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Observer design for position and velocity bias estimation from a single direction output

This paper considers the questions of observability, and design of an observer, for position estimate of an object moving in R n with direction measurements, typically a bearing direction in three dimensions derived from a vision system. We provide a comprehensive observability analysis and discuss stability of the observer error dynamics. We show that even with bias in the velocity measurement it is possible to recover uniform global exponential stability of error dynamics. Simulation results on demonstrate the performance of the proposed approach.

I. INTRODUCTION

There is is rich literature in vision based pose estimation driven by advances in the structure from motion in the field of computer vision [START_REF] Häming | The structure-from-motion reconstruction pipeline a survey with focus on short image sequences[END_REF]. Most of the recent structure from motion algorithms are formulated as an optimisation problem over a set of selected images [START_REF] Triggs | Bundle adjustment a modern synthesis[END_REF], however, recent work has emphasised the importance of considering motion models and filtering techniques [START_REF] Strasdat | Visual slam: Why filter[END_REF] for a class of important problems. Recursive filtering methods for vision based structure from motion and pose estimation themselves have a rich history primarily associated with stochastic filter design such as EKF, unscented filters and particle filters [START_REF] Matthies | Kalman filter-based algorithms for estimating depth from image sequences[END_REF], [START_REF] Soatto | Motion estimation via dynamic vision[END_REF], [START_REF] Armesto | Fast ego-motion estimation with multi-rate fusion of intertial and vision[END_REF], [START_REF] Civera | Inverse depth parametrization for monocular slam[END_REF]. A comparison of EKF and particle filter algorithms for vision based SLAM is available in [START_REF] Bekris | Evaluation of algorithms for bearing-only slam[END_REF]. Although nonlinear observer design does not provide a stochastic interpretation of the state estimate they hold the promise to handle the non-linearity of the vision pose estimation problem in a robust and natural manner [START_REF] Baldwin | A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements[END_REF]. Ghosh and subsequent authors consider nonlinear observers on the class of perspective systems [START_REF] Rehbinder | Pose estimation using line-based dynamic vision and inertial sensors[END_REF], [START_REF] Abdursul | Nonlinear observers for perspective time-invariant linear systems[END_REF], [START_REF] Abdursul | Nonlinear observers for perspective time-invariant linear systems[END_REF], [START_REF] Aguiar | Minimum-energy state estimation for systems with perspective outputs[END_REF], [START_REF] Dahl | Observer forms for perspective systems[END_REF], that is systems with output in a projective space obtained as a quotient of the state space. Perspective outputs y(x) are of the form

y P = ( x 1 x n , . . . x n-1 x n , 1)
and correspond to the nonlinear projection along rays through the origin onto an affine image plane perpendicular to the focal axis. The output representation is attractive in that it corresponds to the normal representation of vision data for perspective cameras. Indeed, there are a number of works that consider filtering for y P directly, rather than estimating the camera position [START_REF] Dixon | Range identification for perspective vision systems[END_REF], [START_REF] De Luca | On-line estimation of feature depth for image-based visual servoing schemes[END_REF], [START_REF] Dani | Globally exponentially stable observer for vision-based range estimation[END_REF], corresponding to image tracking. Although significant work has been based on this output representation, it tends to lead to complex observer and filter design and difficult analysis [START_REF] Rehbinder | Pose estimation using line-based dynamic vision and inertial sensors[END_REF], [START_REF] Abdursul | Nonlinear observers for perspective time-invariant linear systems[END_REF], [START_REF] Abdursul | Nonlinear observers for perspective time-invariant linear systems[END_REF], [START_REF] Aguiar | Minimum-energy state estimation for systems with perspective outputs[END_REF], [START_REF] Dahl | Observer forms for perspective systems[END_REF]. An additional question of importance concerns the rate of convergence of an observer and recent work has addressed this question in the context of controlling the camera motion to improve observability of the problem and increase the rate of convergence of the observer [START_REF] Spica | Active structure from motion: Application to point, sphere, and cylinder[END_REF].

The present paper contributes further to the field of nonlinear observer design for systems with direction outputs. The key contribution that we make is the development of an elegant and rigorous stability analysis for a simple filter design. The filter is designed for a single bearing measurement and relies on the motion of the camera to generate persistence of excitation of the innovation in order to guarantee global asymptotic convergence. Rather than using the perspective outputs favoured in previous papers we use direction outputs y = x/|x| = y P |y P | corresponding to projection onto a virtual spherical image plane and differing from perspective outputs only in the scaling. The two formulations are essentially equivalent from a systems perspective in the region where perspective outputs are defined, however, we believe that the direction output representation contributes to the simplicity of the observer proposed in the present paper. We characterise the rate of convergence of the filter in terms of the persistence of excitation property. We then consider the case when the measurement of velocity of the camera is perturbed by an unknown bias. To the authors knowledge, this problem has not been considered in the nonlinear observer literature. We provide a rigorous proof of the global asymptotic stability of the observer state for this case by exploiting a novel state transformation. The simulations provided demonstrate the performance of the filter.

The paper is organised along five sections. Following the present introduction, Section II introduces the system under consideration and points out observability properties attached to it. Section III develops the main results of the paper. Section IV present a few illustrative simulations. Concluding remarks are provided in Section V.

II. PROBLEM DESCRIPTION

The system considered is the kinematics of an object moving in R n ẋ = v + a

(1)

y = x |x| ∈ S n-1 (2) 
where v ∈ R 3 is the velocity of the object and a ∈ R 3 represents any unknown bias. Let S n-1 denote the unit sphere, the space of measurements y ∈ R n such that 1 |y| = 1. An example of such a measurement is the bearing in S 2 obtained from a camera looking at a moving object.

In most applications the unknown velocity a ∈ R n (with n = 3) represents the velocity of the fluid in which evolves the moving object or/and any bias that affects the measurement of v. In this paper, for the sake of generality, we consider an arbitrary dimension n ≥ 2. We emphasize that the value of y ∈ S n-1 and v ∈ R n must be known at all times.

A. Observability analysis

We first give a general observability criterion. The following persistency of excitation condition will then yield an observability result for system (1-2).

Definition 2.1: The direction y ∈ S n-1 , is called persistently exciting if there exist δ > 0 and 0 < µ < δ such that for all t t+δ t π y(τ ) dτ ≥ µI, with π y = (I -yy )

For future use, note that (3) is equivalent to

∀b ∈ S n-1 : t+δ t |π y(τ ) b| 2 dτ ≥ µ, (4) 
Another characterization of persistent of excitation, in terms of the property that the time-derivative of ẏ must satisfy, is pointed out in the following lemma Lemma 2.2: Assume that ẏ(t) is uniformly continuous, then relation (3) (respectively (4)) is equivalent to:

∃ε > 0, ∃τ ∈ [t, t + δ] such that | ẏ(τ )| ≥ ε (5) 
Proof: The proof of this lemma is given in Appendix Recall that two different points

x 0 1 , x 0 2 ∈ R n are said distinguishable, if there exists an input v(t) ∈ R n and a time t 1 such that for solutions x 1 (t), x 2 (t) of (1) with x 1 (0) = x 0 1 , x 2 (0) = x 0 2 we have y(x 1 (t 1 )) = y(x 2 (t 1 )
). Equivalently, in this case one says that the admissible input distinguishes the two initial states, and also that two initial states of system (1-2) are indistinguishable if they are not distinguished by any admissible input.

Definition 2.3: A system is called strongly observable if all pairs of distinct initial states are distinguished by all admissible inputs. It is called weakly observable if every pair of distinct initial states is distinguished by at least one admissible input.

Reasons to differentiate between strong observability and weak observability are well explained in the non-linear control literature. For complementary details on this subject we refer the reader to a classical work by Sussmann [START_REF] Sussmann | Single-input observability of continuous-time systems[END_REF].

Lemma 2.4: The system (1-2) complemented with the equation ȧ = 0, with X = x a as the system state vector, v as the system input, and y as the system output, is weakly observable but not strongly observable.

Proof:

Choose, for instance, the input v(t) = (cos(t), sin(t), 0 . . . 0) T . The solutions to the system are then given by x(t) = x(0) + (sin(t) + at, -cos(t) + at, 0 . . . 0) T and one easily verifies that y 1 (t) = y 2 (t), ∀t, implies that x 1 (0) = x 2 (0). This establishes the weak observability property of the system. Note also that the chosen input renders both outputs y 1 (t) and y 2 (t) persistently exciting in the sense of the definition (2.1). On the other hand, one verifies that, if the input v is constant, then initial states x 1 (0) = k 1 v and x 2 (0) = k 2 v, with k 1 and k 2 denoting arbitrary positive numbers, can not be distinguished because y 1 and y 2 are constant and equal in this case. This proves that the system is not strongly observable. The weak observability property of the system justifies the introduction of the persistence condition evoked previously to characterize "good" outputs (produced by "good" inputs) yielding a property of "uniform" observability that renders the state-observation problem addressed in the next section well-posed.

III. OBSERVER DESIGN

The problem of state observation refers to the design of an algorithm that allows one to recover actual state values from the observation of previous outputs. We start by the observer design for the classical situation addressed in the literature where the unknown constant velocity bias a is equal to zero. The situation when this term is different from zero and unknown a priori is addressed subsequently.

Lemma 3.1: Consider the system (1-2) and the following observer:

ẋ1 = v -kπ y x1 , x1 (0) = x0 1 ∈ R n and k > 0 (6) 
Assume that a ≡ 0, x is bounded and never crosses zero, so that the output y is always well defined. Let x1 = x -x1 ∈ R n denote the estimation error. If v(t) ∈ R n is bounded and such that the measured direction y(t) is persistently exciting, then the equilibrium x1 = 0 is Uniformly Globally Exponentially Stable (UGES).

Proof: Differentiating x and using (1) and ( 6) one gets the following linear time varying system:

ẋ1 = kπ y x = -kπ y x1 ,
Using the assumption of persistent excitation characterized by relation (3) a direct application of [20, Lemma 5] proves that x1 is UGES. More explicitly, one verifies that the transition matrix Φ associated with the above system satisfies

exp -k(t-τ ) ≤ ||Φ(t, τ )|| ≤ exp -γ(t-τ ) , (7) 
where γ = µk δ(1+k 2 δ) 2 . The interest of this result lies in the extreme simplicity of the observer design and, more importantly, in the property of global stability and explicit bounds on the convergence rate of the observer.

Lemma 3.2: Consider the system (1-2) and the above filter [START_REF] Armesto | Fast ego-motion estimation with multi-rate fusion of intertial and vision[END_REF]. If

• v ∈ R n is bounded and such that the measured direction y is persistently exciting, • x is bounded and never crosses zero, and • a ∈ R n is constant then |x| (and hence |x 1 |) is uniformly bounded w.r.t. initial conditions and ultimately bounded by 1 γ |a|. Proof: It is straightforward to verify that, in this case, the error-system equation is:

ẋ1 = a -kπ y x1 , (8) 
whose general solution is:

x1 (t, 0) = Φ(t, 0)x 0 1 + t 0 Φ(τ, t)adτ Using (7) it follows that |x 1 (t)| ≤ (|x 0 1 | + 1 γ |a|) and lim t→+∞ |x 1 (t)| ≤ 1 γ |a|.
Since x is bounded by definition, it follows that x1 is also bounded.

For the design of an exponentially stable observer in the case where a = 0 the following two technical lemmas are instrumental.

Lemma 3.3: Assume that y ∈ S n-1 is persistently exciting. The matrix-valued function M (t) solution to:

Ṁ = I -kπ y M, M (0) = M (0) T = M 0 > 0 (9)
is bounded and always invertible, and its condition number is bounded.

Proof: See appendix B. Lemma 3.4: Assume that y ∈ S n-1 is persistently exciting and ẏ is uniformly continous. The dual output y := M -1 y |M -1 y| is also persistently exciting.

Proof: See appendix C. The observer design presented hereafter is based on the association of the filter (6) that ensures, as we will show, that the variable z := x1 + M a converges to x, with a second filter that provides an estimate x of x := M -1 z. It then suffices to pre-multiply this second estimate by M to obtain an estimate of x. The following theorem specifies the observer design and its convergence properties in the case where the output y is persistently exciting.

Theorem 3.5: Consider the system (1-2) along with (6) and [START_REF] Baldwin | A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements[END_REF]. Define the virtual observer z as follows

z = x1 + M a (10) 
and the dual observer x of M -1 z as follows

ẋ = v -k π y x , x (0) = x 0 (11) 
with v := M -1 v -M -1 x1 a known term and k any positive gain. If y is persistently exciting in the sense of Lemma 2.2 then the virtual error xz := x -z, the dual position error x := x -x , the position error x = x-M x , and the adaptation error â -a (with â := x -M -1 x1 ), globally exponentially converge to zero. Proof: The proof proceeds step by step. Concerning the convergence of xz to zero, one easily verifies, using (6-9), that:

ż = v + a + kπ y z (12) 
Differentiating xz , and using ( 1) and ( 12), one obtains:

ẋz = kπ y z = -kπ y xz
This equation being the same as the one for x1 in the case where a = 0, one concludes as in Lemma 3.1 that xz = 0 is uniformly globally exponentially stable, provided that y is persistently exciting. Concerning the convergence of x to zero, using the fact that the matrix M is invertible (from Lemma 3.3), we introduce the virtual estimate z ∈ R n , defined as follows:

z := M -1 z = M -1 x1 + a (13) 
Since we already have established that (x -z) converges exponentially to zero, and since M -1 is bounded, we deduce that (x -z ) converges exponentially to zero. Differentiating (13), and using ( 6) and ( 9), one verifies that:

ż = v (14) 
Now, differentiating z = z -x , and using ( 11) and ( 14), it comes that:

ż = k π y x = -k π y (z -z )
Using the fact that x ∈ ker(π y ), and defining x z = x -z one gets:

ż = -k π y z -k π y x z = -k π y z -k π y M -1 xz
Since y is a persistently exciting (from Lemma 3.4), the above equation is similar to the one of x1 in the case where a = 0, except for the additive "perturbation" term -k π y M -1 xz which converges exponentially to zero, due to the exponential convergence of xz to zero. It is immediate to show that this exponentially vanishing perturbation does not prevent z from globally converging to zero exponentially. Therefore, x = x -x , and subsequently x = x -M x , also globally converge exponentially to zero. Finally, since z converges to zero so that x -z also converges to zero, with z = M -1 x1 + a, it comes that a -(x -M -1 x1 ) = a -â converges exponentially to zero.

IV. SIMULATION

We consider the example of a moving target point observed by a camera. The point moves in the 3D space (n = 3) along a circular trajectory at a fixed altitude (z = 3m) above the ground. The frame associated to the camera is located at the origin of the inertial frame whose optical axis is aligned with the z-axis and looks up at the moving point. The measure y ∈ S 2 corresponds to the spherical projection of the point, given by the algebraic transformation y = y P |y P | , where y P is the projective measure provided by the camera. The measurement of the velocity v is biased by a = (0.33, 0.66, 0.99) , and v is chosen so that v + a = (-0.5 sin 0.5t, 0.5 cos 0.5t, 0) . The following values of the observer gains are used: k = 0.5 and k = 5. In Figures [START_REF] Häming | The structure-from-motion reconstruction pipeline a survey with focus on short image sequences[END_REF][START_REF] Triggs | Bundle adjustment a modern synthesis[END_REF][START_REF] Strasdat | Visual slam: Why filter[END_REF] the performance of the observer in the ideal noise-free case is shown. From these figures one can observe the exponential convergence of all estimation errors to zero. In figures [START_REF] Matthies | Kalman filter-based algorithms for estimating depth from image sequences[END_REF][START_REF] Soatto | Motion estimation via dynamic vision[END_REF][START_REF] Armesto | Fast ego-motion estimation with multi-rate fusion of intertial and vision[END_REF], the observer algorithm is simulated in the case where the 3D bearing measurement y is calculated from the position x to which a uniform noise w taking values in the interval [-0.5m, 0.5m] is added. Figures [START_REF] Matthies | Kalman filter-based algorithms for estimating depth from image sequences[END_REF][START_REF] Soatto | Motion estimation via dynamic vision[END_REF][START_REF] Armesto | Fast ego-motion estimation with multi-rate fusion of intertial and vision[END_REF] show that the high frequency part of the noise is filtered by the proposed algorithm so that the performance of the proposed observer is not much reduced. In this paper, we discussed the issue of observability of a moving object in R n from bearing measurement and proposed nonlinear observer and a detailed analysis of this observer in the case where the bearing measurement satisfies a condition of persistent excitation. There is an increasing number of emerging applications that can make use of such an observer. We think, in particular, of applications involving cameras for relative localization of mobile robot teams. We believe that extending the observer design methodology described in the paper to the estimation of the relative . . .

ẏn (s n )    (τ -t)| 2 ≥ |b T (y(t)| 2 -2nd(δ)(τ -t) -4n 2 d(δ) 2 (τ -t) 2
for some

s i ∈ [t, τ ] (i = 1, . . . , n) and d(δ) = sup τ ∈[t,t+δ] | ẏ(τ )|. Choose b = y(t) so that b T y(t) = 1, then |b T y(τ )| 2 ≥ 1 -2nd(δ)(τ -t) -4n 2 d(δ) 2 (τ -t) 2 and t+δ t |b T y(τ )| 2 dτ ≥ δ -nd(δ)δ 2 - 4 3 n 2 d(δ) 2 δ 3
Clearly there exists > 0 (independent of t) such that We now show that (5) implies (4) One has |b T y(t)| 2 = cos(θ(t)) 2 with θ(t) the angle between b and y(t). Using the (assumed) uniform continuity of ẏ, (5) implies the existence of an interval [t 1 , t 2 ] ⊂ [t, t + δ] such that (t 2 -t 1 ) = 1 ( ) > 0 and |y(t 2 ) -y(t 1 )| ≥ 2 ( ) := 2n 1 ( ) > 0. This in turn implies that the distance between θ(t 1 ) and θ(t 2 ) is larger than some 3 ( ) > 0. Since the uniform continuity of ẏ implies the uniform continuity of θ, and since cos(θ(t 1 )) and cos(θ(t 2 )) cannot be both equal to one, one deduces the existence of a positive number 4 ( ) such that

t2 t1 cos(θ(τ )) 2 dτ ≤ (t 2 -t 1 )(1 -4 ( )). Therefore, t+δ t |b T y(τ )| 2 dτ = t1 t |b T y(τ )| 2 dτ + t2 t1 |b T y(τ )| 2 dτ + t+δ t2 |b T y(τ )| 2 dτ ≤ (t 1 -t) + (t 2 -t 1 )(1 -4 ( )) +(t + δ -t 2 ) ≤ δ -µ( ) with µ( ) = 1 ( ) 4 ( ) > 0.

B. Proof of Lemma 3.3

To prove that M is bounded, is suffices to ensure that, for any constant vector b ∈ S n-1 , |M b| is bounded. Define u = M b, it follows that:

u = b -kπ y u
This equation is similar to the equation (8) of x1 . Therefore

|M (t)b| ≤ |M (0)b| + 1 γ , ∀b ∈ S n-1
This implies that ||M || is bounded. To show that M is an invertible matrix, define ∆ := det(M ). From Jacobi's formula, one has

∆ = ∆tr(M -1 Ṁ ) = ∆tr(M -1 -kM -1 π y M ) = ∆tr(M -1 ) -k∆tr(π y M M -1 ) = -k(n -1)∆ + ∆tr(M -1 ) (15) 
Note that this equation holds even if M is not invertible. Indeed, using the fact that det(M ) = n i=1 λ i and tr(M

-1 ) = n i=1 1 λi , with λ i (i = 1 . . . n) the eigenvalues of M , one verifies that ∆ = -k(n -1)∆ + n i=1 n j=1,j =i λ j (16) 
Since M (0) is symmetric positive definite by assumption, all eigenvalues of M (0) are positive and ∆(0) > 0. Assume that ∆ is equal to zero for the first time at the time instant t 0 > 0. Then, tr(M (t)) > 0 on [0, t 0 [ and tr(M (t)) ≥ 0.

In view of ( 16), ∆(t) ≥ r(t) with r(t) the solution to the equation ṙ = -k(n -1)r, with r(0) = ∆(0). Therefore ∆(t) ≥ y(0) exp(-k(n -1)t) > 0, ∀t. This contradicts the existence of t 0 and proves that M (t) is always invertible.

Let us now prove that ∆(t) is lower bounded by a positive number. Rewrite equation ( 15) as follows

∆ = -tr(M -1 ) -(n -1)k ∆, (17) 
Using the fact that tr(M -1 ) > n ∆ 1/n , this equation shows that ∆ ≥ 0 if ∆ < ( n k(n-1) ) 1/n . Therefore ∆ is ultimately lower bounded by ( n k(n-1) ) 1/n . Finally, since ∆ is lower bounded by a positive number and M is upper bounded, it follows (by direct application of [START_REF] Piazza | An upper bound for the condition number of a matrix in spectral norm[END_REF]) that the condition number This establishes that ẏ is persistently exciting.
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 45 Fig.4: Evolution of the system/observer pair when the output is affected by a noise
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 6 Fig. 6: Evolution of the estimate â in the presence of measurement noise

  y(τ )| 2 dτ ≥ δ -µ Let us proceed by contradiction and assume that (5) does not hold, i.e. | ẏ(τ )| < , ∀t ∈ [t, t + δ], then d(δ) < and t+τ t |b T y(τ )| 2 dτ ≥ δ -µ. This contradicts (4) according to which ∀b ∈ S n-1 : t+δ t |π y(τ ) b| 2 dτ = δ-t+δ t |b T y(τ )| 2 dτ ≥ µ Therefore (5) holds true.
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|.| stands for the Euclidean norm of vectors and ||.|| is the induced matrix norm.