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Abstract While the question of spatial weight matrix specification is now largely discussed in the spatial
econometrics literature, the definition of distance has heretofore attracted less attention. The choice of
the distance measure is often glossed over, with the ultimate use of the Euclidean distance. This paper
investigates this issue in the case of establishments locating in the Paris region. High congestion, speed
limits, or physical uncrossable barriers can diminish or totally eliminate the linkage between neighboring
areas challenging the choice of the Euclidean distance in representing the spatial effects. To compare the
various distance measures, we develop a probabilistic mixture of hurdle-Poisson models for several activity
sectors. Each model class uses a different distance definition to capture spillover effects. The following
distance measures are considered: Euclidean distance, two road distances (with and without congestion),
public transit distance, and the corresponding travel times. Overall, the obtained results are in line with
the literature regarding the main determinants of establishments’ location. However, we find that for some
activity sectors, such as construction, the peak period road travel time for private vehicles is the most likely
to correctly capture spatial spillovers, whereas for other sectors, such as real estate, the Euclidean distance
slightly prevails. This tends to show that spatial spillovers are channeled by different means, contingently
on the activity sector. In addition, we find that the proposed mixture of hurdle-Poisson models that uses
several latent classes performs significantly better than the ”pure” hurdle-Poisson models based on a single
distance measure, emphasizing the usefulness of our approach.
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1 Introduction

The role played by a spatial weight matrix has long been a controversial aspect of spatial methods
(Partridge et al., 2012, LeSage and Pace, 2012, Vega and Elhorst, 2013). Numerous studies have attempted
to determine which specification of the spatial weight matrix (W ) best fits the data and to investigate
the robustness of their results to different W specifications (e.g., Bell and Bockstell, 2000, Kostov, 2010)1.
Examinations cover neighbors definition (rook or queen matrix, n nearest neighbors, etc.), the specification
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1 Several studies report that the weight matrix does play a role in spatial models and that two different choices of W may
lead to significantly different estimates. Yet, LeSage and Pace (2012) find little evidence that estimates are sensitive to minor
changes in specifications used for the spatial weight structure in these models if 1) estimates are correctly interpreted and
rely on true partial derivatives, and 2) the model is well-specified. Changes in the spatial weight matrix specification may
entail changes in measures of dispersion (e.g., t-Student statistics), but not significant differences in the coefficient estimates.
This result is as critical as sensitivity of estimates could be a good reason to consider spatial models as ill-conditioned.
Overreaction to small changes in the weight matrix would therefore suggest a misspecification of the model.
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of the distance decay function, or the bandwith size2. Yet, distance definition has been the subject of less
attention. When the spatial weight matrix is based on distance, the choice of the distance measure is often
glossed over, with an ultimate preference for the Euclidean distance (e.g., Bhat et al., 2014).

As noticed by McMillen and McDonald (2004) and emphasised by Rincke (2010), Billé and Arbia (2013),
and Vega and Elhorst (2013), the use of an arbitrary matrix is often the starting point to specify the linkage
between neighboring observations followed by the sensitivity analysis based on models estimations using
alternative, equally arbitrary, matrices. However, this arbitrary choice has a disadvantage of imposing a
restrictive structure that can bias results when inappropriate. The requirement that the weights should
be exogenous to the model gives usually an excuse to use an Euclidean distance, because the underlying
geographical structure is arguably exogenous in most applications3. Corrado and Fingleton (2012) debate
that the specification of W , including the choice of distance measure, should be supported by an economic
theory. Thus, the Euclidean distance might not always be the most relevant one depending on the problem
considered (Talen and Anselin, 1998)4.

Let us imagine two neighborhoods that are contiguous yet separated by some uncrossable physical
barrier (a transport axis, a river, etc.). One would indeed expect that spatial spillovers would be smaller,
if any at all, than that if the barrier was not there. Following this train of thought, several studies have
considered alternative distance measures that are not purely based on topography (e.g., Conley and Ligon,
2002, Slade, 2005), including network distances and transport costs. However, there is little comparison
with the geographical distance (Euclidean or great circle depending on the spatial scale), and when there
is, it is based on the relative performances of two models, one based on the alternative distance and the
other on the geographical distance.

This research proposes a new, flexible approach, where several distance measures may coexist and be
combined instead of being systematically opposed. The methodology is based on a mixture of ”mono-
distance models” which allows us to capture the diversity of agents’ behavior, and provides a more direct
and integrated way of comparing various distance measures with each other. We address the criticism of
Rincke (2010), Vega and Elhorst (2013), and other authors that the choice of the spatial weight matrix is
usually quite arbitrary, while it refers to the choice of the distance measure.

The methodology is applied to the location choice of newly created establishments in the Paris re-
gion. Recent works have emphasized the importance of spatial effects in this context (Bhat et al., 2014,
Buczkowska and Lapparent, 2014, Liviano-Soĺıs and Arauzo-Carod, 2013, Liesenfeld et al., 2015, Lambert
et al., 2010, Klier and McMillen, 2008). Yet, whenever the distance measure was used in the weight matrix
to implement the spatial dependencies or spatial spillovers in location choice models, no discussion was pro-
vided on the choice of the distance measure itself and the Euclidean distance was utilized. As a large body
of literature highlights the relevance of the transport infrastructure in the location choice of establishments
(reviewed by Arauzo-Carod et al., 2010, among others), this challenges the choice of the Euclidean distance
to represent spatial effects. Distance measures based on the transport network might be more appropriate,
as advocated by Combes and Lafourcade (2003, 2005), who state that the Euclidean distance is only a proxy
for the true physical distance. In reality, people or goods move along transport networks rarely going from
point A to point B in a straight line. Congestion or speed limits may also cause drivers to make detours in
order to reduce their travel time, which means that the fastest path may not be the shortest one5.

On the basis of former work of Buczkowska and Lapparent (2014), we extend their model by estimating
a mixture of hurdle-Poisson models whereby two latent classes are used. Each class uses a different distance
definition to capture spatial spillovers. To our knowledge, this is the first formulation and application of

2 See Getis and Altstadt (2004) who summarize the typical well-known schemes that reaserchers follow to find a proper
spatial dependence representation in theW matrix. These schemes are: 1) spatially contiguous neighbors, 2) inverse distances
raised to some power, 3) lengths of shared borders divided by the perimeter, 4) bandwidth as the n-th nearest neighbor
distance, 5) ranked distances, 6) constrained weights for an observation equal to some constant, 7) all centroids within
distance d, 8) n nearest neighbors, and so on. Some of the newer schemes are: 1) bandwidth distance decay (Fotheringham
et al., 1996), 2) Gaussian distance decline (LeSage, 2003), and 3) ”tri-cube” distance decline function (McMillen and
McDonald, 2004).

3 See Drukker et al. (2013) for a joint test of zero spatial interactions in the dependent variable, the exogenous variables
and the disturbances; Kelejian and Prucha (1998) for a feasible generalized spatial two-stage least squares procedure for
estimating cross-sectional linear regression models that contain a spatial lag of dependent variable as a regressor or a distur-
bance term that is spatially autoregressive where the neighboring units can be those that are close in some dimension, such
as geographical or technological. This procedure accounts for the endogeneity of y−i by instrumental variables constructed
as spatial lags of the exogenous characteristics xi as well as spatial error correlation; Rincke (2010) for an application of
Kelejian and Prucha’ (1998) procedure.

4 Talen and Anselin (1998) suggest that the distance can be computed in a variety of ways and when incorporating
spatial externalities, they suggest to correlate the measure of access with the socio-economic characteristics. Fingleton and
Le Gallo (2008) state for instance that the spillover between areas are not a function of spatial proximity to the exclusion
of other effects and ”it is more realistic to base it on relative economic distance.

5 As stressed by Nguyen et al. (2012), many distance-based weighting functions have been proposed to be used in the
weight matrix. It is always assumed that the inter-centroid distance from site i to site j is the same as the distance from
site j to site i (see also Miaou and Sui, 2004), which may not be the case in reality.
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spatial count data models of location choice, wherein various other than Euclidean distance measures are
investigated to build the spatial distance weight matrices for different activity sectors. Besides the Euclidean
distance, the proposed distance measures are two road distances (with or without congestion), the public
transit distance, and the corresponding travel times. As noted above, the mixture allows several distance
measures to coexist within the same model6. We contribute to the existing literature on location modeling,
opening up a discussion and a new direction for empirical explorations using appropriate econometric tools
and putting more consideration on the definition of distance. Overall, we find results that are in line with the
literature regarding the main determinants of firm or establishment location. However, we find that for some
activity sectors, such as construction, the peak period road travel time for private vehicles is the most likely
to correctly capture spatial spillovers, whereas for other sectors, such as real estate, the Euclidean distance
slightly prevails. This tends to show that spatial spillovers are channeled by different means depending on
the activity sector. Moreover, we find that the proposed mixture of hurdle-Poisson models that uses several
latent classes performs significantly better than ”pure” hurdle-Poisson models based on a single distance
measure, emphasizing the usefulness of our approach.

The remainder of the paper is organized as follows. In Section 2, we review the literature relevant to our
topic. Next, we describe the data in Section 3, and develop our parametric statistical model in Section 4.
In Section 5, we present and discuss the results of our research. In the final section, we conclude and point
out to a possible extension of the proposed approach.

2 Literature review

The analysis of firm or establishment location choices has attracted considerable attention in the past
decades. In a survey of Arauzo-Carod et al. (2010), the authors review over fifty papers on location choice
modeling with a focus on location decisions of new industrial establishments or firms. They described the
establishment or firm location determinants, the econometric methods used in these investigations, and
their main findings7.

However, only recently the importance of spatial effects in this context has been emphasized (Bhat et
al., 2014, Buczkowska and Lapparent, 2014, Liviano-Soĺıs and Arauzo-Carod, 2013, Liesenfeld et al., 2015,
Lambert et al., 2010, Klier and McMillen, 2008). An establishment does not act in isolation during its
decision-making processes and is likely to be influenced by other establishments located nearby (Nguyen et
al., 2012). Jayet (2001) proves the existence of interactions among units located in space and demonstrates
that their intensity decreases with distance. When choosing an appropriate place in which to set up on
the market, an establishment can take into account not only the characteristics of a particular area but
also those of its surroundings. The degree of spatial correlations is expected to be greater among choice
alternatives that are close to one another. Despite the existence of these spatial effects, they are most often
completely ignored in the analysis of the unit location. There is little mention in the literature of previous
attempts to incorporate spatial effects in establishment or firm location decision-making processes (Bhat et
al., 2014, Buczkowska and Lapparent, 2014, Liviano-Soĺıs and Arauzo-Carod, 2013, Liesenfeld et al., 2015,
Lambert et al., 2010, Klier and McMillen, 2008).

Klier and McMillen (2008) build a model with a spatially weighted dependent variable to analyze
location decisions of auto supplier plants in the US (discrete choice framework). They account for the
clustering tendency assuming that the location of a plant in a particular county depends on the location
of plants in contiguous counties. Lambert et al. (2010) develop the Spatial Autoregressive Poisson model
and assessed the use of a two-step limited information maximum likelihood approach. This model includes
a spatially lagged dependent variable as a covariate. The proposed estimator models the location events
of start-up firms in the manufacturing industry as a function of neighboring counts. Effects of location
determinants can be divided into direct, indirect, and induced effects thus providing information to better

6 See Nguyen et al. (2012) for a relocation choice model where an average travel distance is used to proxy the distance
among zones and firms.

7 The most commonly used establishment or firm location determinants and the signs of their estimates used in both
discrete choice and count data models according to the review of Arauzo-Carod et al. (2010) are: agglomeration economies
(+,-: positive or negative effect), previous entries in the own sector (+), existing plants (+), own-industry employment
(+), sectoral diversity (+,-), sectoral specialization (+,-), market size (+), establishment/firm size (+), productivity (+),
unemployment (+,-), industrial employment share (+), services employment share (+), business services (+), share of
employees in R&D (+), human capital (+,-), knowledge spillovers (+), skilled workforce (+), education (-), schooling (+),
existence of high schools (+), overall R&D investment (+), R&D facilities (+), high-ranking hotels (+), population density
(+,-), distance to urban areas (-), land area (+,-), land costs (-), entry costs (-), taxes (-), corporate tax rate (+,-), taxes
on labor (-), labor costs (+,-), wages (+,-), income per capita (+), purchasing power per inhabitant (+), GDP (+), poverty
(-), local demand (+), supplier accessibility (+), government spendings (+), promotional subsidies (+), labor and capital
subsidies (+), economic promotion (+), investment climate (+), infrastructure (+), transport infrastructure (+), road
infrastructure (+), distance to highway (-), rail infrastructure (-), airports facilities (+), travel time to airport (-), energy
costs (+,-), and environmental regulation (-).



4 Sabina Buczkowska et al.

understand regional patterns. Liesenfeld et al. (2015) propose an maximum likelihood (ML) approach based
on the spatial efficient importance sampling applied to the spatial Poisson and negative-binomial models
for manufacturing establishment location choices. ML estimation of parameter-driven count data models
requires high-dimensional numerical integration. Bhat et al. (2014) formulate a spatial multivariate model
to predict the count of new industrial businesses at a county level in the state of Texas. It allows for a better
recognizion of the industry specific determinants. The authors accommodate overdispersion and excess zero
problems. They account for the unobserved factors that simultaneously affect the county-level count of new
businesses in different sectors and spatial dependence effects across counties.

However, whenever a distance measure was used in the weight matrix to implement the spatial effects
in the location choice model, no discussion was provided on the choice of the distance measure itself.
Liviano-Soĺıs and Arauzo-Carod (2013) consider a distance matrix such that wij = 1/dij , where dij is the
Euclidean distance between the municipalities i and j when implementing spatial spillovers. In the paper of

Buczkowska and Lapparent (2014), spillover effects were modeled as: xi,s = ln
(∑I

j=1 e
−µdi,jzj,s

)
, where zj,s

is a municipality attribute that applies to the activity sector s or the number of pre-existing establishments
from this sector, and di,j is the Euclidean distance between the centroids of municipalities i and j. Bhat
et al. (2014) test different specifications of the weight matrix in their spatial multivariate model, including
inverse distance, inverse of the square of the distance, and inverse of the cube of the distance between
counties. Yet, they do not concentrate on the distance definition. Lambert et al. (2010) propose, among
others, a row-standardized inverse distance matrix based on the Euclidian distance between the nearest
neighbors.

Hence, we find it necessary to open up a discussion on distance definition to be used in the location
choice models.

3 Data

In the data Section 3, we describe the possible distance measures that can be used in the models,
matrices computation, and statistical data sources.

3.1 Distance measures

In mathematics, computer science and graph theory, a distance matrix is a two-dimensional array con-
taining distances, taken pairwise, between a set of N points. This matrix has a size of NxN . The Euclidean
distance is the ”ordinary” distance between two points that one would measure with a ruler (Dattorro,
2015). Euclidean distance matrices have five properties: 1) nonnegativity, 2) self-distance, 3) symmetry, 4)
triangle inequality, and 5) relative-angle inequality.

The use of the Euclidean distance is widespread in economics (e.g., Duranton and Overman, 2005,
Partridge et al., 2008). This metric is known to all and experienced by all in everyday life, hence a prime
candidate in economics. It is easily available to boot. Combes and Lafourcade (2003, 2005) claim that any
Euclidean distance can only be regarded as a proxy for the actual physical distance, though. The curvature
of the earth is the first source of systematic error. When calculating the straight line (crow-fly) distance
between two remote points, the Euclidean distance may be replaced by a great circle distance, which takes
the Earth’s spherical shape into account (Axhausen, 2003). The second source of systematic error comes
from the fact that in practice, people (or goods) move along a transport network. For instance, car users
may only drive on the existing road network, hence the well-known example of the Manhattan distance
(Eaton and Lipsey, 1980). They rarely go from point A to point B along the straight line as assumed in the
Fetter’s ”Law of Markets” (1924).

Interest in this question dates at least to the 1960s and research on network models in geography
(Haggett, 1967). According to Guy (1983), the use of air-line distance to represent a travel function is
unsatisfactory, although it simplifies computation. In most cities transportation is along a network of roads
and Euclidean metric is not appropriate for the study of intra-urban location (Eaton and Lipsey, 1980;
Perreur and Thisse, 1974). Talen and Anselin (1998) suggest that the distance can be computed in a variety
of ways and in their empirical study, they decide to use the actual street network. Specifically, distance is
measured by the means of a shortest path algorithm applied to the existing street network between the
centroids of census tracts and the coordinates of some public facilities. They consider this to be a more
accurate measure than a straight-line distance.

Actual driving distances over a road network and their corresponding travel times are perceived also by
Boscoe et al. (2012) to be superior and substantially more precise than the straight-line distance. Previously,
these measures were considered as an expensive and labor-intensive to obtain. Nowadays, the commercial
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websites, such as Google, Yahoo!, Mapquest, Bing, Rand McNally offer precise driving directions between
nearly all locations in the developed world (Boscoe et al., 2012).

In addition, heavy street use, road and parking congestion, speed limits, one-way roads, interstate
highways with limited crossings, river with insufficient bridges, parks, and cemeteries may cause drivers to
make detours in order to reduce their travel time, meaning that the shortest path may not be the fastest
one. As noticed by Combes and Lafourcade (2005), researchers could get inspired by work of geographers or
transport planners who have developed more accurate measures such as distances and travel times matrices
derived from Geographic Information Systems. Yet, those works mainly focus heretofore on specific transport
planning purposes.

Based on these considerations, several authors advocate the use of ”real” distance measures based on
a transport network over geographical distance measures, Euclidean and great circle alike (Combes and
Lafourcade, 2005, Graham, 2007, Duran-Fernandez and Santos, 2014, Weisbrod, 2008, Faber, 2014, Kwon,
2002). This point is especially cogent when it comes to the location choice of economic establishments, for
which the role of a transport infrastructure is now well-known (Arauzo-Carod et al., 2010). We modify
the modeling framework of Buczkowska and Lapparent (2014) in order to consider alternative ”transport
distances” in addition to the Euclidean distance, namely: two road distances (with or without congestion),
the public transit distance, and the corresponding travel times. Given the size of the Paris region (12,000
km2), the great circle distance is close to the Euclidean distance within our study area and is therefore
excluded from our analysis.

In practice, several studies have compared whether and to what extent crow-fly measures (Euclidean
and/or great circle) differ from ”real” distance measures based on transport networks. For instance, Cha-
lasani et al. (2005) look at the differences between crow-fly, shortest distance path, shortest time path,
mean user equilibrium path distances, and the distance reported by the respondent, using data from three
large-scale surveys carried in Norway and Switzerland. In the same line, Rietveld et al. (1999) study the
relationship between travel time and travel distance for car commuters in the Netherlands. They examine
the following distance measures: 1) distance as the crow flies between the centroids of the zone of origin
and the zone of destination of a trip; 2) shortest travel time by car between the same points, computed
with a route planner on the basis of travel time minimization, as well as the corresponding trip length;
and 3) the actual travel time reported by the respondent. In the case of France, Combes and Lafourcade
(2005) compare the great circle distance, the real distance and the real time based on the real transport
network, as well as an ”economic distance”. All works find strong correlations between transport distances
and geographical distances for cross-sectional data (i.e., at a given time)8. Yet, it is not a perfect correlation.
This point will be carefully considered and will ultimately lead us to restrict the set of distance measures
used in our analysis.

3.1.1 Computation of matrices

This research compares the standard Euclidean distance matrix with transport distance matrices. All
matrices are of size 1 690 000 (1300 by 1300), since we measure the distances between all the 1300 munici-
palities of the Paris region. Euclidean distances were computed in Quantum GIS based on the latitude and
longitude coordinates of the centroids of the municipalities.

Transport matrices include the network distance and travel time matrices for the road network and the
public transit network. These matrices are computed by means of two assignment models, one for each
transport mode. Assignment models, which are also sometimes called network models, simulate the route
choice behavior of individuals on a transport network. In road models, congestion plays a major role. As
more individuals use the same road, it becomes more congested and travel time increases. Eventually, the
travel time becomes so long that some drivers turn to alternative routes, which increases the traffic flow
on the corresponding roads. This phenomenon develops until a traffic equilibrium - called the Wardrop’s
equilibrium - is reached (Ortuzar and Willumsen, 2011). As far as public transit models are concerned,
travel conditions typically include access and egress time, fare, waiting time, in-vehicle travel time, and
transfer costs in time and money, which depend on the characteristics of the services that are used, e.g.,
frequency, speed9. Assignment models are primarily applied to determine the usage of road infrastructure
or of transit routes for a given time period, typically during the morning or evening peak periods. They
can also serve to derive the shortest path between any origin-destination (O-D) pair, and the corresponding

8 Combes and Lafourcade (2005) develop a methodology to compute transport costs based on the transport network,
encompassing the characteristics of the infrastructure, vehicle and energy used, labor, insurance, tax and general charges
carried by transport carriers. The level of correlation falls when considering time series, emphasizing changes in travel
conditions over time.

9 For some transit lines, congestion (Lapparent and Koning, 2015) and/or service unreliability (Benezech and Coulombel,
2013) may also be an important component of the generalized cost of travel. It is seldomly considered in standard transit
assignment models, however, as introducing either of these items drastically increases the model complexity.
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travel time, distance and speed (Coulombel and Leurent, 2013). The variable to minimize when computing
the shortest path is defined by the user. Unlike the shortest distance path, which only depends on the
network geometry, the shortest time path, the most frequently used and included here, also depends on the
network characteristics, and firstly on free-flow travel times and link capacities (Chalasani et al., 2005).

The road traffic and public transit assignment models are based on original models developed by the
DRIEA Ile-de-France (DRIEA Ile-de-France, 2008) and were adapted to run with the TransCAD software.
Due to data availability issues, the two original models were calibrated for different years, 2008 for the road
model and 2009 for the transit model10. The road network, which comprises 65,692 links, includes all the
main roads of the Paris region. It is strongly radial, yet with three concentric bypasses (Fig. 1). The public
transit model includes 62,102 links and similarly all the main transit lines of the Paris region. The public
transit network is even more radial than the road network, as the vast majority of the heavy transit lines
passes through Paris.

Fig. 1 Road network (left figure) and public transit network (right figure) in the Paris region.

For each transport mode, we derive two matrices: the shortest travel time matrix, i.e., the minimum
travel time between each O-D pair, and the associated network distance matrix. Compared to the Euclidean
distance, shortest travel time matrices only have three properties: 1) nonnegativity, 2) self-distance, and 3)
triangle inequality11. They are not symmetric. The time needed to go from A to B may differ from that
needed to go from B to A because of, e.g., one-way roads, assymmetric congestion patterns, or different
service frequencies based on the line direction in case of transit. As noticed by Fransen et al. (2015), the
number of commuters and the travel times between zones are not necessarily identical. Since the fastest
path is not necessarily the shortest path (cf. example in Fig. 2), the network distance that we compute is
greater than the shortest path distance. For the same reason, the triangle inequality may be violated, and
our network distance matrices only satisfy 1) nonnegativity and 2) self-distance.

Fig. 2 Example of shortest (in gray) versus fastest (in black) path from point A to B.

10 Transport matrices being relatively stable over time at a regional scale, especially in the Paris region where the transport
networks are already well developed, this one year difference should have a very limited impact on our results.
11 In other words, the shortest travel time is not a proper distance based on the mathematical definition of distance, but

only a ”quasi-metrics”.
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The transport matrices are computed for the morning peak period, which is defined differently depending
on the transport mode: from 6.50 a.m. to 9.10 a.m. for private vehicles and from 8 a.m. to 9 a.m. for public
transit (DRIEA Ile-de-France, 2008). In the case of private vehicles, we also compute the travel time and
network distance matrices under free-flow conditions, i.e., when there is no congestion at all. The free-flow
situation is used as a proxy for the off-peak period. We choose to consider it based on the hypothesis that
travel conditions might be more relevant to some industries during the off-peak period if most of their
deliveries and/or shipping are concentrated during this period.

3.1.2 Comparison of various distance measures

As pointed out above in this section, several studies find a strong correlation between geographical and
transport distance measures. A New York State study of access to hospitals (Phibbs and Luft, 1995) finds a
near-perfect correlation between straight-line distance and road-network distance. Given the overall density
of roads, it might be not surprising12. Yet, it is not a perfect correlation. Locations separated by rivers, lakes,
mountains, steep hills, parks, cemetery, golf course, landmarks, highways, rail roads, train routes, industrial
corridors often mark neighboring boundaries and have higher-than-expected travel times. Physical barriers
are also formed by major single-purpose zones and major transport infrastructures that can only be crossed
at the cost of substantial effort and tend to reduce the mobility of population living nearby (Héran, 2011).

Boscoe et al. (2012) aim at assessing the extent to which travel time or distance confers a genuine
advantage over straight-line distance and to identify locations where differences between the two are most
pronounced13. The barriers tend to be difficult to cross and the whole zone is marked by the severance
effect. The mobility number of journeys of residents declines in intensity. One can observe a reduction in
neighborhood relations. Barriers require to make detours, expend additional energy. Access to employment
and population becomes highly restricted (Motte-Baumvol et al., 2015). Jacobs (1961) finds that barriers
usually make destructive neighbors by limiting interactions. Barriers mitigate neighbor externalities (Noo-
nan, 2005). Barriers that mitigate spatial externalities are expected to have important differential effects on
neighborhood and land use patterns (Noonan, 2005). Chakravorty (1996) mentions that physical features
may imply a total non-contiguity. There is a good reason to expect the physical environment to matter.
Intervening physical features may affect the visibility of amenities.

Our data lead to conclusions in line with the cited literature (Table 1). The Euclidean distance (ED) is
very strongly correlated with road network distances, with a correlation coefficient of 0.987 for the morning
peak period (DistVhMph) and 0.988 under free-flow conditions (DistVhFlow). Comparing these values
with the literature, we see that they are close to the results of Combes and Lafourcade (2005) who find
a correlation coefficient of 0.990 between great circle distance and road network distance, and Rietveld
et al. (1999) - 0.966 between Euclidean distance and road network distance. However, we notice that the
level of correlation falls markedly with distance. For municipalities which are distant by less than 10 km
from one another according to the ED, the correlation between ED and DistVhMph and between ED and
DistVhOph are equal to 0.868 and 0.869, respectively (Table 2). Considering next the range of 40-50 km,
the same values drop to only 0.541 and 0.586. The mean detour factor defined for the first time by Cole and
King (1968) as a ratio of travel distance to straight-line distance with calculations done by students tracing
road ways on paper maps14, is in our analysis equal to 1.287 when there is no congestion. It is slightly
higher for the morning peak hours (1.294), reflecting the fact that individuals make additional detours to
avoid congestion. Things are quite different when considering the public transit network. The overall level
of correlation with ED falls to 0.635, with a mean detour factor of 1.624. This stresses the fact that the
public transit network is less dense than the road network, especially in the peri-urban and in the rural
area, but also more radial (hence a higher detour factor).

The comparison of ED with travel times leads to the same observations. For the road network, we find the
levels of correlation between the ED and travel times equal to 0.952 for the morning peak period (TtVhMph)
and 0.974 for free-flow conditions (TtVhOph), against 0.974 for Combes and Lafourcade (2005) and 0.947
for Rietveld et al. (1999). For the public transit network, the correlation coefficient is as low as 0.452.
Last, the correlation levels are again significantly lower when computed by increasing distance interval, and
sharply decrease with distance.

12 In contrast, a study of access to renal units in England finds that the use of road-network distance leads to a remarkable
improvement (Martin et al, 1998).
13 The results of Boscoe et al. (2012) suggest that many past studies where straight-line distance was used remain valid,

and they contradict the widespread perception that travel distance or time represent a tremendous improvement in precision
that should be pursued. Yet, because the cost of obtaining travel distance and travel time has become negligible, they do
recommend incorporating their small added precision into future studies.
14 Cole and King (1968) report typical of 1.2 to 1.6 for rural areas in various parts of Britain. Boscoe et al. (2012) find the

nationwide detour index of 1.417 and notices that it is virtually equal to the diagonal of the unit square (1.414), a maximum
possible Manhattan distance between any arbitrary two points thinking whether they notice an interesting coincidence or
a theoretically meaningful result.
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All in all, we find that road distance measures (length and travel time) are strongly correlated with the
Euclidean distance at first glance, but less correlated when disaggregating the O-D pairs by the distance
intervals. While the corresponding values are not reported here for the brevity purpose, we also find that
road network distances (with and without congestion) are strongly correlated with each other, even for a
given distance interval, and that they are also relatively strongly correlated with their associated travel
time measures. On the contrary, congested and free-flow travel times are less correlated, especially when
considering distance intervals. Road network distances were therefore discarded in the subsequent analysis.
Similarly, public transport measures, distance and travel time alike, were tested but yielded poor results,
and were thus also discarded15.

Table 1 Pair correlations between Euclidean distance and transport distances.

Basic statistics EDa DistVhMph DistVhOph DistTcMph TtVhMph TtVhOph TtTcMph
Mean 55.44 70.72 70.27 105.97 64.91 51.25 195.17
Std. dev. 28.28 34.92 34.55 68.16 28.10 21.85 145.28
#Observations 1690 000 1690 000 1690 000 1690 000 1690 000 1690 000 1690 000
Min 0 0 0 0 0 0 0
Max 157.56 195.29 195.96 239.28 156.05 126.03 509.77

Distance measure ED DistVhMph DistVhOph DistTcMph TtVhMph TtVhOph TtTcMph
ED 1
DistVhMph 0.987 1
DistVhOph 0.988 0.992 1
DistTcMph 0.635 0.620 0.631 1
TtVhMph 0.952 0.962 0.956 0.558 1
TtVhOph 0.974 0.975 0.978 0.656 0.961 1
TtTcMph 0.452 0.435 0.446 0.949 0.382 0.483 1

a Euclidean distance (ED); Road distance with congestion (DistVhMph) and without congestion - free-flows
(DistVhOph), average distance travelled by public transport during the morning peak period (DistTcMph), and the
corresponding travel times (TtVhMph, TtVhOph, TtTcMph, respectively).

Table 2 Correlations between Euclidean distance and transport distances by increasing range intervals (in km).

Distance measure 0-10 10-20 20-30 30-40 40-50 50-60 60-70
DistVhMph 0.869 0.776 0.676 0.599 0.541 0.510 0.486
DistVhOph 0.868 0.785 0.696 0.633 0.586 0.555 0.517
DistTcMph 0.355 0.323 0.311 0.283 0.244 0.207 0.193
TtVhMph 0.701 0.488 0.381 0.320 0.290 0.278 0.279
TtVhOph 0.763 0.634 0.541 0.469 0.428 0.401 0.377
TtTcMph 0.354 0.215 0.179 0.146 0.117 0.101 0.088

3.2 Data sources

Many different data sources were compiled for the present study, drawn primarily from the Census
survey of establishments carried by the French National Institute of Statistics and Economic Studies. Data
on the stock of establishments are given for the 1st of January 2007. In our sample, 763 131 pre-existing
establishments were registered on the market until the 1st of January 2007. The number of newly created
establishments in 2007 equals to 87 974. Data are pooled across activity sectors. In the current paper, we
select and analyze three sectors: construction (Constr), special, scientific, technical activities (SpecSci), and
real estate (RealEst). First 13.8% of all the newly created establishments in the year 2007 belong to the
construction sector (12 115), further 15 282 new units to the special, scientific and technical activities sector
(17.4%), and 4 683 (5.3%) to the real estate sector.

Detailed description of other data used in the models that describe, among others, population and
employment structure, the proximity to retail, services, universities and schools, public transport and high-
ways, and the levels of prices and taxes, with their sources can be found in the paper of Buczkowska and
Lapparent (2014). We limit their presentation to the summary Table 3.

15 Two facts might account for the poor performance of the public transit measures. 1) Establishments or firms might focus
on road travel conditions because it is the predominant transport mode for freight or for intrametropolitan business trips.
2) The strong spatial irregularities of public transport measures, in particular in the most distant parts of the metropolitan
area, may make them unsuitable to model spatial spillovers.
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Table 3 Description of potential explanatory variables.

Variable and its expected sign Description
Establishments from respective sector (+)a Number of pre-existing establishments from the analyzed sector within

a particular municipality divided by the surface of municipality (km2)b

Large establishments from all sectors (-) Number of large pre-existing establishments with fifty employees
or more divided by the surface of municipality (km2)

White-collar employees (+) Number of white-collar workers divided by the size of labor force
Blue-collar employees (+) Number of blue-collar workers divided by the size of labor force
Trips home-work (nl) Number of trips between home and work if a municipality is both a place

of residence and a workplace to the total number of trips home-work
Trips home-work, intelectual workers (nl) Number of trips between home and work if a municipality is both a place

of residence and a workplace to the total number of trips home-work
made by white-collar workers

Offices (+) Fraction of a municipality’s surface dedicated to offices
Shops (+) Fraction of a municipality’s surface dedicated to shops
Vacant land (+) Fraction of a municipality’s vacant land available for new investments
Residential area (+) Fraction of a municipality’s land dedicated to the residential area
Universities and schools (+) Fraction of a municipality’s surface dedicated to universities and schools
Hospitals and clinics (nl) Fraction of a municipality’s surface dedicated to hospitals and clinics
Distance to highway (-) Distance to the nearest highway (km)
Public transport (+) Number of subway, train stations, and bus stops in a municipality
Residence tax (-) Average level of residence taxes
Income per person (+) Log value of the average income level per capita (euros)
Price of offices (-) Log value of the average price level of offices per square meter (euros)
Price of shops (-) Log value of the average price level of shops per square meter (euros)

a (+) and (-) mean that the associated coefficient is expected to be positively or negatively statistically significant,
respectively. (nl) means that no literature treats this problem or that no literature was reviewed on this issue.

b Data on the stock of establishments are given for the 1st of January 2007. The range for the independent
variables is 2005-2009.

4 Econometric model: discrete mixture of hurdle-Poisson models

We describe in detail the statistical formulation of our model.

4.1 Motivation

The Paris region is highly heterogeneous16, especially regarding economic activity. While few municipal-
ities host a large number of new establishments, others struggle to be chosen by any, and a large group of
municipalities is left with no new entries. Based on the aggregate at the municipality level data for the Paris
region, depending on the analyzed sector, the percentage of municipalities left with no new creation ranges
from 34% up to 61%. The number of municipalities left with zero new entries in the construction sector
equals to 439, in the real estate activities sector to 738, and in the special, scientific, technical activities
sector 569 out of 1300 possible municipalities that met no new establishments. These findings are similar
to the remark made of Liviano-Soĺıs and Arauzo-Carod (2014) based on the analysis of the Catalan data.
The authors state that the distribution of entries is heavily skewed: a small group of municipalities meet
the largest number of entries, while more than a half receive no entries at all. Municipalities range from
small isolated villages in rural areas to huge and densely populated cities.

When the observed data display a higher fraction of zeros than would be typically explained by the
standard count data models, the zero inflated or hurdle models can be suggested. In this paper, we respond
to the complaint voiced by Liviano-Soĺıs and Arauzo-Carod (2013) and Bhat et al. (2014) who notice that
heretofore scholars have not fully explored the hurdle model technique when analysing location phenomena.
Consequently, the empirical evidence (for comparisons purposes) is still scarce. We will try to fill this gap in
the business location modeling literature limited to two recent papers 1) of Liviano-Soĺıs and Arauzo-Carod
(2013) and 2) of Buczkowska and Lapparent (2014).

Liviano-Soĺıs and Arauzo-Carod (2013) find that the hurdle approach fits their industrial sector location
data better than the zero-inflated approach. The authors compare several models: Poisson, negative bino-

16 The Paris region is one of the very important metropolises in the world and one of the Europe’s most populated regions.
While the physical area represents only 2.2% of the surface of France, over 19% of the country’s population reside in this area
(11.7 million). The GDP of the region amounts to 29% of total French GDP (IAU IdF, 2014). The Paris region’s economy is
dynamic, innovative, and competitive with a large share of senior professionals, the high density of company headquarters,
and over 5,6 million jobs distributed across the region. The Paris region’s economy is also diversified. The Paris region
is divided into 1300 municipalities that cover the city of Paris and its suburbs. Very large differences in population and
employment densities are to be found between the Paris city and its outer periphery (see: http://www.iau-idf.fr/lile-de-
france/un-portrait-par-les-chiffres/population.html).
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mial, zero-inflated versions of these models, hurdle-Poisson (HP) and hurdle negative-binomial (HNB). They
show that the hurdle models (HP and HNB) are the models whose expected number of zero counts match
the observed zero counts, and that the distribution of the HNB model is the one that best fits the data
under study. They account for the excess of zeros problem and the overdisperssion (the excess of conditional
variance over the conditional mean). They conclude that the use of a HNB clearly improves the explanatory
power of the econometric estimations, and they suggest that the analysis of firm location behaviour should
consider the following factors: 1) the existence of a threshold that allows a site to be chosen by at least
one firm and 2) the number of times that this site is chosen by the total population of plants during the
analysed period.

Buczkowska and Lapparent (2014) test various count data models: Poisson, zero-inflated Poisson, zero-
inflated (tau) Poisson, negative binomial, zero-inflated negative binomial, and hurdle-Poisson models. Hav-
ing estimated 84 nested and non-nested count data models for various activity sectors, the authors find that
the hurdle models are preferable for taking into account the presence of excess zeros. Hurdle models offer
greater flexibility in modeling zero outcomes than the zero-inflated models and relax the assumption that
the zero observations and the positive observations come from the same data generating process.

In addition, as already stated in the paper, one does not know what type of spatial measure is the
most appropriate one to characterize spatial spillovers. All these motivations presented in this section and
the results described by Liviano-Soĺıs and Arauzo-Carod (2013) and by Buczkowska and Lapparent (2014)
justify our decision to develop a discrete mixture of hurdle-Poisson models wrapping the spatial measures in
a common statistical framework of analysis17. In our application, we consider that the mixture is the same
for every location. In that, we accept that mixing is done independently of local peculiarities. We obvioulsy
agree that it might differ from one location to another and that we consider a somewhat restrictive point
of view. Further generalization is left aside for future research work.

4.2 Model specification

Contingently on a type m of spatial measure, the likelihood function is built up on a hurdle-Poisson
count data model:

`
(
dl, yl|xl,m;θ1,m,θ2,m

)
=(

1− p
(
yl > 0|xl,m;θ1,m

))1−dl ×(
p
(
yl > 0|xl,m;θ1,m

)
h
(
yl|yl > 0;xl,m;θ2,m

))dl , (1)

where

dl =

{
0 if yl = 0
1 otherwise

. (2)

∀l, yl ∈ N is the number of new establishments that locate at l. xl,m is a vector of independent variables
that characterize location l using spatial measure m. p and h are function that will be defined below.
θm :=

[
θ′1,m,θ

′
2,m

]′
is a vector of parameters to estimate when the spatial measure type is m.

Probability that location l has one or more new establishments that locate at it is based on a latent
profit variable: establishments locates at l as long as local profit is not exhausted. The local profit function
is defined as a linear combination of observed and unobserved variables:

Π
(
xl,m;θ1,m

)
= x′l,mθ1,m + εl,m. (3)

We assume that the error terms εl,m are iid Logistic with a location parameter equal to 0 and a scale
parameter equal to 1. It is well known that, for identification purpose, we have to assume that the scale
parameter of the distribution of the error terms is fixed to some given value, here 1. It implies that the
values of parameters θ1,m are not sensible. Their signs and significance matter. The probability to observe
one or more new establishments locating at l is then defined as:

p
(
yl > 0|xl,m;θ1,m

)
=

1

1 + exp
(
−x′l,mθ1,m

) . (4)

When the number of new establishments that locate at l is strictly positive, the probability to observe
a number yl > 0 of establishments at l is defined as a truncated-at-zero Poisson distribution:

h
(
yl|yl > 0;xl,m;θ2,m

)
=
λ
(
xl,m;θ2,m

)yl exp
(
−λ
(
xl,m;θ2,m

))
yl!
(
1− exp

(
−λ
(
xl,m;θ2,m

))) , (5)

where the rate of occurence is parametrically defined as:

λ
(
xl,m;θ2,m

)
= exp

(
x′l,mθ2,m

)
. (6)

17 A discrete mixture of negative-binomial hurdle models could be also tested.
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4.3 Full information maximum (log-)likelihood function

Considering the M types of spatial measures together, we define as π = (π1, · · · , πM ), the probability

to belong to a type of spatial measure. These probabilties sum up to 1,
∑M
m=1 πm = 1. The full informa-

tion maximum likelihood estimator (FIMLE) is based on maximizing the following marginal log-likelihood
function with respect to unknown parameters π and θ conditionally to observed data x·,l =

(
x1,l, · · · ,xM,l

)
:

` (θ,π|y·,x·,·) =
∑L

l=1
ln

(∑M

m=1
πm`

(
dl, yl|xm,l;θ1,m,θ2,m

))
. (7)

4.4 Partial effects

As our approach is a discrete mixture of hurdle-Poisson models, partial effects are simply defined as
discrete mixture of conditional hurdle-Poisson partial effects. For instance, the expected number of estab-
lishments that locate at l is a discrete mixture of the expectations of different hurdle-Poisson models:

E
(
yl|xl,·;θ

)
=
∑M

m=1
πm

p
(
yl > 0|xl,m;θ1,m

)
1− exp

(
−λ
(
xl,m;θ2,m

))λ (xl,m;θ2,m

)
. (8)

As in the standard hurdle-Poisson model, this allows for a straightforward decomposition of the overall
effect into an effect at the extensive margin and an effect at the intensive margin. Consider a variable zl that
characterize l and that is then transformed using a spatial measure m. The effect on the expected number
of new establishments that locate at l with respect to a variation of it is defined as:

∂E(yl|xl,·)
∂zl

=∑M
m=1 πm

∂p(yl>0|xl,m;θ1,m)
∂zl,m

E
(
yl|yl > 0,xl,m;θ2,m

)
+∑M

m=1 πmp
(
yl > 0|xl,m;θ1,m

) ∂E(yl|yl>0,xl,m;θ2,m)
∂zl,m

.

(9)

Derivation of direct and cross elasticities and other partial effects are in the same vein: they are defined as
discrete mixtures of the associated conditional elasticities and partial effects.

4.5 Posterior class assignment probabilities

Another interesting point is that, once the model is estimated, one may also compute posterior class
assignment probabilities, i.e., probability of spatial measure m contingently on location l:

ψj|l =
πj`
(
dl, yl|xj,l;θ1,j ,θ2,j

)∑M
m=1 πm`

(
dl, yl|xm,l;θ1,m,θ2,m

) . (10)

By doing so, we update our ”knowledge” about which spatial measure is appropriate for a location l

using observed (aggregate) choices of establishments. Such a result gives us a clue about the probability
distribution of types of spatial measure m given location l. It does not state which is to be used but which
is the most likely to be considered to correctly account for the spatial spillovers.

4.6 Spatial spillovers

We discuss below the structure of the matrix of observed explanatory variables. This matrix contains
variables directly concerning either location l or sector s and the number of pre-existing establishments
in the relative sector s. We account also for the characteristics of the surrounding areas and the stock of
establishments located nearby when modeling the spatial spillovers as follows:

xl,s = ln

(∑L

j=1
e−µdl,j zj,s

)
, (11)

where zj,s is an attribute of the municipality that applies to the sector s or is the number of pre-existing
establishments from this sector. The parameter µ is fixed to 118 and dl,j is the distance between the centroids
of municipalities l and j.

18 One can play with the parameter µ setting its value at the level smaller or larger than 1 for more global or more local
spillover effects. This is left aside for the further research.
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Extending the paper of Buczkowska and Lapparent (2014), where dl,j was the Euclidean distance, we
consider alternative distance measures when building the spatial distance weight matrices, namely the travel
time by car during the morning peak period and the off-peak period, and evaluate their performance for
different activity sectors.

5 Results

The results are organized in two subsections: the first one presents and discusses the models and the
parameter estimates, while the second one focuses on the class assignments probabilities.

5.1 Estimates

We estimate the hurdle-Poisson mixture model with two latent classes for three selected sectors: 1)
construction, 2) special, scientific, technical activities, and 3) real estate activities. Furthermore, we consider
two alternative cases for the mixture: in the first mixture, two classes are based on the Euclidean distance
(ED) and the peak period road travel time (TtVhMph), while in the second mixture, the first class is based
on the off-peak period road travel time (TtVhOph) and the second class is again based on the peak period
road travel time. To remind, the class indicates which distance measure is used to compute spatial spillovers.
We do not systematically present all cases for the sake of concision focusing on the most illustrative ones.
The full set of parameter estimates is presented in Table 4 for the selected construction sector and the
mixture model for the ED with TtVhMph case.

By looking first at the hurdle part, one can observe that the peak period road travel time seems to provide
better results than the Euclidean distance. More parameter estimates are significant and have the expected
signs for class 2 (peak period road travel time) than for class 1 (Euclidean distance). For instance, one may
expect that the amount of vacant land increases the probability to cross the hurdle, i.e., that at least one
establishment in the construction sector locates in the municipality19. The sign of the associated parameter
should consequently be positive, which is the case for class 2 but not for class 1. One parameter estimate,
distance to highway, does not present the expected sign for class 2, but is actually not significant. This
being said, we find overall results that are in line with Buczkowska and Lapparent (2014) and the literature
in general. In particular, the presence of establishments from the same sector in the vicinity increases the
probability that at least one establishment settles in the municipality. Conversely, large establishments or
high real estate prices act as deterrents to the implantation of new establishments.

We now turn to the results of the truncated-at-zero Poisson parts of the mixture models, this time
for all three sectors. Estimates for all three sectors showing the second part of the mixture model, that is
the truncated-at-zero Poisson distribution, are presented in Annex (Table 7)20. We observe for all sectors
marked localization patterns: the greater the presence of establishments from a given sector, the greater
the number of newly created units of this sector locating within the same area. Conversely, the presence of
large establishments tends to repel new establishments. High real estate prices (of shops or offices depending
on the sector considered)21 also deter new establishments from settling in the area, which is conform to
economic intuition.

Transport accessibility seems to play a role in the location choice decisions of newly created estab-
lishments. Establishments from the construction and special, scientific and technical activities sectors seek
proximity to the highway network as well as to public transit stations. Proximity to public transport is also
an important criterion in the real estate sector. On the other hand, proximity to the highway network did
not turn out to be significant in the location choice of real estate establishments. One possible interpretation
is that the real estate establishments act more locally and settle preferentially in dense areas with good
access to public transit, with customers more prone to come by foot or by public transit than using the
highway. It is important to understand and consider people travelling tendencies.

Now looking at sector specific effects, high rates of residence tax appear to discourage the creation
of units in the construction and real estate sectors. These also seek to locate nearby shops and offices.
Establishments from the construction sector favor proximity to public establishments, such as schools,
universities, hospitals and clinics. They also prefer municipalities where people both live and work assuring
a fine level of vehicular and pedestrian traffic passing by the site. Establishments dedicated to special,

19 There are at least two reasons to think why it might be happinng. First, more vacant land means that it will be easier
for one establishment to settle there. Second, more vacant land means potentially more constructions in the future, which
should attract construction firms.
20 The hurdle parameters are not presented for the sake of concision.
21 Price levels for shops or offices can be treated as a proxy for the average price that an establishment needs to pay to

set up on the market.
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scientific and technical activities look for areas with good access to the intellectual workforce, close to other
academic establishments and offices. Last, the presence of high-income households increases the probability
of new establishments from the real estate sector setting in the area, thus taking into account some of the
population features, such as the purchasing power. It may be worth having in mind that a particular site
may produce more total traffic, but another location which produces more of the desired traffic will be
chosen.

In order to check the robustness of our model, we compare the parameter estimates of the positive count
parts of the two mixture models described at the beginning of this subsection (see Fig. 3). We observe that
the estimates of most of the variables tend to behave in a similar way. In particular, the parameter estimates
for the class TtVhMph is slightly sensitive to the choice of the other class (ED or TtVhOph), which tends
to validate the robustness of our model.

In addition to the mixture of hurdle-Poisson models based on two latent classes presented above, we
run two ”pure” mono-distance hurdle-Poisson models, the first one based on ED and the second one based
on TtVhMph22. We then calculate and compare the Bayesian Information Criterion (BIC) of the mixture
model with the BIC levels of the ”pure” HP models. The results are reported in Tables 4 and 5. We stress
that all these models use the same set of variables and the same number of observations (1300). However,
the number of parameters doubles when using the mixture of the hurlde-Poisson models (48 parameters)
in comparison to the ”pure” mono-distance HP models (24 parameters). We find that the mixture model
proposed in this paper performs significantly better than the ”pure” hurdle-Poisson models based on a
single distance measure. For the construction sector, the BIC is equal to 5692.37 for the mixture model,
with a reduction of more than 2000 compared to the ”pure” HP models (with BIC of 7870.60 for ED and
7856.60 for TtVhMph)23.

Overall, we find that the mixture of hurdle-Poisson models is relevant as it performs significantly better
than pure HP models. The consideration of alternative distance measures to the Euclidean distance even
provided better results for the hurdle part. Last, regarding the significance and sign of our parameter
estimates, most of our results are conform to our review of the literature, which is again a sign of the
robustness of our results. An availability of the vacant land and a proximity to the residential areas turn
out to be problematic variables, for which, depending on the distance measure used, the signs turned out
to be not always positive as expected based on our survey of the literature (if still significant). By tracking
changes on the objective function, we see however, that these variables have little effect on the objective
function, thus on the choices of the establishments. Still, this point should be further investigated in the
future.

Fig. 3 Selected example of the estimates of the truncated-at-zero Poisson parts of the mixture models for the construction
sector. Comparison of two cases for models that use two classes. The first case (I.) includes ED (class 1) and TtVhMph
(class 2) matrices. In the second case (II.), TtVhOph (class 1) and TtVhMph (class 2) coexist.

22 See Buczkowska and Lapparent (2014) for more details on the ”pure” hurdle-Poisson model.
23 For the real estate sector, the BIC of the mixture model equals to 3628.71. The Bayesian Information Criteria for the

”pure” hurdle-Poisson models based on one class, ED or TtVhMph, are at the level of 4497.30 and 5079.90, respectively. For
the special, scientific, technical activities sector, the BIC of the HP mixture model is 5270.61, which is almost 4000 less than
the BIC of the ”pure” HP models based on ED or TtVhMph, for which BIC equals to 8839.90 and 9090.10, respectively.
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Table 4 Hurdle-Poisson mixture model for the construction sector: ED (Class 1) and TtVhMph (Class 2).

Constr Estimate T-Statistics

Matrix: ED (Class 1)
Hurdle part
Constant -4,267 -0,48a

Estab. from respective sectorb 1,341 1,49
Large estab. from all sectors 0,341 1,05
Trips home-work -1,223 -0,92
Shops and offices -0,211 -0,94
Vacant land -2,895 * -1,74
Universities and schools 0,609 1,06
Hospitals and clinics -0,677 -1,38
Distance to highway -2,770 * -1,76
Public transport 0,111 0,48
Residence tax 6,973 ** 2,06
Price of shops (log) -7,331 * -1,72
Poisson part: Positive counts
Constant 23,194 *** 40,70
Estab. from respective sector 1,296 *** 24,28
Large estab. from all sectors -0,114 *** -4,00
Trips home-work 2,022 *** 30,07
Shops and offices 0,115 *** 4,59
Vacant land 0,077 *** 3,00
Universities and schools 0,559 *** 12,96
Hospitals and clinics 0,055 *** 3,13
Distance to highway -0,136 *** -4,96
Public transport 0,098 *** 6,16
Residence tax -0,381 *** -4,07
Price of shops (log) -4,342 *** -26,63

Matrix: TtVhMph (Class 2)
Hurdle part
Constant 29,572 *** 4,28
Estab. from respective sector 0,344 ** 2,18
Large estab. from all sectors -0,096 * -2,03
Trips home-work 1,530 *** 4,71
Shops and offices 0,166 *** 3,59
Vacant land 0,424 *** 4,05
Universities and schools 0,275 *** 3,14
Hospitals and clinics 0,103 ** 2,46
Distance to highway 0,046 0,37
Public transport 0,135 *** 3,43
Residence tax 0,135 0,40
Price of shops (log) -8,892 *** -2,89
Poisson part: Positive counts
Constant 19,842 *** 8,21
Estab. from respective sector 1,140 *** 16,34
Large estab. from all sectors -0,092 *** -4,58
Trips home-work 1,385 *** 24,88
Shops and offices 0,245 *** 12,21
Vacant land 0,002 0,12
Universities and schools 0,476 *** 12,83
Hospitals and clinics 0,056 *** 5,39
Distance to highway -0,083 *** -4,94
Public transport 0,080 *** 7,22
Residence tax -0,213 ** -2,68
Price of shops (log) -4,107 *** -3,96
Pi 0,322 **** 13,70
Convergence criterion Satisfied
#Parameters 2 x 12 x2
#Observations 1300,000
Objective function -2790,61
BIC 5692,37

a ***, **, * represent statical significance at the 1%, 5%, and 10% level, respectively.
b See Table 3 for the description of variables.
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Table 5 Simple hurdle-Poisson model for the construction sector. Two models are run independently for ED and then for
TtVhMph.

Constr Estimate T-Statistics Estimate T-Statistics

Matrix: ED TtVhMph
Hurdle part
Constant 13,792 *** 7,19 15,779 *** 3,30
Estab. from respective sector 0,287 ** 2,07 0,174 *** 2,63
Large estab. from all sectors -0,031 -0,80 0,009 0,35
Trips home-work 0,984 *** 4,70 0,778 *** 4,82
Shops and offices 0,066 1,60 0,080 *** 3,10
Vacant land 0,023 0,27 0,046 0,74
Universities and schools 0,402 *** 4,88 0,062 1,54
Hospitals and clinics -0,029 -0,98 0,008 0,37
Distance to highway -0,210 ** -2,31 -0,167 ** -2,13
Public transport 0,092 *** 3,01 0,072 *** 3,35
Residence tax 1,135 *** 4,53 1,124 *** 5,52
Price of shops (log) -4,266 *** -6,98 -6,222 *** -2,84
Poisson part: Positive counts
Constant 22,375 *** 68,41 16,471 *** 33,97
Estab. from respective sector 1,553 *** 45,47 1,147 *** 48,29
Large estab. from all sectors -0,256 *** -13,99 -0,087 *** -8,84
Trips home-work 1,689 *** 46,49 1,470 *** 53,28
Shops and offices 0,355 *** 21,49 0,166 *** 18,41
Vacant land -0,040 *** -2,61 -0,001 -0,15
Universities and schools 0,450 *** 18,28 0,432 *** 27,69
Hospitals and clinics 0,024 ** 2,44 0,039 *** 7,08
Distance to highway -0,159 *** -10,06 -0,089 *** -9,73
Public transport 0,222 *** 19,55 0,101 *** 20,67
Residence tax -0,185 *** -3,46 -0,229 *** -6,11
Price of shops (log) -4,633 *** -53,34 -2,494 *** -11,79
Convergence criterion Satisfied Satisfied
#Parameters 2 x 12 2 x 12
#Observations 1300 1300
Log-Likelihood -3849,25 -3842,30
AIC 7746,50 7732,60
AICC 7747,40 7733,50
BIC 7870,60 7856,60

5.2 Class assignment probabilities

We can now tackle our main research question, i.e., which distance measure is the most appropriate to
capture spatial spillovers in our establishment location choice model. Again, we focus the analysis on the
same three economic sectors: construction, real estate, and special, scientific and technical activities, and we
consider two alternative mixtures regarding the distance measures: 1) Euclidean distance (ED) with peak
period road travel time (TtVhMph), and 2) off-peak period road travel time (TtVhOph) with peak period
road travel time (TtVhMph). The estimated class assignment probabilities are reported in Table 6. For the
construction sector, Pi is equal to 0.322 in case 1 (ED with TtVhMph) and to 0.321 in case 2 (TtVhOph
with TtVhMph). Therefore, the peak period road travel time is in both cases the most likely to adequately
capture spatial spillovers in our mixture of HP models. We find the same result for special, scientific and
technical activities, with Pi equal to 0.283 and 0.222 in case 1 and 2, respectively. On the other hand,
for the real estate sector, the value of Pi is 0.522 when the two classes are based on ED and TtVhMph,
and 0.639 when they are based on TtVhOph and TtVhMph. For the first two sectors, the predominance
of peak period road travel time most likely underlines the importance of road travel conditions either for
work operations, or to ensure a smooth commute to workers. On the other hand, the slight predominance
of Euclidean distance for the real estate sector tends to emphasize that spatial spillovers are channelled
not only through the road mode but also and mainly through other modes, such as walk, public transit, or
even communication modes.24 Regarding the fact that we find relatively similar results for the Euclidean
distance and the off-peak period road travel time in case of the real estate sector, this probably stems from
the higher level of correlation between these two measures than between the Euclidean distance and the
peak period road travel time (see Table 2).

As indicated in the econometric model Section 4, we may then compute the posterior probabilities
for each of the 1300 municipalities of the Paris region. For the sake of concision, we do so only for the
construction and real estate sectors, and for the case 1 (ED and TtVhMph). The results are presented in

24 Again, one possible interpretation is that real estate establishments might operate at a more local scale, settling
preferentially in dense areas with good access to public transit, with customers more willing to come by foot or by public
transit than using the highway.
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Fig. 4. Overall, it is clear that the peak period road travel time prevails in more municipalities for the
construction sector, while the situation is more mixed for the real estate sector. This being said, no clear
spatial patterns appear at this stage. The proximity of highway tends to be associated with the predominance
of the peak period road travel time, there are some counter-examples, especially in the vicinity of Paris.
Density might also play some role: the most dense areas are usually associated with the Euclidean distance,
while the least dense ones are more often associated with the peak period road travel time. One possible
interpretation would be that when density is high enough, the market size allows establishments to operate
at a more local scale, while in the least dense parts of the metropolitan areas, establishments must increase
their market area and thus rely more heavily on the car use. A minimum Euclidean distance approach may
be most warranted when the establishments service area tends to be localized. Spatial spillovers would be
thus more circumscribed since the degree to which establishments in one location serve the needs of users
in other locations is fairly limited (Talin and Anselin, 1998). These points call for more investigation.

Table 6 Estimated probability of belonging to class 1 (Pi): Comparison across cases and sectors.

Case I Class 1: ED Case II Class 1: TtVhOph
Class 2: TtVhMph Class 2: TtVhMph

Sectora Pib T-Statisticsc Convergence Pi T-Statistics Convergence

Constr 0.322***d 13.70 Satisfied 0.321 Satisfiede

SpecSci 0.283*** 9.12 Satisfied 0.222*** 10.90 Satisfied
RealEst 0.522*** 11.12 Satisfied 0.639*** 16.12 Satisfied

a Constr stands for the construction sector; SpecSci: special, scientific, technical activities; RealEst: real estate
activities.

b The level of estimated probability Pi inferior to 0.5 indicates that the distance measure of the second class has
a larger probability to be the appropriate measure to account for spatial spillovers as compared to the distance
measure of the first class.

c Convergence stands for Convergence criterion.
d ***, **, * represent statical significance at the 1%, 5%, and 10% level, respectively.
e Convergence criterion has been satisfied, yet, the standard error was not reported for this particular case.

6 Conclusions

We contribute to the existing literature on location choice models, opening up a discussion and a
whole new direction of empirical exploration using appropriate econometric tools and the more carefully
considered distance definition for location analysis. To compare the various distance measures, we developed
a probabilistic mixture of hurdle-Poisson models that use two latent classes for several activity sectors.
We applied it to the location decisions of establishments that wish to set up in the market. Each class
used a different definition of distance to capture spatial spillovers. The following distance measures were
considered at first: the Euclidean distance, two road distances (with and without congestion), the public
transit distance, and the corresponding travel times. After restricting the set of tested measures due to the
correlation issues, we estimated several mixture models for the Paris region.

Based on the performed analyses we drew four main conclusions. 1) Overall, the obtained results are
in line with the literature regarding the main determinants of establishment location. 2) Based on the
Bayesian Information Criteria (BIC), we found that the proposed mixture of hurdle-Poisson models that
uses two latent classes performs significantly better than the ”pure” hurdle-Poisson models based on a single
distance measure, emphasizing the usefulness of our approach. By using the mixture hurdle-Poisson model
we considerably decreased the level of BIC up to 42%. 3) From the overall level of estimated probabilities
Pi, we observed that for some activity sectors, such as construction, the peak period road travel time
is the most likely to correctly capture spatial spillovers, whereas for other analyzed sectors, such as real
estate, the Euclidean distance slightly prevails. This tends to show that spatial spillovers are channeled by
different means depending on the activity sector. Our analyses showed that for some transport-oriented
sectors, such as construction, for which a good transport infrastructure is tremendously important, it seems
more reasonable to consider travel times instead of an Euclidean distance measure in the establishments
location models. As stressed by Bhat et al. (2014), a good roadway network is critical for businesses in some
sectors for unhindered delivery of raw materials from other regions to the business locations and finished
products from business locations to the markets. For other sectors, which do not rely so heavily on the
transport infrastructure and which search the proximity to the potential client or user, such as real estate,
the Euclidean distance tends to perform well to account for the linkage between neighboring areas. 4) In
addition, by allowing different distance measures to coexist within a hurdle-Poisson mixture model, the
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Fig. 4 Posterior probabilities of belonging to class 1 (ED) as opposed to class 2 (TtVhMph) at the municipality level
(each municipality can be treaten as an alternative in the decision-making process of an establishment): construction sector
(upper figure) and real estate sector (lower figure).

hurdle part of the model that uses the appropriate distance matrix significantly improves in comparison
with the hurdle part of the ”pure” mono-distance hurdle-Poisson model.

In the current exercise we tested the mixture model using only two classes. The number of latent
classes could be increased, provided that one finds additional distance measures that are both relevant
from an economic point of view and not excessively correlated with the ones already used. The proposed
specification can also be applied in other fields, such as the residential location or land-use models, whenever
the Euclidean distance seems not to be appropriate to account for the relationship between neighboring
observations.
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choice: An assessment of their methods and results, Journal of Regional Science, 50(3), 685-711.



18 Sabina Buczkowska et al.

Axhausen, K.W., 2003. Definitions and Measurement Problems. Capturing Long Distance Travel. Edited by
Axhausen, K.W., J.L. Madre, J.W. Polak, and P. Toint. Baldock, Herdfordshire, England: Research Science
Press.

Bell, K. P. and N. E. Bockstael, 2000. Applying the Generalized-Moments Estimation Approach to Spatial
Problems Involving Microlevel Data, Review of Economics and Statistics, 87(1), 72-82.

Benezech V. and N. Coulombel, 2013. The value of service reliability. Transportation Research Part B: Method-

ological, 58, 1-15.
Bhat Ch.-R., R. Paleti, and P. Singh, 2014. A Spatial Multivariate Count Model for Firm Location Decisions,
Journal of Regional Science, 54(3), 462-502.
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