)|.

Also y 1 -

 1 Ŷθ,-1 (s 1 ) = y 1 -e -θ∆ 2 y 2 = δ 1,n sup t∈[0,1] |Y (t)| and similarly y n -Ŷθ,-n (s n ) = δ n,n sup t∈[0,1] |Y (t)|.

-i as for r 2 3 (

 23 (θ). Hence we haver -β-i ) k (e i,n R -1 θ f (k) )(y i -Ŷθ,-i (s i )).Hence, from (65) and Lemmas 8.13 and 8.15, we have|r 3 (θ)| n (∆ i + ∆ i+1 ) sup t∈[0,1] Y (t) 2 + δ 1,n sup t∈[0,1]

|r 4 (θ)| K(y 1 - 2 + n- 1 i=2(

 4121 Ŷθ,-1 (s 1 ) + -1 ) 2 + K(y n -Ŷθ,-n (s n ) + -n ) ∆ i + ∆ i+1 ) 2 (y i -Ŷθ,-i (s i ) + -i ) 2 K sup t∈[0,1]

  ).

	By Proposition 4.3, we can extract a subsequence n so that τ 2 n	→ n→∞	τ 2 with τ 2 ∈ [2, 4]
	and so that		

  (g i -g i-1 ) + δ i,n ∆ 2 ] kl + w(θ),where sup θ∈[a,A] |w(θ)| → n→∞ 0, by dominated convergence. Finally, we have, for λ 1 , ..., λ p ∈ R,

		1 2θ	(g i -g i-1 ) ∆ i	(h i -h i-1 ) + g i-1 h i-1	θ 2	∆ i +	1 2	g i-1 (h i -h i-1 ) +	1 2	h i-1 i
	=	1 2θ g(s p g (s i )h (s i )∆ i + θ 2 g(s i-1 )h(s i-1 )∆ i + 1 2 g(s i )h (s i )∆ i + 1 2 h(s + n i=3 ∆ i 1 2θ g (s i )h (s i ) + θ 2 g(s i-1 )h(s i-1 ) + 1 2 g (s i )h(s i ) + 1 2
		k,l=1						

i )g (s i )∆ i + δ i,n ∆ 2 i , since f is twice continuously differentiable. Hence we have g R -1 θ h = g(0)h(0) + δ 1,n ∆ 2 i )h (s i ) + δ i,n ∆ 2 i = [I f
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O P (1) and sup

. This is shown by using W 2 n = W 2 n,0 + (e -θ 0 ∆n -e -θ∆n )y n-1 W n + W n,0 (e -θ 0 ∆n -e -θ∆n )y n-1 .

• Term n-1 i=2

A i A i : By [START_REF] Sundararajan | Predictive approaches for choosing hyperparameters in Gaussian processes[END_REF],

Finally,

8.7 Proof of Theorems 6.1 and 6.2

In this section and the next one, we let ||A|| denote the largest singular value of a matrix A and ||v|| denote the Euclidean norm of a vector ||v||. Finally, for k ∈ {1, ..., p}, we let

. We first provide a decomposition of Sn in the following lemma.

Lemma 8.10. We have

, where e i,n is the i-th base column vector of R n . We remark that r k (θ) does not depend on σ 2 for k = 1, ..., 4.

We now show that, in Lemma 8.10, the term S n only, corresponding to the zero-mean case, is preponderant. sup

Hence Theorem 6.1 follows from (46). Also, from Lemmas 3.1, 8.10 and 8.11, we have

1-e -2θ∆ i+1 y i+1

where δ n (θ) does not depend on σ 2 and satisfies sup a θ A |δ n (θ)| = O P (1). Since θσ 2 → θ 0 σ 2 0 a.s. from Theorem 6.1, and since aB > θ 0 σ 2 0 ; Ab < θ 0 σ 2 0 , we have [∂/∂σ 2 ] Sn ( θ, σ2 ) = 0 for n large enough almost surely. Hence we obtain for n large enough almost surely,

1-e -2 θ∆ i+1 y i+1

As noted at the end of the proof of Theorem 4.1, using identical techniques as for proving Theorem 4.1, one can finish the proof of Theorem 6.2.

8.8 Proofs of the lemmas in Section 8.7

Proof of Lemma 8.10. We have, with y -i = (y 1 , ..., y i-1 , y i+1 , ..., y n ) ,

Then, from [START_REF] Dubrule | Cross validation of Kriging in a unique neighborhood[END_REF],

Before proving Lemma 8.11, we state and prove some intermediary results.

Lemma 8.12. We have

Proof of Lemma 8.12. From (1) we have, with k = 1, ..., p and with f

f i y i -f i y i-1 e -θ∆ i -f i-1 y i e -θ∆ i + e -2θ∆ i f i-1 y i-1