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Abstract

We consider a one-dimensional Gaussian process having exponential covariance
function. Under fixed-domain asymptotics, we prove the strong consistency and
asymptotic normality of a cross validation estimator of the microergodic covariance
parameter. In this setting, Ying [39] proved the same asymptotic properties for the
maximum likelihood estimator. Our proof includes several original or more involved
components, compared to that of Ying. Also, while the asymptotic variance of maxi-
mum likelihood does not depend on the triangular array of observation points under
consideration, that of cross validation does, and is shown to be lower and upper
bounded. The lower bound coincides with the asymptotic variance of maximum like-
lihood. We provide examples of triangular arrays of observation points achieving the
lower and upper bounds. We illustrate our asymptotic results through simulations.
To our knowledge, this work constitutes the first fixed-domain asymptotic analysis of
cross validation.

Keywords: Kriging, cross validation, strong consistency, asymptotic normality, spatial
sampling, fixed-domain asymptotics

1 Introduction
Kriging models [34, 27] consist in inferring the values of a Gaussian random field given
observations at a finite set of observation points. They have become a popular method
for a large range of applications, such as geostatistics [24], numerical code approximation
[28, 29, 8] and calibration [26, 9] or global optimization [19].
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One of the main issues regarding Kriging is the choice of the covariance function for the
Gaussian process. Indeed, a Kriging model yields an unbiased predictor with minimal
variance and a correct predictive variance if and only if the true covariance function is
used. The most common practice is to statistically estimate the covariance function, from
a set of observations of the Gaussian process, and to plug [34, Ch.6.8] the estimate in the
Kriging equations. Usually, it is assumed that the covariance function belongs to a given
parametric family (see [1] for a review of classical families). In this case, the estimation
boils down to estimating the corresponding covariance parameters. For covariance param-
eter estimation, maximum likelihood (ML) is the most studied and used method, while
cross validation (CV) [35, 42, 5] is an alternative technique. CV has been shown to have
attractive properties, compared to ML, when the parametric family of covariance functions
is misspecified [5, 7].
ML has been subject to the most theoretical investigation, and several results are available
regarding its asymptotic properties. When addressing these asymptotic properties, one
usually makes the distinction between increasing-domain and fixed-domain asymptotics
[34, p.62]. In increasing-domain asymptotics, the average density of observation points is
bounded, so that the infinite sequence of observation points is unbounded. In fixed-domain
asymptotics, this sequence is dense in a bounded domain.
Consider first increasing-domain asymptotics. Generally speaking, for all (identifiable)
covariance parameters, the ML estimator is consistent and asymptotically normal under
some mild regularity conditions. The asymptotic covariance matrix is equal to the inverse
of the (asymptotic) Fisher information matrix. This result was first shown in [23], and
then extended in different directions in [11, 12, 30, 6, 15].
The situation is significantly different under fixed-domain asymptotics. Indeed, two types
of covariance parameters can be distinguished: microergodic and non-microergodic param-
eters [17, 34]. A covariance parameter is microergodic if, for two different values of it, the
two corresponding Gaussian measures are orthogonal, see [17, 34]. It is non-microergodic if,
even for two different values of it, the two corresponding Gaussian measures are equivalent.
Non-microergodic parameters cannot be estimated consistently, but have an asymptotically
negligible impact on statistical inference [31, 32, 33, 41]. On the other hand, it is at least
possible to consistently estimate microergodic covariance parameters, and misspecifying
them can have a strong negative impact on inference.
Under fixed-domain asymptotics, there exist results indicating which covariance parameters
are microergodic, and providing the asymptotic properties of the ML estimator. Most of
these available results are specific to particular covariance models. In dimension d = 1
when the covariance model is exponential, only a reparameterized quantity obtained from
the variance and scale parameters is microergodic. It is shown in [39] that the ML estimator
of this microergodic parameter is strongly consistent and asymptotically normal. When
d > 1 and for a separable exponential covariance function, all the covariance parameters
are microergodic, and the asymptotic normality of the ML estimator is proved in [40].
Other results in this case are also given in [36, 2, 10]. Consistency of ML is shown as well
in [22] for the scale parameters of the Gaussian covariance function and in [21] for all the
covariance parameters of the separable Matérn 3/2 covariance function. Finally, for the
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entire isotropic Matérn class of covariance functions, all parameters are microergodic for
d > 4 [3], and only reparameterized parameters obtained from the scale and variance are
microergodic for d 6 3 [41]. In [20], the asymptotic distribution of the ML estimators for
these microergodic parameters is provided, from previous results in [13] and [38]. Note
finally that, beyond ML, quadratic variation-based estimators have also been extensively
studied, under fixed-domain asymptotics (see for instance [18]).
In contrast to ML, CV has received less theoretical attention. Under increasing-domain
asymptotics, the consistency and asymptotic normality of a CV estimator is proved in
[6]. Also, under increasing-domain asymptotics, it is shown in [7] that this CV estima-
tor asymptotically minimizes the integrated square prediction error. To the best of our
knowledge, no fixed-domain asymptotic analysis of CV exists in the literature.
In this paper, we provide a first fixed-domain asymptotic analysis of the CV estimator
minimizing the CV logarithmic score, see [27] Equation (5.11) and [42]. We focus on
the case of the one-dimensional exponential covariance function, which was historically
the first covariance function for which the asymptotic properties of ML were derived [39].
This covariance function is particularly amenable to theoretical analysis, as its Markovian
property yields an explicit (matrix-free) expression of the likelihood function. It turns out
that the CV logarithmic score can also be expressed in a matrix-free form, which enables
us to prove the strong consistency and asymptotic normality of the corresponding CV
estimator. We follow the same general proof architecture as in [39] for ML, but our proof,
and the nature of our results, contain several new elements.
In terms of proofs, the random CV logarithmic score, and its derivatives, have more compli-
cated expressions than for ML. As a consequence, the computations are more involved, and
some other tools than in [39] are needed. In particular, many of our asymptotic approxi-
mations rely on Taylor expansions of functions of several variables (where each variable is
an interpoint distance going to zero, see the proofs for details). In contrast, only Taylor
approximations with one variable are needed in [39]. In addition, we use central limit
theorems for dependent random variables, while only independent variables need to be
considered in [39].
The nature of our asymptotic normality result also differs from that in [39]. In this ref-
erence, the asymptotic variance does not depend on the triangular array of observation
points. On the contrary, in our case, different triangular arrays of observation points can
give rise to different asymptotic variances. We exhibit a lower and an upper bound for
these asymptotic variances, and provide examples of triangular arrays reaching them. The
lower bound is in fact equal to the asymptotic variance of ML in [39]. Interestingly, the
triangular array given by equispaced observation points attains neither the lower nor the
upper bound. The fact that equispaced observation points need not provide the smallest
asymptotic variance for covariance parameter estimation is also pointed out in [6].
Finally, the fact that the asymptotic variance is larger for CV than for ML is a stan-
dard finding in the well-specified case considered here, where the covariance function of
the Gaussian process does belong to the parametric family of covariance functions under
consideration. In contrasts, as mentioned above, CV has attractive properties compared
to ML when this well-specified case does not hold [5, 7].
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The rest of the paper is organized as follows. In Section 2, we present in more details
the setting and the cross validation estimator under consideration. In Section 3, we give
our strong consistency result for this estimator. In Section 4, we provide the asymptotic
normality result, together with the analysis of the asymptotic variance. In Section 5, we
present numerical experiments, illustrating our theoretical findings. In Section 6, we give
a few concluding remarks. All the proofs are postponed to Section 7.

2 The context and the cross-validation estimators
We consider a centered Gaussian process Y on [0, 1] with covariance function

K0(t1, t2) = σ2
0 exp{−θ0|t1 − t2|}

for some fixed and unknown parameters θ0 > 0 and σ2
0 > 0. This process is commonly

known as the Ornstein-Uhlenbeck process. It satisfies the following stochastic differential
equation, called the Langevin’s equation,

dY (t) = −θ0Y (t)dt+
√

2θ0σ0dB(t),

where (B(t))t denotes a standard Brownian motion process. The Ornstein-Uhlenbeck pro-
cess has been widely used to model physical, biological, social, and many other phenomena.
It also possesses many useful mathematical properties that simplify the analysis.
We introduce the parametric set of covariance functions {Kθ,σ2 , a 6 θ 6 A, b 6 σ2 6 B}
for some fixed 0 < a 6 A < +∞ and 0 < b 6 B < +∞ where

Kθ,σ2(t1, t2) = σ2 exp{−θ|t1 − t2|}.

For any n ∈ N, we consider a design of observation points {s1, ..., sn}. Without loss of
generality, we may assume that 0 = s1 < ... < sn = 1. As mentioned in [39], there is
no need to assume that the sequences of observation points are nested. We consider the
observed sample (Y (s1), . . . , Y (sn))T which is the vector of observations at times s1, ..., sn.
Now let ∆i := si − si−1, for i = 2, ..., n, and yi := Y (si), for i = 1, ..., n. For ease of
redaction, we do not mention in si and ∆i the dependency in n. We define Rθ as the
variance-covariance matrix of (y1, ..., yn)t under covariance function Kθ,1,

Rθ :=


1 e−θ∆2 · · · e

−θ
n∑
i=2

∆i

e−θ∆2 1 · · · e
−θ

n∑
i=3

∆i

...
... . . . ...

e
−θ

n∑
i=2

∆i

e
−θ

n∑
i=3

∆i

· · · 1


.
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From [4], we have

R−1
θ =



1
1−e−2θ∆2

−e−θ∆2

1−e−2θ∆2
0 · · · 0

−e−θ∆2

1−e−2θ∆2

1
1−e−2θ∆2

+ e−2θ∆3

1−e−2θ∆3

. . . . . . ...

0
. . . . . . 0

... . . . 1

1−e−2θ∆n−1
+ e−2θ∆n

1−e−2θ∆n

−e−θ∆n
1−e−2θ∆n

0 · · · 0 −e−θ∆n
1−e−2θ∆n

1
1−e−2θ∆n


. (1)

We now address the cross-validation estimators of θ0 and σ2
0 considered in [27, 42]. Let

Ŷθ,−i(si) = Eθ,σ2(Y (si)|Y (s1), ..., Y (si−1), Y (si+1), ..., Y (sn)),

where the conditional expectation Eθ,σ2 is calculated assuming that Y is centered and has
covariance function Kθ,σ2 . Note that Ŷθ,−i(si) does not depend on σ. We define similarly

σ̂2
θ,σ2,−i(si) = Varθ,σ2(Y (si)|Y (s1), ..., Y (si−1), Y (si+1), ..., Y (sn)).

Then, the cross-validation estimators are given by

(θ̂, σ̂2) ∈ argmin
a6θ6A,b6σ26B

Sn(θ, σ2),

where

Sn(θ, σ2) =
n∑
i=1

[
log(σ̂2

θ,σ2,−i(si)) +
(yi − Ŷθ,−i(si))2

σ̂2
θ,σ2,−i(si)

]
(2)

is the logarithmic score. The rationale for minimizing the logarithmic score is that log(2π)+

log(σ̂2
θ,σ2,−i(si)) +

(yi−Ŷθ,−i(si))2

σ̂2
θ,σ2,−i

(si)
is equal to −2 times the conditional log-likelihood of yi,

given (y1, ..., yi−1, yi+1, ..., yn)T , with covariance parameters θ, σ2. The term cross-validation
underlines the fact that we consider leave-one-out quantities.
As already known [17, 39, 41], it is not possible to consistently estimate simultaneously
θ0 and σ2

0 (note that the ML estimator of θ0 is a non-degenerate random variable, even if
(Y (t))t∈[0,1] is observed continuously [43]), but it is possible to consistently estimate θ0σ

2
0.

As a consequence, we have considered three different cases as done in [39]. (i) Set σ2 = σ2
1 in

(2) with σ2
1 > 0 being a predetermined constant and consider the cross-validation estimator

θ̂1 of θ1 = θ0σ
2
0/σ

2
1 that minimizes (2) with σ2 = σ2

1. (ii) Set θ = θ2 in (2) with θ2 > 0 being
a predetermined constant and consider the cross-validation estimator σ̂2

2 of σ2
2 = θ0σ

2
0/θ2

that minimizes (2) with θ = θ2. (iii) Consider the estimator θ̂σ̂2 of θ0σ
2
0, where θ̂ and σ̂2

are the cross-validation estimators of θ0 and σ2
0.

Note that Ying [39] considers the maximum likelihood estimators of θ and σ2 and estab-
lishes their consistency and asymptotic normality. In this paper, we carry out a similar
asymptotic analysis for the above cross-validation estimators. More precisely, we prove
that θ̂σ̂2 (resp. θ̂1 and σ̂2

2) converges almost surely to θ0σ
2
0 (resp. θ1 and σ2

2) in the next
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section. In section 4, we establish that, for a sequence τn which is lower and upper-bounded,
(
√
n/[θ1τn])(θ̂1 − θ1), (

√
n/[σ2

2τn])(σ̂2
2 − σ2

2) and (
√
n/[θ0σ

2
0τn])(θ̂σ̂2 − θ0σ

2
0) all converge in

distribution to a standard Gaussian random variable. Note that the asymptotic variance
τ 2
n depends on how the underlying design points {s1, ..., sn} are chosen. On the contrary,
considering the maximum likelihood estimators [39], the asymptotic variance is the same
whatever the choice of the design points.

3 Consistency

In this section, we establish the strong consistency of the cross-validation estimators θ̂1, σ̂2
2

and θ̂σ̂2 of θ1, σ2
2 and θ0σ

2
0 as described in the previous section. In that view, we consider

Sn(θ, σ2) defined by (2). As done in [39], we base our analysis on the Markovian property
of the Ornstein-Uhlenbeck process in order to handle the fact that, as n increases, the
observed sample (y1, . . . , yn)T becomes more and more correlated. We have

Ŷθ,−i(si) = −
∑

j=1,...,n;
j 6=i

(R−1
θ )ij

(R−1
θ )ii

yj

and
σ̂2
θ,σ2,−i(si) =

σ2

(R−1
θ )ii

,

from [42, 5, 14]. Then, using Equation (1), we get the following lemma after some tedious
computations.

Lemma 3.1 (Logarithmic score). The logarithmic score Sn(θ, σ2) rewrites in the following
way

Sn(θ, σ2) = n log(σ2) + log(1− e−2θ∆2) + log(1− e−2θ∆n)

+
(y1 − e−θ∆2y2)2

σ2(1− e−2θ∆2)
+

(yn − e−θ∆nyn−1)2

σ2(1− e−2θ∆n)
−

n−1∑
i=2

log

(
1

1− e−2θ∆i
+

e−2θ∆i+1

1− e−2θ∆i+1

)

+
1

σ2

n−1∑
i=2

[
1

1− e−2θ∆i
+

e−2θ∆i+1

1− e−2θ∆i+1

]yi − e−θ∆i

1−e−2θ∆i
yi−1 + e−θ∆i+1

1−e−2θ∆i+1
yi+1

1
1−e−2θ∆i

+ e−2θ∆i+1

1−e−2θ∆i+1

2

.

Based on Lemma 3.1, we prove the following theorem in Section 7.2.

Theorem 3.2 (Consistency). Assume that

lim sup
n→+∞

max
i=2,...,n

∆i = 0. (3)
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Let J = [a,A]× [b, B], where a, A, b and B are fixed and have been defined in the previous
section. Assume that there exists (θ̃, σ̃2) in J so that θ̃σ̃2 = θ0σ

2
0. Define (θ̂, σ̂2) ∈ J as a

solution of

Sn(θ̂, σ̂2) = min
(θ,σ2)∈J

Sn(θ, σ2). (4)

Then (θ̂, σ̂2) exists and

θ̂σ̂2 a.s.→ θ0σ
2
0. (5)

In particular, let σ2
1 > 0 and θ2 > 0 be predetermined constants satisfying σ2

0θ0/σ
2
1 ∈ [a,A]

and σ2
0θ0/θ2 ∈ [b, B]. Define θ̂1 ∈ [a,A] and σ̂2

2 ∈ [b, B] as solutions of

Sn(θ̂1, σ
2
1) = min

θ∈[a,A]
Sn(θ, σ2

1) (6)

and

Sn(θ2, σ̂
2
2) = min

σ2∈[b,B]
Sn(θ2, σ

2). (7)

Then θ̂1
a.s.→ θ1 := σ2

0θ0/σ
2
1 and σ̂2

2
a.s.→ σ2

2 := σ2
0θ0/θ2.

Remark 3.3. It is worth noticing that the asymptotically preponderant terms in Lemma
3.1 are the same as those obtained in the context of the maximum likelihood estimation
(see [39] and Section 7.2 for more details).

4 Asymptotic normality
Once the consistency has been established, the natural question of the convergence speed
arises. We address this point in this section. We first provide a central limit result in the
following theorem.

Theorem 4.1 (Central Limit Theorem). Consider the same notation and assumptions
as in Theorem 3.2. Assume further that either aB < θ0σ

2
0; Ab > θ0σ

2
0 or aB > θ0σ

2
0;

Ab < θ0σ
2
0 hold. Then the estimators are asymptotically normal. More precisely, we have

√
n

θ0σ2
0τn

(θ̂σ̂2 − θ0σ
2
0)

D−−−→
n→∞

N (0, 1). (8)

Also, when (σ2
0θ0)/σ2

1 ∈ (a,A) we have
√
n

θ1τn
(θ̂1 − θ1)

D−−−→
n→∞

N (0, 1). (9)
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Finally, when (σ2
0θ0)/θ2 ∈ (b, B) we have

√
n

σ2
2τn

(σ̂2
2 − σ2

2)
D−−−→

n→∞
N (0, 1). (10)

The quantity τ 2
n depends on how the underlying design points {s1, . . . , sn} have been chosen.

More precisely,

τ 2
n =

2

n

n−1∑
i=3

[(
∆i+1

∆i + ∆i+1

+
∆i−1

∆i + ∆i−1

)2

+ 2
∆i∆i+1

(∆i + ∆i+1)2

]
. (11)

Remark 4.2. The condition aB < θ0σ
2
0; Ab > θ0σ

2
0 or aB > θ0σ

2
0; Ab < θ0σ

2
0 ensures that

(∂/∂θ)Sn(θ̂, σ̂2) or (∂/∂σ2)Sn(θ̂, σ̂2) will be equal to zero for n large enough almost surely,
by applying Theorem 3.2. This is used in the proof of Theorem 4.1. Note that a similar
assumption is made in [39], where the parameter domain for (θ, σ2) is (0,∞) × [b, B] or
[a,A]× (0,∞).

In the following proposition, we show that the quantity τ 2
n in Theorem 4.1 is lower and

upper bounded, so that the rate of convergence is always
√
n in this theorem.

Proposition 4.3. We have, for any choice of the triangular array of design points {s1, ..., sn}
satisfying (3),

2 6 lim inf
n→∞

τ 2
n 6 lim sup

n→∞
τ 2
n 6 4. (12)

Remark 4.4. 1. The asymptotic variance of the limiting distribution of θ̂σ̂2 − θ0σ
2
0

can be easily estimated. By the previous proposition, this asymptotic variance is
always larger than the one obtained considering the maximum likelihood estimators.
Indeed, with θ̂ML and σ̂2

ML the ML estimators of θ and σ2 we have (
√
n/[θ0σ

2
0])(θ̂σ̂2−

θ0σ
2
0)

D−−−→
n→∞

N (0, 2), see [39]. This fact is quite expected as ML estimates usually
perform best when the covariance model is well-specified, as is the case here.

2. As one can check easily, the regular design ∆i ≡ 1
n−1

for all i = 2, . . . , n, does
not realize the limiting variance of the maximum likelihood estimators. Instead, we
have τ 2

n →n→∞ 3 for this design. However, in Proposition 4.5, we exhibit a particular
design realizing the limiting variance of the maximum likelihood estimators: lim

n→∞
τ 2
n =

2.

In fact, the bounds in (12) are sharp as shown in the following proposition.

Proposition 4.5. (i) Let {s1, . . . , sn} be such that s1 = 0, for i = 2, ..., n− 1,

∆i =

{
(1− γn) 2

n
if i is even,

2γn
n

if i is odd,
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where γn ∈ (0, 1), and ∆n = 1−
∑n−1

i=2 ∆i. Moreover, taking γn = 1/n, we get τ 2
n →
n→∞

4.
(ii) Let {s1, . . . , sn} and 0 < α < 1 be such that s1 = 0, ∆i = 1/(i !) for i = bnαc+ 1, . . . , n

and ∆2 = · · · = ∆bnαc ≡ (1− rn)/(bnαc − 1) with rn :=
n∑

i=bnαc+1

∆i. Then
n∑
i=2

∆i = 1 and

τ 2
n →
n→∞

2.

Remark 4.6. Intuitively, in Proposition 4.5 (ii), ∆i+1 will be much smaller than ∆i for
most of the indices i, so that the quantities ∆i+1

∆i+∆i+1
and ∆i∆i+1

(∆i+∆i+1)2 in (11) will be negligible.
We refer to the proof of Proposition 4.5 for further details.

5 Numerical experiments
We illustrate Theorem 4.1 by a Monte Carlo simulation. We set θ0 = 3 and σ2

0 = 1 and we
consider three sample size values, n = 12, 50, 200. For the sample size n = 12, we address
three designs {s1, ..., sn}. The first one is the ‘minimal’ design given by Proposition 4.5
(ii) with α = 0.5, which asymptotically achieves the minimal estimation variance. The
second one is the ‘regular’ design given by {s1, ..., sn} = {0, 1/(n−1), ..., 1}. The third one
is the ‘maximal’ design given by Proposition 4.5 (i) with γn = 1/n, which asymptotically
achieves the maximal estimation variance. For the sample sizes n = 50 and n = 200, the
‘minimal’ design is not amenable to numerical computation anymore, as the values of ∆i

become too small; so that we only address the ‘regular’ and ‘maximal’ designs.
For a given configuration of n and a given design {s1, ..., sn}, we repeat N = 2.000 data
generations and estimations. That is, we independently sample N Gaussian vectors of
size n with zero mean vector and covariance matrix [σ2

0e
−θ0|si−sj |]16i,j6n. For each of these

Gaussian vectors, we compute the CV estimators θ̂ and σ̂2, with parameter space [0.1, 10]×
[0.3, 30], so that we consider case (8) of Theorem 4.1. Then, we compute the N values of
(
√
n/[θ0σ

2
0])(θ̂σ̂2 − θ0σ

2
0). In Figure 1, we report the histograms of these N values, for the

seven configurations under consideration. In addition, we report the probability density
functions of the seven corresponding Gaussian distributions with mean 0 and variance τ 2

n,
to which the histograms converge when n→∞, in view of Theorem 4.1.
In Figure 1, we observe that, for n = 12, the asymptotic Gaussian distributions are already
not poor approximations of the empirical histograms. For n = 50, the asymptotic distribu-
tions become very close to the histograms, and for n = 200 the asymptotic distributions are
almost identical to the histograms. Hence, the convergence in distribution of Theorem 4.1
provides a good approximation of the finite sample situation already for small to moderate
n. The case n = 12 illustrates the benefit of the ‘minimal’ design for estimation, as the
histogram is most concentrated around the true product θ0σ

2
0 for this design. Similarly, the

value of τ 2
12 is the smallest for this design, compared to the ‘regular’ and ‘maximal’ designs.

For n = 50 and 200, we also observe that the estimation is more accurate for the ‘regular’
design than for the ‘maximal’ design, which also confirms Remark 4.4 and Proposition 4.5.
Finally, we have obtained similar conclusions for the case where either θ0 or σ2

0 is known
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in the computation of θ̂, σ̂2 (cases of (9) and (10)). We do not report the corresponding
results for concision.

n=12, minimal

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

n=12, regular

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

n=12, maximal

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

n=50, regular

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

n=50, maximal

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

n=200, regular

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

n=200, maximal

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 1: Illustration of Theorem 4.1. Histograms of N = 2.000 independent realizations of
(
√
n/[θ0σ

2
0])(θ̂σ̂2−θ0σ

2
0), together with the corresponding asymptotic Gaussian probability

density functions with mean 0 and variances τ 2
n (red lines). The sample size is n = 12 (top

row), n = 50 (middle row) and n = 200 (bottom row). For the top row, the designs are
the ‘minimal’ design (left), achieving the smallest asymptotic variance; the ‘regular’ design
(middle), with equispaced observation points; and the ‘maximal’ design (right), achieving
the largest asymptotic variance. For the middle and bottom rows, the designs are the
‘regular’ design (left) and the ‘maximal’ design (right).
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6 Concluding remarks
We have proved the consistency and asymptotic normality of the CV estimator of the
microergodic parameter θ0σ

2
0, based on the logarithmic score. While the ML asymptotic

variance of (
√
n/[θ0σ

2
0])(θ̂MLσ̂

2
ML−θ0σ

2
0) is 2 for any triangular array of observation points,

the corresponding CV asymptotic variance is simply bounded between 2 and 4, those
bounds being tight. The triangular array we exhibit, achieving the asymptotic variance 2
for CV, is based on some ratios between interpoint distances (of the form (si+1−si)/(sj+1−
sj)) going to zero as n → ∞, which makes it too challenging to simulate numerically for
large n. It would be interesting to investigate what is the smallest possible asymptotic
variance for CV, when the ratios between interpoint distances are bounded away from
zero.
One interesting agenda for future research would be to extend this asymptotic analysis
of CV in the other settings where such an analysis was possible for ML. These settings
include the case of the separable exponential covariance function in higher dimension [40]
(consistency and asymptotic normality), of the separable Matérn 3/2 covariance function
[21] (consistency) and of the Gaussian covariance function [22] (consistency). In these
references, tractable approximations of the inverse covariance matrices are provided, which
could also be exploited in the case of CV. Finally, using techniques which are more spectral
in nature, [13, 38] prove central limit theorems for the ML estimation of the microergodic
parameter in the isotropic Matérn model. An extension to CV would also be valuable.

7 Proofs

7.1 Notation and auxiliary results

Remind that ∆i = si − si−1 and introduce Wi := [yi − e−θ∆iyi−1] and its normalized
version W i := [yi − e−θ∆iyi−1]/[σ2(1 − e−2θ∆i)]1/2 for i = 2, . . . , n (the dependency in n is
not mentioned in Wi and W i to lighten notation). When (θ, σ2) = (θ0, σ

2
0), the random

variables will be denoted Wi,0 and W i,0. By the Markovian and Gaussian properties of
Y , it follows that for each i > 2, W i,0 is independent of {yj, j 6 i − 1}. Therefore,
{W i,0, 2 6 i 6 n} is an i.i.d. sequence of random variables having the standard normal
distribution N (0, 1).
It is convenient to have short expressions for terms that converge in probability to zero.
We follow [37]. The notation oP(1) (respectively OP(1)) stands for a sequence of random
variables that converges to zero in probability (resp. is bounded in probability) as n→∞.
More generally, for a sequence of random variables Rn,

Xn = oP(Rn) means Xn = YnRn with Yn
P→ 0

Xn = OP(Rn) means Xn = YnRn with Yn = OP(1).

For deterministic sequences Xn and Rn, the stochastic notation reduce to the usual o and
O. Throughout the paper, by K, we denote a generic constant (i.e. K may or may not be

11



the same at different occurrences) that does not depend on (Y, θ, σ2, n).
We also denote by δn and δ̄n two sequences of random variables satisfying

sup
(θ,σ2)∈J

|δn| = OP(1)

and
sup

(θ,σ2)∈J
|δ̄n| = o(n), a.s.

The definition of δn and δ̄n may change from one line to the other. Similarly, we denote
by δi,n a triangular array of deterministic scalars satisfying

sup
n∈N,i=1,...,n

(θ,σ2)∈J

|δi,n| 6 K.

The definition of δi,n may change from one line to the other. We also use several times
that,

n−1∑
i=2

∆i = 1, (13)

sup
t∈[0,1]

|Y (t)| < +∞ a.s. (14)

Before turning to the proof of Theorems 3.2 and 4.1, we state five auxiliary lemmas that
will be required in the sequel.

Lemma 7.1. (i) Let λi > 0, i = 1, 2 be fixed. Then as x→ 0,

1− e−λ1x

1− e−λ2x
=
λ1

λ2

+O(x).

(ii) Let λ > 0 be fixed. Then as x, y → 0,

1 + e−λy
1− e−λx

1− e−λy
=
x+ y

y
(1 +O(x+ y)).

Lemma 7.2. For any constant δ > 0, there exists a constant η > 0 such that

inf
|x−1|>δ
x>0

(x− 1− log x) > η. (15)

Lemma 7.3. Suppose that for each n, the random variables Z, Z1,n, . . . , Zn,n are inde-
pendent and identically distributed and centered. Suppose also that for some t > 0 and
p > 0, E[exp{t|Z|p}] <∞. Then for all α > 0, a.s

sup
16k6n

|Zk,n| = o(nα) (16)

n∑
k=2

Zk,n = o(n(1/2)+α). (17)

12



The proof of Lemma 7.1 is direct and these of Lemmas 7.2 and 7.3 can be found in [39].

Lemma 7.4. Let for any i ∈ {2, ..., n− 1},

ηi =
∆i+1

∆i + ∆i+1

(1 + δi,n(∆i + ∆i+1))

and
τi =

∆i

∆i + ∆i+1

(1 + δi,n(∆i + ∆i+1)) .

Then

(i) sup
(θ,σ2)∈J

∣∣∑n−1
i=2 ηiWi,0yi

∣∣ = OP(1);

(ii) sup
(θ,σ2)∈J

∣∣∑n−1
i=2 ηiWiyi

∣∣ = OP(1);

(iii) sup
(θ,σ2)∈J

∣∣∑n−1
i=2 τiWi+1,0yi−1

∣∣ = OP(1);

(iv) sup
(θ,σ2)∈J

∣∣∑n−1
i=2 τiWi+1yi−1

∣∣ = OP(1).

Proof of Lemma 7.4. We only prove (iii) and (iv), the proof of (i) and (ii) being similar.
(iii) We have∣∣∣∣∣

n−1∑
i=2

τiWi+1,0yi−1

∣∣∣∣∣ 6
∣∣∣∣∣
n−1∑
i=2

∆i

∆i + ∆i+1

Wi+1,0yi−1

∣∣∣∣∣+K
n−1∑
i=2

∆i |Wi+1,0yi−1| =: L1 + L2.

Using the fact that ∆i

∆i+∆i+1
6 1 and that for i 6= j,

E[Wi+1,0yi−1Wj+1,0yj−1] = 0,

we get

E[L2
1] 6

n−1∑
i=2

E[W 2
i+1,0y

2
i−1] =

n−1∑
i=2

E[y2
i−1]E[W 2

i+1,0]

6K
n−1∑
i=2

(1− e−2θ0∆i+1) 6 K
n−1∑
i=2

∆i+1 = O(1),

using the fact that Wi+1,0 and yi−1 are independent and a Taylor expansion of ∆i+1 7→
1− e−2θ0∆i+1 . Now, by Cauchy-Schwarz,

E(|L2|) 6K
n−1∑
i=2

∆iE(|Wi+1,0||yi−1|) 6 K

n−1∑
i=2

∆i

√
E(W 2

i+1,0)
√
E(y2

i−1) = O(1).

13



Hence, since L1 and L2 do not depend on θ and σ2, we have sup
(θ,σ2)∈J

∣∣∑n−1
i=2 τiWi+1,0yi−1

∣∣ =

OP(1).

(iv) Now, we use the decomposition

Wi+1 = Wi+1,0 + (e−θ0∆i+1 − e−θ∆i+1)yi (18)

to get ∣∣∣∣∣
n−1∑
i=2

τiWi+1yi−1

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=2

τiWi+1,0yi−1 +
n−1∑
i=2

τi(e
−θ0∆i+1 − e−θ∆i+1)yiyi−1

∣∣∣∣∣
6

∣∣∣∣∣
n−1∑
i=2

τiWi+1,0yi−1

∣∣∣∣∣+
n−1∑
i=2

τi|e−θ0∆i+1 − e−θ∆i+1||yiyi−1|.

The first sum isOP(1) by (iii). The second sum isOP(1) by using the fact that supt∈[0,1] Y
2(t) <

∞ a.s. and

sup
n∈N,i=2,...,n−1,(θ,σ2)∈J

|τi||e−θ0∆i+1 − e−θ∆i+1|
∆i+1

6 K.

Hence sup
(θ,σ2)∈J

∣∣∑n−1
i=2 τiWi+1yi−1

∣∣ = OP(1).

We can show, after some tedious but straightforward calculations, the following Taylor
expansions.

Lemma 7.5. Let

αi := (σ2(1− e−2θ∆i))−1, for i = 2, ..., n, (19)
αi,0 := (σ2

0(1− e−2θ0∆i))−1, for i = 2, ..., n, (20)

qi :=
∆i+1

∆i + ∆i+1

+
∆i−1

∆i + ∆i−1

, for i = 3, ..., n− 1, (21)

Ai := αi + αi+1e
−2θ∆i+1 , for i = 2, ..., n− 1, (22)

Bi :=
1

Ai
+
e−2θ∆i

Ai−1

, for i = 3, ..., n− 1, (23)

Ci := (αiαi+1e
−θ∆i+1)/Ai, for i = 2, ..., n− 1. (24)

Let α′i = ∂αi/∂θ, A′i = ∂Ai/∂θ, B′i = ∂Bi/∂θ and C ′i = ∂Ci/∂θ . Note that we have

C ′i =
e−θ∆i+1

Ai

{
α′iαi+1 + αiα

′
i+1 − αiαi+1∆i+1 −

αiαi+1A
′
i

Ai

}
. (25)
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We have,

sup
n∈N,i=2,...,n,

(θ,σ2)∈J

∣∣∣∣αi − 1

2σ2θ∆i

∣∣∣∣ 6 K (26)

sup
n∈N,i=2,...,n,

(θ,σ2)∈J

∣∣∣∣α′i − 1

2σ2θ2∆i

∣∣∣∣ 6 K (27)

α2
i =

1

4σ4θ2∆2
i

+ δi,n
1

∆i

(28)

sup
n∈N,i=2,...,n−1,

(θ,σ2)∈J

∣∣∣∣Ai − 1

2σ2θ

(
1

∆i

+
1

∆i+1

)∣∣∣∣ 6 K (29)

sup
n∈N,i=2,...,n−1,

(θ,σ2)∈J

∣∣∣∣A′i − 1

2σ2θ2

(
1

∆i

+
1

∆i+1

)∣∣∣∣ 6 K (30)

A′i
Ai

=
1

θ
+ δi,n

∆i∆i+1

∆i + ∆i+1

(31)

αiB
′
i = −1

θ
qi + δi,n(∆i−1 + ∆i + ∆i+1) (32)

α′iBi =
1

θ
qi + δi,n(∆i−1 + ∆i + ∆i+1) (33)

sup
n∈N,i=2,...,n−1,

(θ,σ2)∈J

∣∣∣∣C ′i − 1

2σ2θ2

1

∆i + ∆i+1

∣∣∣∣ 6 K. (34)

7.2 Proof of Theorem 3.2

The existence of θ̂ and σ̂2 is a consequence of the fact that Sn is a continuous function
defined on a compact set. Now, it suffices to show (5) since θ̂1 → θ1 (resp. σ̂2

2 → σ2
2) is a

particular case of (5) with b = B = σ2
1 (resp. a = A = θ2). Moreover, in view of (4), the

result (5) holds if we can show that for every ε > 0, a.s.

inf
(θ,σ2)∈J,
|θσ2−θ̃σ̃2|>ε

{Sn(θ, σ2)− Sn(θ̃, σ̃2)} → ∞ (35)

where (θ̃, σ̃2) ∈ J can be any non-random vector such that θ̃σ̃2 = θ0σ
2
0.

Let us compute the difference Sn(θ, σ2)−Sn(θ̃, σ̃2) and determine the preponderant terms.
After some computations, we naturally have

yi −
αie
−θ∆iyi−1 + αi+1e

−θ∆i+1yi+1

Ai
=

1

Ai

(
αiWi − αi+1e

−θ∆i+1Wi+1

)
,
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where αi and Ai have already been defined in Equations (19) and (22). Hence, from Lemma
3.1,

Sn(θ, σ2) =n log(σ2) + log(1− e−2θ∆2) + log(1− e−2θ∆n)−
n−1∑
i=2

log
(
σ2Ai

)
(36)

+
(y1 − e−θ∆2y2)2

σ2(1− e−2θ∆2)
+

W 2
n

σ2(1− e−2θ∆n)
(37)

+
n−1∑
i=2

1

Ai

(
αiWi − αi+1e

−θ∆i+1Wi+1

)2
. (38)

In the following, we prove that the terms in (37) and those obtained by developping (38),
except one, are o(n) uniformly in (θ, σ2) ∈ J , a.s. More precisely, we establish the following
lemma (see the proof in Section 7.3).

Lemma 7.6. One has

Sn(θ, σ2) =n log(σ2) + log(1− e−2θ∆2) + log(1− e−2θ∆n)−
n−1∑
i=2

log
(
σ2Ai

)
+

n−1∑
i=3

α2
iBiW

2
i,0 + δ̄n.

As a consequence, we find that,

Sn(θ, σ2)− Sn(θ̃, σ̃2) =n log
σ2

σ̃2
+ log

1− e−2θ∆2

1− e−2θ̃∆2

+ log
1− e−2θ∆n

1− e−2θ̃∆n

−
n−1∑
i=2

log
(
Ai/Ãi

)
+

n−1∑
i=3

(
α2
iBi − α̃2

i B̃i

)
W 2
i,0 + δ̄n (39)

where α̃i, B̃i and Ãi are the analogs of αi, Bi and Ai defined in Equations (19), (22)
and (23) with θ = θ̃ and σ2 = σ̃2. More precisely, they are naturally defined by α̃i =

(σ̃2(1− e−2θ̃∆i))−1, Ãi = α̃i + α̃i+1e
−θ̃∆i+1 and B̃i =

[
1

Ãi
+ e−2θ̃∆i

Ãi−1

]
.

Using the fact that (θ̃, σ̃2) has been chosen such as θ̃σ̃2 = θ0σ
2
0 and making some more

computations, we get the following lemma (see the proof in Section 7.3).

Lemma 7.7. Uniformly in (θ, σ2) ∈ J , a.s.

Sn(θ, σ2)− Sn(θ̃, σ̃2) = n

[
θ0σ

2
0

θσ2
− 1− log

θ0σ
2
0

θσ2

]
+ o(n).
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Hence by Lemma 7.7, a.s.

inf
(θ,σ2)∈J,
|θσ2−θ̃σ̃2|>ε

{Sn(θ, σ2)− Sn(θ̃, σ̃2)} > inf
(θ,σ2)∈J,
|θσ2−θ̃σ̃2|>ε

n

[
θ0σ

2
0

θσ2
− 1− log

θ0σ
2
0

θσ2

]
+ o(n)

which by Lemma 7.2, for every ε > 0, is strictly positive, for n large enough, a.s. Then the
proof of Theorem 3.2 is now complete.

7.3 Proofs of the lemmas of Section 7.2

Proof of Lemma 7.6. (i) First, we study the terms in (37). We have, from (26)(
y1 − e−θ∆2y2

)2

σ2(1− e−2θ∆2)
6 K

(
y1 − e−θ∆2y2

)2

σ2
0(1− e−2θ0∆2)

(40)

6 K

(
y1 − e−θ0∆2y2

)2

σ2
0(1− e−2θ0∆2)

+K

(
e−θ0∆2 − e−θ∆2

)2

σ2
0(1− e−2θ0∆2)

y2
2

6 K sup
26i6n

W̄ 2
i,0 +K∆2 sup

t∈[0,1]

Y 2(t)

= o(n) a.s. (41)

from Lemma 7.3. The random variable W 2
n/(σ

2(1 − e−2θ∆n)) can be treated in the same
manner leading to the same result.

(ii) Second, we turn to the term in (38) that we aim at approximating by a sum of inde-
pendent random variables. In this goal, we first show the relation

W 2
i = W 2

i,0 + [e−θ0∆i − e−θ∆i ]2y2
i−1 + 2[e−θ0∆i − e−θ∆i ]yi−1Wi,0. (42)

Hence, by (42), one has
n−1∑
i=2

1

Ai

(
αiWi − αi+1e

−θ∆i+1Wi+1

)2

=
n−1∑
i=2

α2
i

Ai
W 2
i +

n−1∑
i=2

α2
i+1e

−2θ∆i+1

Ai
W 2
i+1 − 2

n−1∑
i=2

αiαi+1e
−θ∆i+1

Ai
WiWi+1

=
n−1∑
i=3

α2
i

[
1

Ai
+
e−2θ∆i

Ai−1

]
W 2
i +

α2
2

A2

W 2
2 +

α2
ne
−2θ∆n

An−1

W 2
n − 2

n−1∑
i=2

CiWiWi+1

=
n−1∑
i=3

α2
iBiW

2
i,0 +

n−1∑
i=3

α2
iBi(e

−θ0∆i − e−θ∆i)2y2
i−1 + 2

n−1∑
i=3

α2
iBi(e

−θ0∆i − e−θ∆i)Wi,0yi−1

+
α2

2

A2

W 2
2 +

α2
ne
−2θ∆n

An−1

W 2
n − 2

n−1∑
i=2

CiWiWi+1

=:Σ1 + Σ2 + 2Σ3 + T2 + Tn − 2Σ4, (43)
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where αi, Ai, Bi and Ci have been defined in (19), (22), (23) and (24). We prove that all
the previous terms are o(n), uniformly in θ and σ2 a.s, except Σ1 that still appears in the
expression of Sn(θ, σ2) in Lemma 7.6.

• Term T2: For n large enough, since α2

A2
6 1, we get

|T2| =

∣∣∣∣α2
2

A2

W 2
2

∣∣∣∣ 6 α2W
2
2 .

Hence, we can show sup
(θ,σ2)∈J

|T2| = o(n) a.s. in the same way as for (40).

• Term Tn: For n large enough, since αne−2θ∆n

An−1
6 1, we get

|Tn| =

∣∣∣∣α2
ne
−2θ∆n

An−1

W 2
n

∣∣∣∣ 6 αnW
2
n .

Hence, we can show sup
(θ,σ2)∈J

|Tn| = o(n) a.s. in the same way as for (40).

• Term Σ2: The deterministic quantity αi
∆i

(e−θ0∆i−e−θ∆i)2 is bounded for n large enough,
uniformly in (θ, σ2) ∈ J (trivial inequalities and (26)) while αi

Ai
6 1 and αie

−2θ∆i

Ai−1
6 1. Then,

we are led to
n−1∑
i=3

α2
iBi(e

−θ0∆i − e−θ∆i)2y2
i−1 =

n−1∑
i=3

∆iαiBi
αi
∆i

(e−θ0∆i − e−θ∆i)2y2
i−1

6 K sup
t∈[0,1]

Y (t)2

n−1∑
i=3

∆i = K sup
t∈[0,1]

Y (t)2

from which, by (14), we deduce sup
(θ,σ2)∈J

Σ2 = o(n) a.s.

• Term Σ3: By the Cauchy-Schwarz inequality,

|Σ3| 6

(
n−1∑
i=3

α4
i

αi,0
B2
i (e
−θ0∆i − e−θ∆i)2

)1/2(n−1∑
i=3

y2
i−1W

2

i,0

)1/2

. (44)

As already mentioned, the deterministic term
αi
∆i

(e−θ0∆i − e−θ∆i)2

is bounded uniformly in (θ, σ2) ∈ J . Furthermore, αi/αi,0 is bounded uniformly in (θ, σ2) ∈
J from (26). Finally, α2

iB
2
i 6 Kα2

i (1/αi)
2 = K. Hence the first term on the right-hand side

of (44) is bounded uniformly in (θ, σ2) ∈ J . Now Lemma 7.3 yields that
∑n−1

i=3 (W
2

i,0−1) =

o(n(1/2)+α) a.s. for any α > 0 leading to
∑n−1

i=3 W
2

i,0 = O(n) a.s and(
n−1∑
i=3

y2
i−1W

2

i,0

)1/2

6

(
sup
t∈[0,1]

Y 2(t)
n−1∑
i=3

W
2

i,0

)1/2

= O(n1/2) a.s.
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As a consequence, sup
(θ,σ2)∈J

|Σ3| = O(n1/2) a.s. and naturally sup
(θ,σ2)∈J

|Σ3| = o(n) a.s.

• Term Σ4: Using the trivial equality ab = ab− a0b0 + a0b0 = a0b0 + a0(b− b0) + b(a− a0),
one gets

WiWi+1 = [yi − e−θ∆iyi−1][yi+1 − e−θ∆i+1yi] = [yi − e−θ0∆iyi−1][yi+1 − e−θ0∆i+1yi]

+ [yi − e−θ0∆iyi−1](e−θ0∆i+1 − e−θ∆i+1)yi + [yi+1 − e−θ∆i+1yi](e
−θ0∆i − e−θ∆i)yi−1

= Wi,0Wi+1,0 + (e−θ0∆i+1 − e−θ∆i+1)Wi,0yi + (e−θ0∆i − e−θ∆i)Wi+1yi−1. (45)

Thus Σ4 rewrites

n−1∑
i=2

CiWi,0Wi+1,0 +
n−1∑
i=2

Ci(e
−θ0∆i+1−e−θ∆i+1)Wi,0yi+

n−1∑
i=2

Ci(e
−θ0∆i−e−θ∆i)Wi+1yi−1. (46)

We can show that

Ci

α
1/2
i,0 α

1/2
i+1,0

=
σ2

0θ0

σ2θ2

√
∆i∆i+1

∆i + ∆i+1

+ δi,n(∆i + ∆i+1).

Hence the first random variable of (46) rewrites

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

CiWi,0Wi+1,0

∣∣∣∣∣ = sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

Ci

α
1/2
i,0 α

1/2
i+1,0

W i,0W i+1,0

∣∣∣∣∣
6 sup

(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

σ2
0θ0

σ2θ2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

∣∣∣∣∣+
n−1∑
i=2

δi,n(∆i + ∆i+1)|W i,0W i+1,0|

6 K

∣∣∣∣∣
n−1∑
i=2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

∣∣∣∣∣+
n−1∑
i=2

δi,n(∆i + ∆i+1)|W i,0W i+1,0|

= K

∣∣∣∣∣
n−1∑
i=2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

∣∣∣∣∣+ δ̄n,

from (16). Now, we have∣∣∣∣∣
n−1∑
i=2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

∣∣∣∣∣
6

∣∣∣∣∣∣∣∣
∑

i=2,...,n−1

i odd

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑

i=2,...,n−1

i even

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

∣∣∣∣∣∣∣∣ .
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In each of the two sums above, the summands constitute two triangular arrays of indepen-
dent random variables. Thus, applying Theorem 2.1 in [16] with an = n, each of the two
sums is a o(n) a.s. Hence finally sup

(θ,σ2)∈J

∣∣∑n−1
i=2 CiWi,0Wi+1,0

∣∣ = o(n) a.s.

Let us now address the second term in (46) that by the Cauchy-Schwarz inequality is
bounded from above by(

n−1∑
i=2

C2
i

αi,0
(e−θ0∆i+1 − e−θ∆i+1)2

)1/2(n−1∑
i=2

y2
iW

2

i,0

)1/2

= o(n) a.s.

where the last equality comes from similar computations as from the term Σ3 above, and
from the fact that

sup
n∈N

sup
26i6n−1

sup
(θ,σ2)∈J

∣∣∣∣ C2
i

αi,0∆i+1

(e−θ0∆i+1 − e−θ∆i+1)2

∣∣∣∣ 6 K.

The third term in the right-hand side of (46) yields

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

Ci(e
−θ0∆i − e−θ∆i)Wi+1yi−1

∣∣∣∣∣ 6
sup

(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

Ci(e
−θ0∆i − e−θ∆i)Wi+1,0yi−1

∣∣∣∣∣+ sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

Ci(e
−θ0∆i − e−θ∆i)2yiyi−1

∣∣∣∣∣ . (47)

Since trivially Ci(e−θ0∆i−e−θ∆i) = δi,n, the second term in (47) is bounded byK
∑n−1

i=2 ∆i|yiyi−1| =
O(1) a.s.
The first term in (47) is bounded by

K

n−1∑
i=2

|Wi+1,0yi−1| 6 K sup
t∈[0,1]

|Y (t)|
n−1∑
i=2

|W̄i+1,0|α−1/2
i,0

6 K sup
t∈[0,1]

|Y (t)|

√√√√n−1∑
i=2

W̄ 2
i+1,0

√√√√n−1∑
i=2

α−1
i,0

= O(
√
n) a.s.

since
∑n−1

i=2 W̄
2
i+1,0 = O(n) a.s. has been shown when handling Σ3 after (44).

One may conclude that sup
(θ,σ2)∈J

Σ4 = o(n) a.s. The proof of Lemma 7.6 is then complete.

Proof of Lemma 7.7. We address each of the terms in (39).
• Using Lemma 7.1(i), we get that

sup
θ∈[a,A]

∣∣∣∣log
1− e−2θ∆2

1− e−2θ̃∆2

∣∣∣∣ = O(1).
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In the same way, supθ∈[a,A]

∣∣∣log 1−e−2θ∆n

1−e−2θ̃∆n

∣∣∣ = O(1).

• We have, using Lemmas 7.1 (i) and (ii),

log(Ai/Ãi) = log

[(
1

1− e−2θ∆i
+

e−2θ∆i+1

1− e−2θ∆i+1

)
/

(
1

1− e−2θ̃∆i

+
e−2θ̃∆i+1

1− e−2θ̃∆i+1

)]

= log
1− e−2θ̃∆i

1− e−2θ∆i
+ log

[(
1 + e−2θ∆i+1

1− e−2θ∆i

1− e−2θ∆i+1

)
/

(
1 + e−2θ̃∆i+1

1− e−2θ̃∆i

1− e−2θ̃∆i+1

)]

= log
θ̃

θ
+ δi,n(∆i + ∆i+1).

Thus, by summation we have,

sup
θ∈[a,A]

∣∣∣∣∣
n−1∑
i=2

log
Ai

Ãi
− n log

θ̃

θ

∣∣∣∣∣ = O(1) = o(n).

• We want to show that

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=3

α2
iBiW

2
i,0 − n

θ0σ
2
0

θσ2

∣∣∣∣∣ = o(n) a.s.

By (23), one has

n−1∑
i=3

α2
iBiW

2
i,0 =

n−1∑
i=3

α2
i

αi,0

1

Ai
W

2

i,0 +
n−1∑
i=3

α2
i

αi,0

e−2θ∆i

Ai−1

W
2

i,0

=
n−2∑
i=3

(
α2
i

αi,0

1

Ai
W

2

i,0 +
α2
i+1

αi+1,0

e−2θ∆i+1

Ai
W

2

i+1,0

)
+
α2

3e
−2θ∆3

A2

W 2
3,0 +

α2
n−1

An−1

W 2
n−1,0.

Then we use (26) to develop αi/αi,0 (respectively αi+1/αi+1,0) and Lemma 7.1 (ii) to develop
αi/Ai (respectively αi+1e

−2θ∆i+1/Ai). We get

α2
i

αi,0

1

Ai
=
θ0σ

2
0

θσ2

∆i+1

∆i + ∆i+1

+ δi,n(∆i + ∆i+1) (48)

α2
i+1

αi+1,0

e−2θ∆i+1

Ai
=
θ0σ

2
0

θσ2

∆i

∆i + ∆i+1

+ δi,n(∆i + ∆i+1). (49)

In addition, we easily show, as in (40), that sup
(θ,σ2)∈J

∣∣∣α2
3e

−2θ∆3

A2
W 2

3,0

∣∣∣ = o(n) a.s. and that
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sup
(θ,σ2)∈J

∣∣∣ α2
n−1

An−1
W 2
n−1,0

∣∣∣ = o(n) a.s. Then,

∣∣∣∣∣
n−1∑
i=3

α2
iBiW

2
i,0 − n

θ0σ
2
0

θσ2

∣∣∣∣∣ =

∣∣∣∣∣
n−2∑
i=3

(
α2
i

αi,0

1

Ai
W

2

i,0 +
α2
i+1

αi+1,0

e−2θ∆i+1

Ai
W

2

i+1,0

)
−

n−2∑
i=3

θ0σ
2
0

θσ2
+ δ̄n

∣∣∣∣∣
=

∣∣∣∣∣
n−2∑
i=3

(
α2
i

αi,0

1

Ai
W

2

i,0 +
α2
i+1

αi+1,0

e−2θ∆i+1

Ai
W

2

i+1,0

)
− θ0σ

2
0

θσ2

n−2∑
i=3

(
∆i+1

∆i + ∆i+1

+
∆i

∆i + ∆i+1

)
+ δ̄n

∣∣∣∣∣
6

n−2∑
i=3

∣∣∣∣ α2
i

αi,0

1

Ai
− θ0σ

2
0

θ2σ2

∆i+1

∆i + ∆i+1

∣∣∣∣W 2

i,0 +
n−2∑
i=3

∣∣∣∣ α2
i+1

αi+1,0

e−2θ∆i+1

Ai
− θ0σ

2
0

θ2σ2

∆i

∆i + ∆i+1

∣∣∣∣W 2

i+1,0

+
θ0σ

2
0

θσ2

∣∣∣∣∣
n−2∑
i=3

∆i+1

∆i + ∆i+1

(W
2

i,0 − 1)

∣∣∣∣∣+
θ0σ

2
0

θσ2

∣∣∣∣∣
n−2∑
i=3

∆i

∆i + ∆i+1

(W
2

i+1,0 − 1)

∣∣∣∣∣+ |δ̄n|

6K
n−2∑
i=3

(∆i + ∆i+1)W
2

i,0 +K

n−2∑
i=3

(∆i + ∆i+1)W
2

i+1,0 + |δ̄n| (50)

+
θ0σ

2
0

θσ2

∣∣∣∣∣
n−2∑
i=3

∆i+1

∆i + ∆i+1

(W
2

i,0 − 1)

∣∣∣∣∣+
θ0σ

2
0

θσ2

∣∣∣∣∣
n−2∑
i=3

∆i

∆i + ∆i+1

(W
2

i+1,0 − 1)

∣∣∣∣∣ .
Let us show that the terms in the right-hand side of (50) are a.s. o(n). We have

n−2∑
i=3

(∆i + ∆i+1)W
2

i,0 6 K sup
i=3,...,n−2

W
2

i,0 6 1 + sup
i=3,...,n−2

|W 2

i,0 − 1| = o(n),

a.s. from Lemma 7.3. Similarly

n−2∑
i=3

(∆i + ∆i+1)W
2

i+1,0 = o(n)

a.s. Also, using theorem 2.1 in [16] with an = n, we have

n−2∑
i=3

∆i+1

∆i + ∆i+1

(W
2

i,0 − 1) = o(n)

a.s. and
n−2∑
i=3

∆i

∆i + ∆i+1

(W
2

i+1,0 − 1) = o(n)

a.s. Hence finally

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=3

α2
iBiW

2
i,0 − n

θ0σ
2
0

θσ2

∣∣∣∣∣ = o(n) a.s.
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• We can now conclude the proof. We have

Sn(θ, σ2)− Sn(θ̃, σ̃2) = n log
σ2

σ̃2
− n log

θ̃

θ
+ n

θ0σ
2
0

θσ2
− nθ0σ

2
0

θ̃σ̃2
+ δn = n

(
log

σ2θ

σ2
0θ0

+
θ0σ

2
0

θσ2
− 1

)
+ δn,

by reminding that θ̃σ̃2 = θ0σ
2
0. The proof of Lemma 7.7 is thus complete.

7.4 Proof of Theorem 4.1

Let us first prove (8) in the case aB < θ0σ
2
0; Ab > θ0σ

2
0. We shall then discuss the other

cases at the end. In that view, let

ψ(θ, σ2) =
∂

∂θ
Sn(θ, σ2). (51)

Then from Theorem 3.2, a.s. for n large enough, θ̂ ∈ (a,A). Thus a.s. for n large enough
(θ̂, σ̂2) satisfies ψ(θ̂, σ̂2) = 0. We shall approximate ψ(θ, σ2) uniformly in (θ, σ2) ∈ J .
Starting from (36), (37), (38) and (43) we can write

ψ(θ, σ2) =
2∆2e

−2θ∆2

1− e−2θ∆2
+

2∆ne
−2θ∆n

1− e−2θ∆n
+

2∆2e
−θ∆2y2(y1 − e−θ∆2y2)

σ2(1− e−2θ∆2)

− 2∆2e
−2θ∆2(y1 − e−θ∆2y2)2

σ2(1− e−2θ∆2)2
+

2∆ne
−θ∆nyn−1Wn

σ2(1− e−2θ∆n)
− 2∆ne

−2θ∆nW 2
n

σ2(1− e−2θ∆n)2

−
n−1∑
i=2

A′i
Ai

+ Σ′1 + Σ′2 + 2Σ′3 + T ′2 + T ′n − 2Σ′4

where

◦ Σ′1 = ∂
∂θ

Σ1 =
n−1∑
i=3

αiDiW
2
i,0;

◦ Σ′2 = ∂
∂θ

Σ2 =
n−1∑
i=3

αi
[
Di(e

−θ0∆i − e−θ∆i) + 2αiBi∆ie
−θ∆i

]
y2
i−1(e−θ0∆i − e−θ∆i);

◦ Σ′3 = ∂
∂θ

Σ3 =
n−1∑
i=3

αi
[
Di(e

−θ0∆i − e−θ∆i) + αiBi∆ie
−θ∆i

]
Wi,0yi−1;

◦ T ′2 = ∂
∂θ
T2 = 2α′2α2

W 2
2

A2

+ α2
2

(
2∆2e

−θ∆2y1W2

A2

−W 2
2

A′2
A2

2

)
;

◦ T ′n = ∂
∂θ
Tn =

αne
−2θ∆n

An−1

[
(2α′n − 2αn∆n −

A′n−1

An−1

αn)Wn + 2αn∆ne
−θ∆nyn−1

]
Wn;

◦ Σ′4 = ∂
∂θ

Σ4 =
n−1∑
i=2

C ′iWiWi+1 +
n−1∑
i=2

Ci∆ie
−θ∆iWi+1yi−1 +

n−1∑
i=2

Ci∆i+1e
−θ∆i+1Wiyi

where C ′i is the derivative of Ci w.r.t. θ defined in (25) and

Di := 2α′iBi + αiB
′
i, for i = 3, . . . , n− 1. (52)

First, we consider the terms Σ′1 and Σ′4 in the following lemma (proved in Section 7.6).
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Lemma 7.8. We have

Σ′1 =
θ0σ

2
0

θ2σ2

n−1∑
i=3

qiW
2

i,0 + δn

and

Σ′4 =
θ0σ

2
0

θ2σ2

n−1∑
i=3

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0 + δn,

where qi and C ′i have been defined in (21) and (25).

Now we prove that the remaining terms in ψ(σ2, θ) are OP(1), uniformly in (θ, σ2) ∈ J , at
the exception of

∑n−1
i=2 A

′
i/Ai, leading to the following lemma (proved in Section 7.6).

Lemma 7.9. We obtain

ψ(θ, σ2) =
θ0σ

2
0

θ2σ2

n−1∑
i=3

[
qiW

2

i,0 − 2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

]
− n

θ
+ δn.

Since θ̂2σ̂2ψ(θ̂, σ̂2) = 0 with probability going to 1, and since we can show that
∑n−1

i=3 qi =
n+O(1), we have

n(θ̂σ̂2 − θ0σ
2
0) = θ0σ

2
0

n−1∑
i=3

[
qi(W

2

i,0 − 1)− 2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0

]
+OP(1). (53)

We want to establish a Central Limit Theorem for
√
n(θ̂σ̂2−θ0σ

2
0). In that view, we define

Xi := qi(W
2

i,0 − 1) − 2

√
∆i∆i+1

∆i+∆i+1
W i,0W i+1,0 and we apply Theorem 2.1 in [25] for weakly

dependent variables (since Xi is not necessarily independent with Xi−1 and Xi+1 but is
independent with Xk for |i− k| > 2).

Note that we can show easily that τ 2
n = 1

n
Var(

∑n−1
i=3 Xi), and assume

√
n

(θ̂σ̂2 − θ0σ
2
0)

θ0σ2
0τn

D
6→
n→∞

N (0, 1).

By Proposition 4.3, we can extract a subsequence εn so that τ 2
εn →n→∞ τ 2 with τ 2 ∈ [2, 4]

and so that

√
εn

(θ̂σ̂2 − θ0σ
2
0)

θ0σ2
0τεn

D
6→
n→∞

N (0, 1).
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The triangular array
(
Xi/
√
εn
)
i=3,...,εn−1

satisfies the conditions of [25, Theorem 2.1], thus
we obtain

1
√
εn

εn−1∑
i=3

Xi
D→

n→∞
N (0, τ 2).

Now, from (53),

√
εn

(θ̂σ̂2 − θ0σ
2
0)

θ0σ2
0τεn

=
1
√
εn

εn−1∑
i=3

Xi

τεn
+ oP(1) =

1
√
εn

εn−1∑
i=3

Xi

τ
+

(
1

τεn
− 1

τ

)
1
√
εn

εn−1∑
i=3

Xi + oP(1).

Since 1√
εn

∑εn−1
i=3 Xi = OP(1) and

(
1
τεn
− 1

τ

)
= o(1), we get by Slutsky’s lemma

√
εn

(θ̂σ̂2 − θ0σ
2
0)

θ0σ2
0τεn

D→
n→∞

N (0, 1),

which is contradictory and ends the proof of (8).
Now (9) is under consideration only when b = B = σ2

1 and so when aB < θ0σ
2
0; Ab > θ0σ

2
0.

Thus (9) is a special case of (8). Now, when aB > θ0σ
2
0; Ab < θ0σ

2
0, we have almost

surely for n large enough (∂/∂σ2)Sn(θ̂, σ̂2) = 0, so that the estimator σ̂2
2 can be expressed

explicitly, by differentiating the terms in (36), (37) and (38) w.r.t. σ2. Hence, (8) can
be proved in the case aB > θ0σ

2
0; Ab < θ0σ

2
0 by using identical techniques as in the

case aB < θ0σ
2
0; Ab > θ0σ

2
0. We omit the details to save space. Finally, (10) is under

consideration only when a = A = θ2 and so when aB > θ0σ
2
0; Ab < θ0σ

2
0. Thus (10) is a

special case of (8).

7.5 Proof of Propositions 4.3 and 4.5

Proof of Proposition 4.3. We have

τ 2
n =

2

n

n−1∑
i=3

[
q2
i + 2

∆i∆i+1

(∆i + ∆i+1)2

]
.

(i) Upper bound for τ 2
n. Let ai =

∆i+1

∆i + ∆i+1

, note that
∆i−1

∆i + ∆i−1

= 1 − ai−1 and qi =

ai + 1− ai−1. First, we have after some trivial computations,

τ 2
n =

2

n

n−1∑
i=3

[(ai + 1− ai−1)2 + 2ai(1− ai)]

=
2

n

n−1∑
i=3

(1 + 2ai − 2aiai−1) + o(1) (54)

62 + 4m+ o(1),
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where m :=
1

n− 3

n−1∑
i=3

ai.

Also, since for k = 2, ..., n − 1, 0 6 ak 6 1, we have 1 + 2(1 − ai−1)ai 6 3 − 2ai−1. Thus,
from (54),

τ 2
n 6

2

n

n−1∑
i=3

(3− 2ai−1) + o(1) = 6− 4m+ o(1).

Finally, τ 2
n 6 min (2 + 4m, 6− 4m) + o(1). Since sup

m∈[0,1]

min (2 + 4m, 6− 4m) = 4, τ 2
n 6

4 + o(1).

(ii) Lower bound for τ 2
n. Note that

1

n

n−1∑
i=3

qi = 1 + o(1). Since
∆i∆i+1

(∆i + ∆i+1)2
> 0, we get

τ 2
n >

2

n

n−1∑
i=3

q2
i > 2

(
1

n

n−1∑
i=3

qi

)2

+ o(1) = 2 + o(1). (55)

Proof of Proposition 4.5. (i) After some computation, we have

τ 2
n =4γ2

n − 4γn + 4 + o(1).

Since γn = 1/n, then τ 2
n →
n→∞

4.

(ii) We have

τ 2
n 6

2

n

n−1∑
i=bnαc+2

((
1

i+ 2
+

i

i+ 1

)2

+
2(i+ 1)

(i+ 2)2

)
+ o(1) 6 2 + o(1).

As a consequence, this particular design realizes τ 2
n = 2 + o(1) by (55).

7.6 Proofs of the lemmas of Section 7.4

Proof of Lemma 7.8. (i) From (32) and (33),

Σ′1 =
1

θ

n−1∑
i=3

αi
αi,0

qiW
2

i,0 +
n−1∑
i=3

αi
αi,0

δi,n(∆i−1 + ∆i + ∆i+1)W
2

i,0

where qi has been defined in (21). By (26), we have

αi
αi,0

=
θ0σ

2
0

σ2θ2
+ δi,n∆i.
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Moreover, since E[W
2

i,0] = 1, one clearly has

n−1∑
i=3

αi
αi,0

δi,n(∆i−1 + ∆i + ∆i+1)W
2

i,0 = OP(1)

that leads to the desired result.
(ii) Now we study the first sum of Σ′4 that rewrites

∑n−1
i=2 C

′
i(Mi,1 +Mi,2 +Mi,3) using (45)

and where C ′i has been defined in (25) and
Mi,1 :=

W i,0W i+1,0

α
1/2
i,0 α

1/2
i+1,0

Mi,2 := (e−θ0∆i+1 − e−θ∆i+1)Wi,0yi

Mi,3 := (e−θ0∆i − e−θ∆i)Wi+1yi−1.

• First, we consider
n−1∑
i=2

C ′iMi,1. By (34) and (26) we can show

C ′i

α
1/2
i,0 α

1/2
i+1,0

=
θ0σ

2
0

θ2σ2

√
∆i∆i+1

∆i + ∆i+1

+ δi,n(∆i + ∆i+1).

Furthermore we have

E

[∣∣∣∣∣
n−1∑
i=2

δi,n(∆i + ∆i+1)W i,0W i+1,0

∣∣∣∣∣
]
6K

n−1∑
i=2

(∆i + ∆i+1)

√
E[W

2

i,0]E[W
2

i+1,0]

=K
n−1∑
i=2

(∆i + ∆i+1) 6 K.

Thus
n−1∑
i=2

C ′i

α
1/2
i,0 α

1/2
i+1,0

W i,0W i+1,0 =
θ0σ

2
0

θ2σ2

n−1∑
i=2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0 + δn.

Hence
n−1∑
i=2

C ′iMi,1 =
θ0σ

2
0

θ2σ2

n−1∑
i=2

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0 + δn.

• Second, one clearly has

n−1∑
i=2

C ′iMi,2 =
θ − θ0

2θ2σ2

n−1∑
i=2

∆i+1

∆i + ∆i+1

(1 + δi,n(∆i + ∆i+1))Wi,0yi.

Hence sup
(θ,σ2)∈J

∣∣∑n−1
i=2 C

′
iMi,2

∣∣ = OP(1) by Lemma 7.4 (i).
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• Third, we get

n−1∑
i=2

C ′iMi,3 =
θ − θ0

2θ2σ2

n−1∑
i=2

∆i

∆i + ∆i+1

(1 + δi,n(∆i + ∆i+1))Wi+1yi−1

and sup
(θ,σ2)∈J

∣∣∑n−1
i=2 C

′
iMi,3

∣∣ = OP(1) by Lemma 7.4 (iv).

(iii) We now consider the second and third sums in Σ′4.
Using (26) and (29), we can show

Ci∆ie
−θ∆i =

1

2θσ2

∆i

∆i + ∆i+1

(1 + δi,n(∆i + ∆i+1))

and
Ci∆i+1e

−θ∆i+1 =
1

2θσ2

∆i+1

∆i + ∆i+1

(1 + δi,n(∆i + ∆i+1)).

Hence by Lemma 7.4 (iv) and (ii), sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=2

Ci(∆ie
−θ∆iWi+1yi−1 + ∆i+1e

−θ∆i+1Wiyi)

∣∣∣∣∣ =

OP(1).

Proof of Lemma 7.9. • We have

sup
a6θ6A

∣∣∣∣2∆2e
−2θ∆2

1− e−2θ∆2
+

2∆ne
−2θ∆n

1− e−2θ∆n

∣∣∣∣ = O(1).

• For n large enough,

sup
(θ,σ2)∈J

∣∣∣∣2∆2e
−θ∆2y2[y1 − e−θ∆2y2]

σ2(1− e−2θ∆2)

∣∣∣∣ 6 K sup
a6θ6A

|y2||y1 − e−θ∆2y2| 6 K sup
t∈[0,1]

Y (t)2 = OP(1).

• Using W 2
i = W 2

i,0 + (e−θ0∆i − e−θ∆i)yi−1Wi + Wi,0(e−θ0∆i − e−θ∆i)yi−1 we can eas-

ily show sup
(θ,σ2)∈J

∣∣∣2∆2e−2θ∆2 (y1−e−θ∆2y2)2

σ2(1−e−2θ∆2 )2

∣∣∣ = OP(1), sup
(θ,σ2)∈J

∣∣∣∣2∆ne
−θ∆nyn−1Wn

σ2(1− e−2θ∆n)

∣∣∣∣ = OP(1) and

sup
(θ,σ2)∈J

∣∣∣ 2∆ne−2θ∆nW 2
n

σ2(1−e−2θ∆n )2

∣∣∣ = OP(1).

• Term Σ′2: First, using (32), (33) and the definition (21) of qi, the deterministic quantity
Di is bounded uniformly in (θ, σ2) ∈ J , and so is (e−2θ0∆i − e−2θ∆i)2αi/∆i from (26). By
(14), we are led to

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=3

∆i
αi
∆i

(e−θ0∆i − e−θ∆i)2y2
i−1Di

∣∣∣∣∣ = OP(1).
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Similarly, sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=3

2α2
iBi∆ie

−θ∆i(e−θ0∆i − e−θ∆i)y2
i−1

∣∣∣∣∣ = OP(1) and thus sup
(θ,σ2)∈J

|Σ′2| =

OP(1).

• Term Σ′3: First, from (32), (33) and (26), we have

sup
n∈N,i=2,...,n−1,(θ,σ2)∈J

∣∣∣∣αiDi(e
−θ0∆i − e−θ∆i)− θ − θ0

2σ2θ2
qi

∣∣∣∣ 6 K.

Hence, proceeding as in the proof of Lemma 7.4, we can show

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=3

αiDi(e
−θ0∆i − e−θ∆i)Wiyi−1

∣∣∣∣∣ = OP(1).

Second, we can show

sup
n∈N,i=3,...,n−1,(θ,σ2)∈J

∣∣∣∣α2
iBi∆ie

−θ∆i − 1

2σ2θ

(
∆i+1

∆i + ∆i+1

+
∆i−1

∆i + ∆i−1

)∣∣∣∣ 6 K.

Hence we can show

sup
(θ,σ2)∈J

∣∣∣∣∣
n−1∑
i=3

α2
iBi∆ie

−θ∆iWi,0yi−1

∣∣∣∣∣ = OP(1),

as in the proof of Lemma 7.4. Hence finally, sup
(θ,σ2)∈J

Σ′3 = OP(1).

• Term T ′2: From (22), we have

|T ′2| 6 2|α′2|W 2
2 + |α2|∆2e

−θ∆2|y1|+W 2
2 |A′2|.

We can show
sup

(θ,σ2)∈J
(|α′2|W 2

2 +W 2
2 |A′2|) = OP(1)

by using W 2
2 = W 2

2,0 + (e−θ0∆2 − e−θ∆2)y1W2 +W2,0(e−θ0∆2 − e−θ∆2)y1.
Finally, sup

(θ,σ2)∈J
|α2|∆2e

−θ∆2 = OP(1), which finally shows sup
(θ,σ2)∈J

|T ′2| = OP(1).

• Term T ′n: Using (26), (29) and (30), we get

sup
(θ,σ2)∈J

|2αn∆n| 6 K and sup
(θ,σ2)∈J

|2αn∆ne
−2θ∆n| 6 K.

Moreover, one has |αne−2θ∆n

An−1
| 6 1. Finally, we have sup

(θ,σ2)∈J
W 2
n = OP(1) and sup

(θ,σ2)∈J
|yn−1Wn| =

OP(1). Hence, in order to show sup
(θ,σ2)∈J

|T ′n| = OP(1) it remains to show sup
(θ,σ2)∈J

|α′nW 2
n | =
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OP(1) and sup
(θ,σ2)∈J

|(A′n−1/An−1)αnW
2
n | = OP(1). This is shown by using W 2

n = W 2
n,0 +

(e−θ0∆n − e−θ∆n)yn−1Wn +Wn,0(e−θ0∆n − e−θ∆n)yn−1.

• Term
n−1∑
i=2

A′i
Ai

: By (31),

n−1∑
i=2

A′i
Ai

=
n

θ
+ δn.

Finally,

ψ(σ2, θ) =
θ0σ

2
0

θ2σ2

n−1∑
i=3

qiW
2

i,0 − 2
n−1∑
i=3

√
∆i∆i+1

∆i + ∆i+1

W i,0W i+1,0 −
n

θ
+ δn

using Lemma 7.8.
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