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The Minimum Monotone Satisfying Assignment problem (MMSA) consists, given a monotone boolean formula ϕ, in searching for a minimum number of true variables such that ϕ is satisfied. A polynomial inapproximability ratio was given by Dinur et al. However, this ratio depends on a parameter that is not the size of the MMSA instance. It is instead the size of the problem from which the reduction is done. Consequently, it is hard to reuse this result to prove other hardness of approximability. In this paper, we deepen the previous work and prove two inapproximability ratio for MMSA depending on the size of the formula and the number of variables and we prove that MMSA cannot be polylogarithmically approximated.

Introduction

Problem 1. Minimum Monotone Satisfying Assignment (MMSA). Given a set Y of boolean variables and a monotone boolean formula ϕ, minimize the number of variables assigned to true such that ϕ is satisfied.

We call MMSA h the MMSA problem restricted to the instances in which the height of the formula is no more than h. In other words, this formula has h levels of altenating AND and OR gates, where the top levels is an AND gate. MMSA 2 is equivalent to the Set Cover problem in which, given a set X and a subset S of 2 X , we search for a minimum cover of X with sets of S. Therefore, MMSA 2 is NP-Complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF] and there exists a constant c such that MMSA 2 cannot be approximated to within a c log(|Y |) ratio unless P = NP [START_REF] Feige | A threshold of ln n for approximating set cover[END_REF].

The following theorem, from Dinur et al. and introduced in [START_REF] Dinur | On the hardness of approximating label-cover[END_REF], is an harder inapproximability result for MMSA 3 .

Theorem 1 ([3], page 251). For any c < 1 2 , it is NP-hard to approximate MMSA 3 to within g c (n

) def = 2 log(n) 1- 1 log log(n) c .
A major drawback with this result is that the parameter n given in this theorem is not the size of the MMSA 3 instance. This parameter is instead the size of the problem from which the reduction is done to prove this result. As a consequence, researchers using the Theorem of Dinur et al. to prove an inapproximability result, either cite the theorem without linking the parameter n with their problem (see for example [START_REF] Chinchani | On the Hardness of Approximating the Min-Hack Problem[END_REF]), or must carefully redefine the notations [START_REF] Carr | On the redblue set cover problem[END_REF][START_REF] Gruber | Algorithmic and complexity results for boolean and pseudoboolean functions[END_REF].

Our ontributions. Firstly, as the Theorem of Dinur et al. is an important theoretical result we deepen the previous work in order to prove that MMSA 3 is hard to approximate to within a ratio depending only on the size of a formula ϕ: the number of AND gates Λ, of OR gates V and the number of boolean variables |Y |.

Secondly, we prove a theorem which has a pratical potential arising out of the Theorem of Dinur et al.: MMSA 3 is hard to approximate to within any polylogarithmic ratio depending on the number of AND gates, OR gates and the number of variables. This ratio is useful in case of a reduction from MMSA h to a problem in which the size depends polynomially on Λ, V and |Y |.

The next section is dedicated to study the function g c (n) of the Theorem of Dinur et al. Section 3 describes the links between the parameter n and the size of MMSA 3 . Finally, Section 4 contains the proofs of our results.

The function g c (n)

We prove three useful lemmas about the function g c (n) of the Theorem of Dinur et al. We first rewrite g c (n), for some c ∈]0, 1 2 [.

g c (n) = 2 log(n) ( 1- 1 (log log(n)) c ) = 2 log(n)•log(n) ( - 1 (log log(n)) c ) = 2 log(n)•2 ( -(log log(n)) 1-c )
We firstly show that, on the first hand, it is asymptotically dominated by all the polynomials and, on the other hand, that it asymptotically dominates all the polylogarithms.

Lemma 2. Let δ > 0 and 0 < c < 1 2 , then g c (n) = o(n δ ).
Proof. Let 0 < c < 1 2 and δ > 0, we are interested in the limit of gc(n) n δ

as n approaches infinity.

g c (n) n δ = 2 log(n)•2 ( -(log log(n)) 1-c ) / 2 log(n)δ = 2 log(n)• 2 ( -(log log(n)) 1-c ) -δ (1) 
As

1 -c > 0 lim n→+∞ -(log log(n)) 1-c = -∞ lim n→+∞ 2 (-(log log(n)) 1-c ) -δ = -δ lim n→+∞ log(n) • 2 (-(log log(n)) 1-c ) -δ = -∞ By Equation (1) lim n→+∞ g c (n) n δ = 0 Lemma 3. Let δ > 0 and 0 < c < 1 2 , then log(n) δ = o(g c (n)).
Proof. Let 0 < c < 1 2 and δ > 0. We now give the limit of log δ (n) gc(n) as n approaches infinity.

log (n) g c (n) = 2 log log(n)•δ / 2 log(n)•2 ( -(log log(n)) 1-c ) = 2 log log(n)•   δ-   log(n)•2 ( -(log log(n)) 1-c ) log log(n)     (2) log(n) • 2 (-(log log(n)) 1-c ) log log(n) = 2 log log(n)-(log log(n)) 1-c -log log log(n) = 2 log log(n)•(1- 1 (log log(n)) c - log log log(n) log log(n) ) (3) 
However, as c > 0

lim n→+∞ 1 (log log(n)) c = 0
Moreover, as log log log is asymptotically dominated by log log

lim n→+∞ log log log(n) log log(n) = 0
As a consequence,

lim n→+∞ log log(n) • 1 - 1 (log log(n)) c - log log log(n) log log(n) = +∞
Consequently, by Equation ( 3)

lim n→+∞ log(n) • 2 (-(log log(n)) 1-c ) log log(n) = +∞ lim n→+∞ log log(n) • δ - log(n) • 2 (-(log log(n)) 1-c ) log log(n) = -∞
Finally, by Equation ( 2)

lim n→+∞ log δ (n) g c (n) = 0
The following lemma shows a useful property of g c (n) that is used later in this paper. Proof. There are four constants c F , n F , c D and n D such that, for all n ≥ n D and n ≥ n

F |F | ≤ c F • g c (n) D ≤ c D (log log(n)) c Consequently |F | D n ≤ c c D •(log log(n)) c F • 2 log(n)•2 ( -(log log(n)) 1-c ) •(c D •(log log(n)) c ) • 1 n |F | D n ≤ 2 c D •log(c F )•(log log(n)) c • 2 c D •log(n)•2 ( -(log log(n)) 1-c +c•log log log(n) ) • 2 -log(n) |F | D n ≤ 2 log(n)• c D •log(c F )• (log log(n)) c log(n) + c D •2 ( -(log log(n)) 1-c +c•log log log(n) ) -1
As lim

n-→+∞ (log log(n)) c log(n) = 0 and lim n-→+∞ -(log log(n)) 1-c + c • log log log(n) = -∞ lim n-→+∞ c D • log(c F ) • (log log(n)) c log(n) + c D • 2 (-(log log(n)) 1-c +c•log log log(n)) -1 = -1 lim n-→+∞ 2 log(n)• c D •log(c F )• (log log(n)) c log(n) + c D •2 ( -(log log(n)) 1-c +c•log log log(n) ) -1 = 0 Consequently, lim n-→+∞ |F | D n = 0.

The reduction

In this section, we describe the parameters of the formula ϕ with the parameter n given in the Theorem of Dinur et al.

We use in this section the same notations as the ones describes in [START_REF] Dinur | On the hardness of approximating label-cover[END_REF]. The given reduction is from the PCP theorem. The parameters of the PCP instance are

n ∈ N, c < 1 2 , c < c, D = O((log log(n)) c ), |F | = Θ(g c (n)).
The following MMSA 3 instance is built where T (x, ψ , r |x ) is a variable. Let 0 < δ < ε, by Lemma 2

|F | = Θ(g c (n)) = O(n δ ) n|F |D = O(n 1+δ (log log(n)) c ) n|F |D = O(n 1+δ (log log(n)) c ) n|F |D = O(n 1+ε )
This gives the result for |Y |.

By Lemma 4

|F | D = o(n) n|F | D D = O(n 2 (log log(n)) c ) n|F | D D = O(n 2+ε )
And this gives the result for Λ and concludes the proof.

Main result

This section is dedicated to proving the main results of this paper. The first theorem is a rewriting of the theorem of [START_REF] Dinur | On the hardness of approximating label-cover[END_REF] with the parameters Λ, V and |Y | using the results of Lemma 5.

Theorem 6. For all ε > 0 and c > 1 2 , it is NP-hard to approximate MMSA 3 to within max(g c ( 2+ε √ Λ), g c (V ), g c ( 1+ε |Y |)).
Proof. The proof for g c (V ) is immediate by Lemma 5. We now prove that there is no g c ( 1+ε |Y |)-approximation. The last result is similar. Theorem 7. Let Q be a polynomial with three variables. Unless P = NP, there is no polynomial approximation with ratio Q(log(|Y |), log(Λ), log(V )) for MMSA 3 .

Proof. The proof is given for the following polynomial Q(x, y, z) = x δ , for some δ > 0. The proof for other polynomials are similar.

We assume that there is a Q(log(|Y |))-approximation for MMSA 3 .

Let now be a PCP instance of size n and 0 < c < c < 1 2 . We build an instance of MMSA 3 such that |Y (n)| = O(n 1+ε ) by Lemma 5. Thus (A) for all ε > 0, there are two constants k ε > 0 and n ε ∈ N such that, for every integer

n > n ε , |Y (n)| ≤ k ε • n 1+ε .
For all δ > δ, log δ is asymptotically dominated by log δ , consequently:

(B) for all ε > 0, k ε > 0, δ > δ, there is an integer n = n(ε, k ε , δ ) ∈ N such that for every integer n > n , (log

(k ε ) + (1 + ε) log(n)) δ < log δ (n).
Finally, by Lemma 3, for all 0 < c < 1 2 and δ > 0, g c (n) asymptotically dominates log δ (n), thus (C) for all δ > 0, there is an integer n δ ∈ N such that for every integer n > n δ , log δ (n) < g c (n).

We are going to use those three properties to prove the inapproximability result. Let ε > 0 and δ > δ be two real numbers. The constants k ε , n ε , n = n(ε, k ε , δ ) and n δ are given by the previous properties. We focus on the P CP instances such that n > max(n ε , n , n δ ). As a consequence, there would be g c (n)-approximation for the MMSA 3 problem, and this would be a contradiction by the Theorem of Dinur et al.

Q(log(|Y (n)|)) = log δ (|Y (n)|) By Property (A) Q(log(|Y (n)|)) ≤ log δ (k ε • n 1+ε ) Q(log(|Y (n)|)) ≤ (log(k ε ) + (1 + ε) log(n))
A consequence of such a result is that, if we now consider a reduction from MMSA h to a problem Π such that • the size s of the instances of Π is a polynomial in |Y |, Λ and V ;

• the reduction proves Π cannot be approximated to within Q(log(|Y |), log(Λ), log(V )) for any polynomial Q with Theorem 7, then we can prove Π cannot be approximated to within Q (log(s)) for any polynomial Q .

Conclusion

In this paper we deepened the inapproximability result of MMSA 3 presented in [START_REF] Dinur | On the hardness of approximating label-cover[END_REF] and gave a new inapproximability ratio only depending on the size of a formula. This allows researchers to have a pratical use of this important theoretical result.

Lemma 4 .

 4 Let c < 1 2 , |F | = Θ(g c (n)) and D = O((log log(n)) c ), then |F | D = o(n).

Remark 1 .

 1 ϕ = ψ∈Ψ r∈R ψ x∈ψ ψ ∈Ψx T (x, ψ , r |x ) The parameters satisfy: |Ψ| = n, |R ψ | = |F | D , |ψ| = D, |Ψ x | = n and the set T contains n|F |D variables. By Lemma 4, |R ψ | is polynomial. Note that there are 4 levels in this formula, however the levels 3 and 4 are two AND Gates levels and can be merged into one level. Any g c (n)-approximation for MMSA 3 could be used to solve the PCP instance in polynomial time and this proves the Theorem of Dinur et al. Lemma 5. Let ε > 0, then Λ = O(n 2+ε ), V = n and |Y | = O(n 1+ε ). Proof. The AND root gate of ϕ has |Ψ| = n children. Any OR gate has |R ψ | = |F | D children. The AND gates of level 3 and 4 have respectively |ψ| = D and |Ψ x | = n children. The number of variables of ϕ is |T | = n|F |D. Consequently, Λ = 1 + n|F | D (1 + D), V = n and |Y | = n|F |D. The result for V is proven. We now have to detail the values of n|F | D D and n|F |D.

  Lemma 5 proves that |Y | = O(n 1+ε ). As g c is a non-decreasing function, g c ( 1+ε |Y |) ≤ g c (O(n)). The conclusion follows from the property that lim n-→+∞ gc(O(n)) g c (n) = 0 for every c ∈]c; 1 2 [: a g c ( 1+ε |Y |)-approximation would lead to a g c (n)approximation and this is a contradiction by the Theorem of Dinur et al. The second theroem is a more easily to use theorem arising out of the Theorem of Dinur et al. It proves MMSA cannot be approximated to within a polylogarithmic ratio.

δ

  By Property (B)Q(log(|Y (n)|)) ≤ log δ (n) By Property (C) Q(log(|Y (n)|) ≤ g c (n)