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Abstract.
We study the scaling properties of a one-dimensional interface at equilibrium,

at finite temperature and in a disordered environment with a finite disorder
correlation length. We focus our approach on the scalings of its geometrical
fluctuations as a function of its length. At large lengthscales, the roughness
of the interface, defined as the variance of its endpoint fluctuations, follows a
power-law behaviour whose exponent characterises its superdiffusive behaviour.
In 1+1 dimensions, the roughness exponent is known to be the characteristic
2/3 exponent of the Kardar-Parisi-Zhang (KPZ) universality class. An important
feature of the model description is that its Flory exponent, obtained by a power
counting argument on its Hamiltonian, is equal to 3/5 and thus does not yield the
correct KPZ roughness exponent. In this work, we review the available power-
counting options, and relate the physical validity of the exponent values that they
predict, to the existence (or not) of well-defined optimal trajectories in a large-
size or low-temperature asymptotics. We identify the crucial role of the ‘cut-
off’ lengths of the problem (the disorder correlation length and the system size),
which one has to carefully follow throughout the scaling analysis. To complement
the latter, we device a novel Gaussian Variational Method (GVM) scheme to
compute the roughness, taking into account the effect of a large but finite interface
length. Interestingly, such a procedure yields the correct KPZ roughness exponent,
instead of the Flory exponent usually obtained through the GVM approach for
an infinite interface. We explain the physical origin of this improvement of the
GVM procedure and discuss possible extensions of this work to other disordered
systems.

Keywords: Scaling theory, disordered elastic systems, 1+1 directed polymer, 1D
Kardar–Parisi–Zhang, optimal trajectories, Gaussian Variational Method.
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1. Introduction

Scaling analysis is a very powerful tool in theoretical physics, as it often allows
to take remarkably fast shortcuts of otherwise long and cumbersome computations.
Indeed, in many cases, the dominant physical behaviour predicted by a model can
be pointed out by literally back-of-the-envelope calculations based on such scaling
analyses. Nevertheless, at the same time, scaling arguments are usually presented as
untrustworthy beforehand, but rather as a posteriori explanations of a given problem,
constructed by reasoning on the interplay between its ‘typical’ scales. They allow in
fact to recover some physical intuition on the model predictions, disregarding the level
of technical difficulties associated to their derivation. There is thus a great temptation
to perform straightforward power countings on a Hamiltonian or an equation of
motion, as in the so-called ‘Imry-Ma’ [1, 2] or ‘Flory’ constructions [3, 4], and then to
assume that the corresponding scaling behaviours are physically meaningful. But in
order to assess this, one must validate independently the implicit assumptions on which
such scaling arguments rely. In particular, when dealing with averages of observables
in field theories, a natural approach consists in examining the explicit implementation
of such scaling procedures directly on the corresponding path integrals.

From that perspective, one problem of particular interest is the characterisation
of the geometrical fluctuations of a one-dimensional (1D) interface, with a short-
range elasticity and at equilibrium at finite temperature in a quenched random-bond
Gaussian disorder. As a standard problem in classical disordered systems, it has been
extensively studied over the last decades – analytically, numerically, and also in relation
with experiments [5, 6]. It can moreover be exactly mapped on the characterisation of
a directed polymer (DP) end-point fluctuations in a disordered 2D plane, whose free
energy evolves according to the 1D Kardar-Parisi-Zhang (KPZ) equation [7, 8] with
‘sharp-wedge’ initial conditions. This specific problem hence relates more broadly to
the 1D KPZ universality class [9, 10], and as we will see, it provides an interesting
illustration of and a useful insight into some of the issues that may arise when invoking
scaling arguments.

One observable that still has to be computed exactly, even after all these decades
of studies, is the complete roughness function B(t) of the static 1D interface, i.e. the
variance of its relative displacements as a function of the lengthscale t, with a finite
disorder correlation length ξ and at finite temperature T . For an uncorrelated disorder
(ξ = 0), the scaling of the asymptotic roughness at large lengthscales has been known
for a long time to beB(t) ∼ T−2/3t4/3 at t→∞, i.e. with the KPZ roughness exponent
ζKPZ = 2/3 [10], although its numerical prefactor itself has only recently been exactly
computed [11]. However, at ξ > 0, the only available analytical predictions for the
complete roughness function have been obtained in a Gaussian-Variational-Method
(GVM) approximation scheme [12, 13, 14]. Such GVM approximations provide
precious analytical shortcuts, but the predicted roughness is not exact so it is crucial to
identify which of its features can be trusted (or not). For instance, the GVM procedure
starting from the Hamiltonian of an infinite 1D interface predicts the wrong asymptotic
scaling B(t) ∼ T 0t6/5 at t→∞, i.e. with the so-called Flory exponent ζF = 3/5.
This scaling can otherwise be obtained by a straightforward power counting on the
Hamiltonian [12, 14]. This is not a coincidence, since these GVM scaling predictions
are intimately related to the power countings on the Hamiltonian, and in turn, their
identification as the ‘true’ physical scalings corresponds to specific assumptions in the
saddle-point analysis of the underlying path integrals.
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The aim of the present study is precisely to investigate when and why do simple
power countings help to correctly predict the asymptotic roughness B(t), and to
understand how they relate either to the existence of path-integral saddle points
or to GVM predictions. The outline of this paper is thus the following. We first
recall in section 2 the definitions of the model and observable that we are considering.
Then in section 3 we review different options of rescalings based on straightforward
power countings, either on the 1D interface Hamiltonian or on the DP endpoint
free energy, without or with replicas. In section 4 we identify how the physically
meaningful power countings can be derived from a saddle point analysis of path
integrals, i.e. from the existence of optimal trajectories either at zero temperature
or at asymptotically large timescales. Similarly, we discuss why the Flory scaling on
the Hamiltonian fails to predict the physical roughness exponent at large lengthscales.
A key ingredient will be to keep simultaneously track of a finite disorder correlation
length ξ, a finite temperature T , and a finite total length tf of the interface, in order
to properly rescale the observable averages. Combining these power-counting and
saddle-point considerations, we revisit in section 5 the GVM approximation schemes
for the computation of the roughness, recalling on the one hand the main assumptions
and predictions of previous GVM computations [12, 13, 14]. On the other hand, we
show how it is possible to recover by GVM the correct KPZ asymptotic scaling of the
roughness (with a roughness exponent ζ = 2/3), in other words how to avoid the usual
Flory pitfall leading to ζF = 3/5. At last, we conclude in section 6 on the physical
picture we have obtained – that can a priori be applied to other disordered systems –
and present some perspectives to this work. Note that we have gathered in appendix A
and appendix B the details of a GVM computation and of a numerical procedure used
to analyse GVM variational equations.

2. Static 1D interface and growing 1+1 directed polymer (DP)

We start by defining the model of the 1D interface that we are considering (in
section 2.1), and the observable we want to compute (in section 2.2) – its static
roughness, which quantifies the variance of its geometrical fluctuations at thermal
equilibrium. A broader context and more details to this model are given for instance
in [12, 15, 14]. We then briefly recall how this specific problem can be mapped on
studying the endpoint fluctuations of a random walk or a growing directed ‘polymer’
(in section 2.3), along with the main features of these fluctuations that are exactly
known (in section 2.4). So at the end we will have the explicit expressions of the
quantities on which, in the next section, we will perform power countings and scaling
arguments, which are either path integrals or simple integrals, either before or after
using the so-called ‘replica trick’. The reader already familiar to this method could
thus go directly to section 3.

2.1. Hamiltonian of the 1D interface

We consider a 1D interface with a short-range elasticity, embedded in a quenched
random-bond (i.e. short-range) Gaussian disorder with a finite correlation length ξ.
We restrict ourselves to the case where its position can be parametrized by a univalued
function with respect to a flat reference axis, the ‘displacement field’ y(t) ∈ R at a
position t ∈ R, as illustrated in figure 1. We thus restrict ourselves to the case of an
interface without bubbles nor overhangs.
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Figure 1. Illustration of the mapping between the static 1D interface and
the growing 1+1 DP. (Left) Configuration of a 1D interface, of finite size tf ,
parametrized by the ‘displacement field’ y(t), with respect to a flat reference
axis. (Right) DP representation of a finite segment of the interface: the DP
endpoint encodes all the possible paths from t = 0 to t = t1, in the disordered
energy landscape V (t, y), into its free energy FV (t1, y).

Assuming that the interface is only weakly distorted, in other words that it can
be described in the ‘elastic limit’, the energy associated with a configuration y(t) is
given by the following Hamiltonian:

H [y(t), V ; tf ] =

∫ tf

0

dt
[ c

2
(∂ty(t))

2
+ V (t, y(t))

]
(1)

where tf is the total length of the interface, the elastic constant c is the elastic energy
per unit of length, and V is a quenched random potential. Characterised by its
distribution P̄ [V ], the disorder is assumed to be Gaussian, hence fully described by
its zero mean and its two-point correlation function:

V (t, y) = 0 (2)

V (t, y)V (t′, y′) = D δ(t− t′)Rξ(y − y′) (3)

with · · · denoting the statistical average over disorder. Accounting for a random-bond
disorder, the correlator Rξ(y) is assumed to decay exponentially fast at large y, and
to scale as a Gaussian function would typically do:

Rξ(y) = ξ−1R1(y/ξ) e.g. RG
ξ (y) =

e−y
2/(4ξ2)

√
4πξ

(4)

The Hamiltonian (1) has a quadratic deterministic part, which reduces the
problem to Gaussian path integrals in absence of disorder, and a linear additive
stochastic part, which allows to compute the averages over disorder. This is thus
a standard ‘textbook’ Hamiltonian. Moreover, we emphasise that it keeps explicitly
track of the finite total length tf of the interface, which has to be taken care of in the
course of rescaling procedures, and will actually play a crucial role for the new GVM
computation presented in section 5.2.
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2.2. Geometrical fluctuations and roughness of the static interface

We want to characterise the geometrical fluctuations as a function of the lengthscale
t ≤ tf , when the interface is equilibrated at finite temperature T . Denoting by 〈· · ·〉
the statistical average over thermal fluctuations at fixed disorder, this amounts to fix
one point of the interface (y(0) = 0) and to consider observables depending solely on
y(tf):

〈O [y(tf)]〉 =

∫
DV P̄ [V ]

∫
y(0)=0

Dy(t)O [y(tf)] e
− 1
T H[y(t),V ;tf ]∫

y(0)=0
Dy(t) e−

1
T H[y(t),V ;tf ]

(5)

= lim
n→0

∫
y1(0)=0

Dy1(t) (. . .)

∫
yn(0)=0

Dyn(t)O [y1(tf)] e
− 1
T H̃[y1(t),...,yn(t);tf ] (6)

where we have transformed (5) into (6) by using the ‘replica trick’, as detailed for
instance in [12, 16, 17]. The ‘roughness’ function is then simply defined as the variance
of the geometrical fluctuations: B(tf) ≡ 〈y(tf)2〉.

Introducing n replicas of the system and performing the disorder average, we can
directly define the replicated Hamiltonian H̃ [y1(t), . . . , yn(t); tf ] as:

exp

(
− 1

T
H̃ [y1(t), . . . , yn(t); tf ]

)
≡ exp

(
− 1

T

n∑
a=1

H [y(t), V ; tf ]

)
(7)

and thanks to the additive and Gaussian nature of the disorder and its zero mean, we
have:

H̃ [y1(t), . . . , yn(t); tf ] =

∫ tf

0

dt

 c
2

n∑
a=1

(∂tya(t))
2 − D

T

n∑
a,b=1

Rξ(ya(t)− yb(t))

 (8)

We emphasise that this is an exact expression, although physically meaningful in the
peculiar n→ 0 limit of (5).

2.3. Free energy of the growing 1+1 DP endpoint

Since we are focusing on observables depending solely on y(tf), given that y(0) = 0,
this problem can be mapped exactly to the study of a DP endpoint fluctuations in
dimension 1 + 1 (i.e. internal and transverse dimensions are both equal to 1), as
initially stated for instance in [8] and illustrated in figure 1.

In this language, the statistical average 〈O [y(tf)]〉 becomes straightforwardly
〈O(y)〉tf , in other words the average of an observable depending on the DP endpoint y
after a fixed growing ‘time’ tf , as for instance the roughness function can be obtained
as B(tf) = 〈y2〉tf . The path integral (5) can then be rewritten, before and after the
replica trick, as:

〈O(y)〉tf =

∫
DF̄V P̄

[
F̄V , tf

] ∫R dyO(y) e−
1
T [FV=0(tf ,y)+F̄V (tf ,y)]∫

R dy e
− 1
T [FV=0(tf ,y)+F̄V (tf ,y)]

(9)

= lim
n→0

∫
R
dy1 (. . .)

∫
R
dynO(y1) e−

1
T F̃ (tf ,y1,...,yn) (10)

with the total free energy FV (t, y) of the DP endpoint at fixed disorder having two
contributions:

FV (t, y) = FV=0(t, y) + F̄V (t, y) (11)
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On the one hand, FV=0(t, y) is the free energy in absence of disorder, and it
corresponds to a Boltzmann weight given by a normalised Gaussian function of
variance Bth(t) = Tt/c:

FV=0(t, y) = −T ln

exp
[
− y2

2Bth(t)

]
√

2πBth(t)

 =
cy2

2t
+
T

2
ln

2πTt

c
(12)

On the other hand, the disorder free energy F̄V (t, y) – strictly zero in absence of
disorder – is in fact translation invariant in distribution in the y direction, at fixed tf :

P̄
[
F̄V (tf , ·+ Y ), tf

]
= P̄

[
F̄V (tf , ·), tf

]
(13)

as is also the underlying random potential V (t, y) (3), thanks to the Statistical Tilt
Symmetry (STS), as detailed in Appendix B of [15].

Similarly to (5)-(6), introducing n replicas of the system and performing the
disorder average, we can directly define the replicated free energy as

exp

(
− 1

T
F̃ (tf , y1, . . . , yn)

)
≡ exp

(
− 1

T

n∑
a=1

FV (tf , ya)

)
(14)

Its distribution is however not Gaussian, except for in the steady state (tf = ∞) for
the ξ = 0 case. Hence, the replicated free energy includes a priori all the cumulants
of P̄

[
F̄V (t, y), tf

]
, along with a non-zero mean:

F̃ (tf , y1, . . . , yn) =

n∑
a=1

FV=0(tf , ya) +
1

4T

n∑
a,b=1

C̄(tf , ya − yb) (15)

+ nF̄V (tf , 0)− n2

2T
F̄V (tf , 0)2

c
+ higher cumulants

with the two-point correlator C̄(tf , ya − yb) =
(
F̄V (tf , ya)− F̄V (tf , yb)

)2
.

At last, in order to close this definitions section, we recall that the total free
energy FV (t, y) evolves according to a 1D KPZ equation with ‘sharp wedge’ initial
condition at t = 0 [8, 18]:

∂tFV (t, y) =
T

2c
∂2
yFV (t, y)− 1

2c
[∂yFV (t, y)]

2
+ V (t, y) (16)

e−FV (0,y)/T = δ(y) (17)

and the disorder free energy itself follows a ‘tilted’ KPZ equation with flat initial
condition at t = 0:

∂tF̄V (t, y) +
y

t
∂yF̄V (t, y) =

T

2c
∂2
y F̄V (t, y)− 1

2c

[
∂yF̄V (t, y)

]2
+ V (t, y) (18)

F̄V (0, y) = 0 (19)

as we have presented in [15], and is furthermore detailed in the section 3.3 of [14].

2.4. Exactly known scalings ξ = 0 and predictions at ξ > 0

One of the advantages of the mapping from the 1D interface to the 1+1 DP is that it
transforms the path integrals

∫
Dy(t) of (5) into simple integrals

∫
dy of (9). From the

point of view of the static interface, it amounts to considering an effective description
at fixed lengthscale or ‘time’ tf , in which the Boltzmann weights of possible trajectories
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y(t) at intermediate ‘times’ t ∈ [0, tf ], at fixed disorder V , are encoded in a normalised
spirit into the evolution of the free energy.

In order to do so, the price to pay is that the corresponding free energy
FV (t, y) follows a non-linear stochastic partial differential equation, namely the 1D
KPZ equation (16), which has been remarkably tricky to tackle over the last three
decades [9, 19]. Nevertheless, the case of the 1D KPZ equation with an uncorrelated
noise – i.e. our random potential V (t, y) in (16) with ξ = 0 – has been recently
elucidated, for different initial conditions and in particular for the sharp-wedge
condition (17) that is relevant for us. We refer the interested reader to the recent short
review [10], which retraces the main contributions in the field and their corresponding
references. Thereafter we selectively recall the ξ = 0 features related to our scalings
considerations, with respect to both the interface roughness and the DP endpoint
free-energy fluctuations at large tf :

• At ξ = 0, the steady state distribution of FV (t, y) is purely Gaussian, as initially
stated in [8] and rederived for instance in [4, 15] from the Fokker-Planck equation
at infinite ‘time’:

P̄st

[
F̄
]
∝ exp

{
− T

2cD

∫
R
dy
[
∂yF̄ (y)

]2}
(20)

⇒
(
F̄ (ya)− F̄ (yb)

)2
=
cD

T
|ya − yb| (21)

In other words, the steady-state free energy is a (‘double-sided’-)Brownian

process of the coordinate y and thus scales in distribution as F̄ (y)
(d)∼
(
cD
T y
)1/2

(see section 3.3 for a detailed formulation in terms of rescaling properties).

• Approaching the steady state, at asymptotically large tf , the distribution
P̄ [FV (tf , y)] is not Gaussian anymore, and it is described by an ‘Airy’ process. In
particular, its two-point correlator displays two regimes in y, at small y the same
Brownian scaling as in the steady state:

C̄(tf , y) =
(
F̄V (tf , y)− F̄V (tf , 0)

)2 ∼
tf→∞

cD

T
|y|, for |y| <

√
B(tf) ∼ t2/3f (22)

and at large y it saturates to a plateau cD
T

√
B(tf), at |y| >

√
B(tf). Moreover,

being non-Gaussian, the distribution P̄ [FV (tf , y)] displays non-trivial higher n-
point correlators, but for our scaling considerations we can focus solely on C̄(tf , y).
At sufficiently large tf the Brownian scaling is still the dominant one for the

disorder free energy: F̄V (tf , y)
(d)∼
(
cD
T y
)1/2

, and this for an increasingly wider
range of y as tf →∞.

• In (22), B(tf) is nothing but the DP endpoint variance, and both its asymptotic
scalings are known:

B(tf) ∼
tf→∞

(
D

cT

)2/3

t2ζKPZ

f with ζKPZ = 2/3 (23)

B(tf) =
tf→0

Bth(t)
(12)
=

T

c
t2ζthf with ζth = 1/2 (24)

with a single crossover scale at tf∗ = T 5/(cD2). We can immediately notice that,
according to these scalings, the T → 0 limit of the (ξ = 0)-roughness is ill-defined,
as the amplitude of B(tf) would violently diverge at fixed but large tf .
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These different features have been proven to be exact in the case of a completely
uncorrelated disorder (ξ = 0), yet their mathematical derivation crucially depends
on the specific limit ξ → 0 (see [19] for a pedagogical exposition). An important
issue is thus to assess the robustness of these different scaling features when having
simultaneously ξ > 0 and a finite temperature T > 0. In a series of successive works
[12, 13, 15, 20, 14], we have in fact investigated the consequences of a finite disorder
correlation length ξ > 0 as defined in (3)-(4), using in particular scaling arguments and
GVM computation schemes for the roughness, two complementary types of analytical
approaches that we will revisit here. Regarding the physical picture that has emerged
from these works, it can be summarised into three points, that will actually guide the
course of our presentation throughout the next sections:

(i) the previous asymptotic scalings at large tf seem to be robust to the addition
of a finite ξ, on the one hand the Brownian scaling for the disorder free

energy F̄V (tf , y)
(d)∼ y1/2, and on the other hand the KPZ roughness exponent

for B(tf) ∼ t4/3f ;

(ii) however, the prefactors of these scalings must display a non-trivial dependence
on both T and ξ:

F̄V (t, y) ∼ (D̃y)1/2 and B(tf) ∼
tf→∞

(D̃/c2)2/3t
4/3
f (25)

with the amplitude D̃ of the disorder free energy experiencing a crossover at the
characteristic temperature Tc(ξ) = (ξcD)1/3, with the following two asymptotic
behaviours:

D̃ =
cD

T
f(T, ξ) with

{
at T � Tc, f(T, ξ) ∼ T/Tc

at T � Tc, f(T, ξ)→ 1
(26)

hence the two limits of T → 0 and ξ → 0 can obviously not be exchanged with
impunity;

(iii) similarly, the typical lengthscale marking the beginning of the asymptotic
regime at large tf , the so-called ‘Larkin length’Lc(T, ξ), displays the following
temperature crossover:

Lc(T, ξ) ∼ (T/f(T, ξ))5

cD2
, Lc(0, ξ) ∼ T 5

c

cD2
, Lc(T, 0) ∼ T 5

cD2
(27)

where its high-temperature behaviour Lc(T, 0) coincides as expected with the
crossover lengthscale tf∗ exactly known at ξ = 0 (up to numerical factors that we
skip throughout our scaling considerations).

The only available analytical predictions for the complete crossover in temperature,
parametrized by the ‘fudging’ parameter f(T, ξ), have been obtained by GVM
computation, relating directly this parameter f to the full-replica-symmetry-breaking
cutoff [12, 14], as we will recall in section 5. We moreover mention that the scaling
features in (i) can be shown, within a non-perturbative functional renormalization
group study of the 1D KPZ equation at ξ > 0 [21] to be a universal feature of the 1D
KPZ equation.

At last, we emphasise that these scalings are given for the continuum model of
the interface, so that the case of an interface or a DP on a lattice requires a careful
translation, as presented for instance in Appendix E of [13].
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3. Power countings and Flory arguments

We now examine systematically the different options of rescalings of the statistical
averages, defined either with respect to the interface Hamiltonian in (5)-(6) (path
integrals

∫
Dy(t)), or with respect to the DP endpoint free energy in (9)-(10) (simple

integrals
∫
dy). We focus specifically on the roughness function:

B(t; c,D, T, ξ, tf) =

{
〈y(t)2〉|{c,D,T,ξ,tf} (static 1D interface)

〈y2〉tf |{c,D,T,ξ} (1+1 DP endpoint)
(28)

and we emphasise that we have kept the same set of parameters {c,D, T, ξ, tf} in the
two sides of the mapping in order to avoid any unnecessary confusion.

In a nutshell, when we rescale the spatial coordinates
{
t = bt̂, y = aŷ

}
, we want

to review different options that we might have in order to reabsorb the dependence
on {a, b} into the parameters of the statistical averages (28):

B(t; c,D, T, ξ, tf) = a2 B̄(t/b; c′, D′, T ′, ξ′, tf/b) (29)

As a compromise, from now on we will make a slight abuse of notation in order to
discuss these scalings, playing with the set of parameters that are made explicit after
t in the roughness function B(t; . . .). The convention will be that we indicate by
primes the rescaled parameters within the scaling function B̄(t̂; . . .). For instance
when rescaling the DP free energy according to the Brownian scaling (25), we will
rather consider:

B(tf ; c, D̃, T, ξ) = a2 B̄DP(tf/b; c
′, D̃′, T ′, ξ′) (30)

In fact the rewritings (29)-(30) dictate how the spatial coordinates
{
t = bt̂, y = aŷ

}
must be conjointly rescaled, in order to rescale with a single overall prefactor the
different contributions of the full Hamiltonian H [y(t), V ; tf ] or the full free energy
FV (tf , y), along with their associated Boltzmann weights ∝ exp {−H [y(t), V ; tf ] /T}
and ∝ exp {−FV (tf , y)/T} in the statistical averages (5) and (9).

Such power counting corresponds to the so-called ‘Imry-Ma’ [1, 2] or ‘Flory’
constructions [3, 4]. Although any rescaling a ∼ bζF compatible with these Flory ‘rules’
is of course allowed, the physical interpretation of ζF as being the ‘true’ roughness
exponent of the problem is not guaranteed at all. Nevertheless, we want to emphasise
that the scope of such rescalings is broader than the determination of the sole roughness
exponent, since they affect the asymptotic behaviour of the scaling functions B̄(t̂; · · ·)
or B̄DP(t̂; · · ·) and might accordingly provide a possibly simpler physical picture, when
determining those scaling functions.

We have already partly addressed this issue in [15] (in section IV) and in [14] (in
chapter 4 and section 5.5). Here we recall for reference the power countings on the
Hamiltonian and on the free energy (under the Brownian scaling assumption (25)),
and we present in addition their counterparts with replicas. These different Flory
scalings are summarised in section 3.5. In the next section 4 we will focus on three
specific cases where a saddle-point analysis of the path integrals allows to confirm
or to disqualify the Flory exponent; we will provide the missing key ingredients that
allow to firmly assess what were yet in [15, 14] indirect statements, on the existence
and properties of saddle points (or from a more physical point of view, of optimal
trajectories).
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3.1. Hamiltonian H [y(t), V ; tf ]

We first recall the expression of the Hamiltonian:

H [y(t), V ; tf ]
(1)
= Hel [y(t); tf ] +Hdis [y(t), V ; tf ] (31)

Hel [y(t); tf ]

∣∣∣∣
c′

=

∫ tf

0

dt
c′

2
(∂ty(t))

2
, (32)

Hdis [y(t), V ; tf ]

∣∣∣∣
D′,ξ′

=

∫ tf

0

dt V (t, y(t))

∣∣∣∣
D′,ξ′

(33)

V (t, y)V (t′, y′)

∣∣∣∣
D′,ξ′

= D′δ(t− t′)Rξ′(y − y′) (34)

where the dependence on the different parameters has been made explicit. We then
rescale the spatial coordinates and the energy (we set the Boltzmann constant kB = 1
so that the temperature has the units of an energy) according to:

t = bt̂, y = aŷ, T = ẼT ′ (35)

so that the different parts of the Hamiltonian are rescaled as:

Hel [y(t); tf ]

∣∣∣∣
c′=c

=
ca2

b
Hel

[
ŷ(t̂); t̂f

] ∣∣∣∣
c′=1

(36)

Hdis [y(t), V ; tf ]

∣∣∣∣
D′=D,ξ′=ξ

(d)
=

(
bD0

a

)1/2

Hdis

[
ŷ(t̂), V ; t̂f

] ∣∣∣∣
D′=D/D0,ξ′=ξ/a

(37)

The rescaling of the disorder Hamiltonian is only valid ‘in distribution’, as indicated
by the ‘d’; the random potential of V (t, y) is a stochastic variable and as such cannot
be rescaled straightforwardly as the deterministic Hel. Nevertheless, the scaling of its
Gaussian distribution can be deduced from its two-point correlator:

V (t, y)2

∣∣∣∣
D′=D,ξ′=ξ

(d)∼ V (t, y)V (t′, y′)

∣∣∣∣
D′=D,ξ′=ξ

= D b−1δ(t̂− t̂′) a−1Rξ/a(ŷ − ŷ′)

=
D

ba
V (t̂, ŷ)V (t̂′, ŷ′)

∣∣∣∣
D′=1,ξ′=ξ/a

(d)∼ D

ab
V (t̂, ŷ)2

∣∣∣∣
D′=1,ξ′=ξ/a

(38)

This scaling in distribution yields a scaling relation on non-fluctuating observables
when dealing with statistical averages, after averaging over disorder.

In the statistical averages 〈O [y(tf)]〉, the Boltzmann weight ∝ e− 1
T H[y(t),V ;tf ] is

not modified provided that the elastic and disorder parts of the Hamiltonian scales
identically, i.e. ca2/b = (bD/a)1/2, and that the temperature is redefined accordingly:

T−1H [y(t), V ; tf ]

∣∣∣∣c′=c,D′=D,
T ′=T,ξ′=ξ

= T ′−1 Ẽ−1 ca
2

b︸ ︷︷ ︸
=1

H
[
ŷ(t̂), V ; t̂f

] ∣∣∣∣c′=1,D′=D/D0,

T ′=T/Ẽ,ξ′=ξ/a

(39)

This ‘Flory recipe’ guarantees that the roughness can thus be rescaled exactly, while
fixing the relations between the scalings factors {a, b, Ẽ}:

B(t; c,D, T, ξ, tf) = a2 B̄

(
t̂ =

t

b
; c′ = 1, D′ =

D

D0
, T ′ =

T

Ẽ
, ξ′ =

ξ

a
, t̂f =

tf
b

)
(40)

with

 a =
(
D

1/3
0 c−2/3b

)3/5

⇐⇒ b =
(
D
−1/5
0 c2/5a

)5/3

, ζ
(1)
F = 3/5

Ẽ = ca2/b =
(
cD2

0b
)1/5

= (cD0a)1/3

(41)
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with B̄(t̂; . . .) a scaling function with adimensional parameters, on which the scaling
assumptions are actually made. So for the Hamiltonian (31)-(32)-(33) the Flory

exponent is ζ
(1)
F = 3/5. Nevertheless, we still have two free parameters to fix, and in

(40) this would correspond to choose two typical scales and to examine the behaviour
of B̄(t̂; . . .).

Physically, depending on the regimes we are interested in (low temperature, high
temperature, large tf , . . . ), we expect that there should be one typical scale and
associated rescaling, for which the behaviour of the scaling function B̄(t̂; . . .) simplifies
radically. In (40), we have in fact several natural choices, that we list in the tables 1
and 2. Note that in all cases, we choose to rescale the elastic constant to c′ = 1.

Table 1. List of the rescaling choices for the Hamiltonian H [y(t), V ; tf ] when
imposing c′ = 1 and D′ = 1 (i.e. D0 = D).

Constraint:
D′ = 1

b Ẽ D0 a
Possibly

relevant for

(1a) T ′ = 1 T5

cD2 T D T3

cD
ξ → 0

(1b) ξ′ = 1 ξ1/3

D5/3c2/3
=

T5
c

cD2 (ξcD)1/3 ≡ Tc D ξ T → 0

(1c) t̂f = 1 tf (cD2tf)
1/5 D

(
D1/3tf
c2/3

)3/5
tf →∞

(1d) T ′ = T/f (T/f)5

cD2 f D (T/f)3

cD

Temperature
crossover

In table 1, we have imposed c′ = D′ = 1 allowing for a rescaling of the thermal
fluctuations (via T ′ = T/Ẽ) and of the disorder correlation length (via ξ′ = ξ/a), and
as such they are particularly suited for studying the temperature crossover of the
roughness [15, 14]. For (1a), (1b) and (1c), b can be identified as the Larkin length
Lc(T, ξ) in its different temperature regimes (27), with in particular f = f(T, ξ) the
‘fudging’ parameter describing the complete temperature crossover. The rescalings
(1b) and (1c) will be examined from the point of view of (non-)existent saddle-point
of path integrals in section 4.4.

Table 2. List of the additional rescaling choices for the Hamiltonian
H [y(t), V ; tf ] when imposing c′ = 1 and either ξ′ = 1 (i.e. a = ξ) or T ′ = 1

(i.e. Ẽ = T ).

Constraint: b Ẽ D0 a Comment

(2a) ξ′ = 1, T ′ = 1 ξ2c
T

T T3

cξ
ξ

Regime at tf � b ill-defined for
both limits T → 0 and ξ → 0.

(2b) ξ′ = 1, t̂f = 1 tf
cξ2

T
c2ξ5

t3
f

ξ
Vanishing disorder strength at
tf →∞ ∀(T, ξ) (unphysical!)

(2c) T ′ = 1, t̂f = 1 tf T
(
T5

ctf

)1/2 (
Ttf
c

)1/2 Vanishing disorder strength and
diverging correlation length

at tf →∞.
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In table 2, we mention a few alternatives that were not presented in [15, 14],
which are also valid rescaling with the Flory construction (40)-(41). This illustrate the

variety of possible typical scales with ζ
(1)
F = 3/5, although they do not seem relevant

for examining the asymptotic roughness to the specific limits we are interested in,
namely T → 0, ξ → 0 or tf →∞, as briefly commented in the table.

3.2. Replicated Hamiltonian H̃ [y1(t), . . . , yn(t); tf ]

We now examine the replicated Hamiltonian:

H̃ [y1(t), . . . , yn(t); tf ]
(8)
= H̃el [y1(t), . . . , yn(t); tf ] + H̃dis [y1(t), . . . , yn(t); tf ] (42)

H̃el [y1(t), . . . , yn(t); tf ]

∣∣∣∣
c′

=

∫ tf

0

dt
c′

2

n∑
j=1

(∂tyj(t))
2

(43)

H̃dis [y1(t), . . . , yn(t); tf ]

∣∣∣∣
D′,T ′,ξ′

= −D
′

T ′

∫ tf

0

dt

n∑
j,k=1

Rξ′(yj(t)− yk(t))

∣∣∣∣
D′,T ′,ξ′

(44)

where the dependence on the different parameter has been made explicit. Note that
the disorder part has an explicit temperature dependence, contrary to the original
Hamiltonian. We then rescale the spatial coordinates and the energy according to:

t = bt̂, y = aŷ, T = ẼT ′ (45)

so that the different parts of the Hamiltonian are rescaled as:

H̃el [y1(t), . . . , yn(t); tf ]

∣∣∣∣
c′=c

=
ca2

b
H̃el

[
ŷ1(t̂), . . . , ŷn(t̂); t̂f

] ∣∣∣∣
c′=1

(46)

H̃dis [y1(t), . . . , yn(t); tf ]

∣∣∣∣D′=D,
T ′=T,

ξ′=ξ

=
D0 b

Ẽ a
H̃dis

[
ŷ1(t̂), . . . , ŷn(t̂); t̂f

] ∣∣∣∣D′=D/D0,

T ′=T/Ẽ,

ξ′=ξ/a

(47)

The scaling of the disorder replicated Hamiltonian is exact, and not only in distribution
as in (37), but in both those cases the power counting is based on the two-point
correlator scaling Rξ(y) = a−1Rξ/a(y/a).

Because of the explicit temperature dependence of H̃dis and its specific
dependence on a and b, the Flory construction based on the replicated Hamiltonian
will have a different Flory exponent. Indeed, on the one hand its elastic and disorder
parts scale identically provided that ca2/b = (D0b)/(Ẽa). On the other hand, the

Boltzmann weight ∝ e− 1
T H̃[y1(t),...,yn(t);tf ] is not modified if Ẽ = ca2/b, for the same

reason as in (39), although here a and b depend on Ẽ as well. Thus the ‘Flory recipe’
yields the following rewriting of the roughness and the relations between scaling factors
{a, b, Ẽ}:

B(t; c,D, T, ξ, tf) = a2 B̄

(
t̂ =

t

b
; c′ = 1, D′ =

D

D0
, T ′ =

T

Ẽ
, ξ′ =

ξ

a
, t̂f =

tf
b

)
(48)

with


a =

(
D0

cẼ

)1/3

b2/3 ⇐⇒ b =

(
cẼ

D0

)1/2

a3/2, ζ
(2)
F = 2/3

Ẽ = ca2/b =
(
cD2

0b
)1/5

= (cD0a)1/3

(49)
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with B̄(t̂; . . .) a scaling function with adimensional parameters. So for the replicated

Hamiltonian (42)-(43)-(44) the apparent Flory exponent is ζ
(2)
F = 2/3, however Ẽ(a)

and Ẽ(b) are exactly the same as in (49). In fact, if we combine the two relations in
(49), we simply recover their counterparts (41) for the original Hamiltonian, and in

particular that ‘a ∼ b3/5’ (i.e. ζ
(1)
F = 3/5).

In the relations (48)-(49), we still have two free parameters to fix, and in (48) this
would, again, correspond to choose two typical scales and to examine the behaviour
of B̄(t̂; . . .). Since the rescaling of the original Hamiltonian and of its replicated
counterpart are both based on the same scaling for the disorder, we expect physically
that we should find the same values for {a, b, Ẽ} when we fix the two remaining free
parameters. And indeed we find for instance the same values for c′ = D′ = 1 as those
listed in table 1, confirming that the crossover lengthscales, such as the Larkin length,
should be the same with or without replicas.

Nevertheless, the Flory construction of the replicated Hamiltonian suggests more
transparently an additional rescaling, which turns out to correspond exactly to the
‘physical’ scalings of the 1D interface at large lengthscale tf . Imposing again c′ = 1,
we choose to control conjointly D′ and T ′ via their ratio D′/T ′ = 1/f , f being thus a
parameter which controls the amplitude of the disorder replicated Hamiltonian. This
choice implies:

D′

T ′
=
D/D0

T/Ẽ
=

1

f
⇔ D0

Ẽ
=

D

T/f
(50)

a =

(
D0

cẼ

)1/3

b2/3 =

(
D

cT/f

)1/3

b2/3 (51)

Ẽ =

[(
D

T/f

)2

cb

]1/3

=

(
cD

T/f
a

)1/2

(52)

Imposing moreover that t̂f = 1, in other words considering the problem at fixed
lengthscale b = tf , we eventually obtain the KPZ scaling for the roughness and
the Brownian scaling for the disorder free energy, with the correct exponents and
temperature-dependent prefactors (as recalled in section 2.4):

b = tf , a =

(
D

cT/f

)1/3

t
2/3
f , Ẽ =

[(
D

T/f

)2

ctf

]1/3

(53)

This implies:

T ′ =
T

Ẽ
= f

[
D2c

(T/f)5
tf

]1/3
(27)
= f

(
tf

Lc(T, ξ)

)1/3

≡ f β̂−1
f (tf) (54)

D′ =
D

D0
=
T ′

f
= β̂−1

f (tf) (55)

ξ′ =
ξ

a
=

ξ(
D

cT/f

)1/3

t
2/3
f

≡ ξ̊f (tf) (56)

and coming back at last to the expression for the roughness (48):

B (tf ; c,D, T, ξ, tf) =

(
D

cT/f

)2/3

t
4/3
f B̄

(
1; 1, β̂−1

f (tf), f β̂
−1
f (tf), ξ̊f (tf), 1

)
︸ ︷︷ ︸ (57)
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This means that, for the asymptotic roughness to be given by
(

D
cT/f

)2/3

t
4/3
f , the

scaling function indicated by the underbrace should tend to a numerical constant
in the limit tf →∞. In fact, this condition self-consistently defines the value of
f = f(T, ξ). In fact, the specific rescaling (53) will be used for the starting point
of the GVM computation scheme presented from section 5.2 and on, imposing f = 1
and thus better suited for capturing the ‘high-temperature’ regime.

3.3. DP free energy FV (t, y)

When we were examining the Hamiltonian, without or with replicas, the scaling of the
Gaussian disorder was given by the two-point disorder correlator, which was an input
of the model so there was no additional assumption to be made, with respect to this
scaling. On the contrary, when considering the free energy at fixed tf , the scaling of
the disorder free energy F̄V (tf , y) is not known a priori, and effectively depends on tf ,
as mentioned in section 2.4. If we assume nevertheless a dominant Brownian scaling
in distribution (25) F̄V (t, y) ∼ (D̃y)1/2, we can perform the same programme as for
the (non-)replicated Hamiltonians.

We first recall the expression for the free energy:

FV (tf , y)
(11)
= FV=0(tf , y) + F̄V (tf , y) , FV=0(tf , y) =

cy2

2tf
+
T

2
ln

2πTtf
c

(58)

Rescaling once again the spatial coordinates and the energy according to
{t = bt̂, y = aŷ, T = ẼT ′}, we focus exclusively on the y-dependent contributions to
the free energy, which are the sole relevant contributions at fixed tf with respect to
statistical averages (9)). They are rescaled as:

cy2

2tf
=
ca2

b

ŷ2

2t̂f
, F̄V (tf , y)

∣∣∣∣
D̃′=D̃,ξ′=ξ

(d)
=
(
D̃0a

)1/2

F̄V (t̂f , ŷ)

∣∣∣∣
D̃′=D̃/D̃0,ξ′=ξ/a

(59)

In the statistical averages 〈O(y)〉tf in (9), the Boltzmann weight ∝ e− 1
T FV (tf ,y)

is not modified provided that the two previous contributions to the free energy scale
identically, i.e. ca2/b = (D̃0a)1/2, and that the temperature is redefined accordingly

with Ẽ = ca2/b as in (39). This Flory construction on the free energy yields the
following rescaled roughness, along with the corresponding relations between the
scaling factors {a, b, Ẽ}:

B(tf ; c,D, T, ξ) = a2 B̄DP

(
t̂f =

tf
b

; c′ = 1, D̃′ =
D̃

D̃0

, T ′ =
T

Ẽ
, ξ′ =

ξ

a

)
(60)

with


a =

(
D̃0/c

2
)1/3

b2/3 ⇐⇒ b =
(
c2/D̃0

)1/2

a3/2, ζ
(3)
F = 2/3

Ẽ = ca2/b =
(
D̃2

0b/c
)1/3

= (D̃0a)1/2

(61)

with B̄DP(t̂f ; . . .) a scaling function with adimensional parameters, based on the
assumption of a dominant Brownian scaling of the DP disorder free energy.

Among the different options of typical parameters, that could be listed as in
tables 1 and 2, we can highlight one option, which consists in identifying the Flory
constructions of the replicated Hamiltonian and of the free energy, respectively (49)
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and (61), as they have in common that ζ
(2)
F = ζ

(3)
F = 2/3.

D̃0

c2
≡ D0

cẼ
⇐⇒ D̃0 =

cD0

Ẽ
⇒


a =

(
D0

cẼ

)1/3

b2/3 ⇐⇒ b =

(
cẼ

D0

)1/2

a3/2

Ẽ =
(
cD2

0b
)1/5

= (cD0a)1/3

(62)

This choice consistently yields the same scalings as for the replicated Hamiltonian
(49), as expected.

3.4. Replicated DP free energy F̃ (t, y1, . . . , yn)

At last, we examine the Flory construction starting from the replicated free energy,
keeping only its y-dependent contributions, which are the sole relevant contributions
at fixed tf with respect to statistical averages (10), and its two-point cumulant, under
the Brownian scaling assumption:

F̃ (tf , y1, . . . , yn)
(15)
=

n∑
j=1

cy2

2t
+

1

4T

n∑
j,k=1

C̄(tf , yj − yk)

∣∣∣∣
D̃,ξ

+ . . . (63)

with C̄ defined just after (15), and with a behaviour at large tf sketch for instance
in (22). Rescaling once again the spatial coordinates and the energy according to

{t = bt̂, y = aŷ, T = ẼT ′}, the first two parts of this free energy are rescaled as:

n∑
j=1

c′y2

2tf

∣∣∣∣
c′=c

=

n∑
j=1

ŷ2

2t̂f

∣∣∣∣
c′=c

(64)

1

4T ′

n∑
j,k=1

C̄(tf , yj − yk)

∣∣∣∣ D̃′=D̃,
T ′=T,

ξ′=ξ

=
D̃0a

Ẽ

1

4T/Ẽ

n∑
j,k=1

C̄(t̂f , ŷj − ŷk)

∣∣∣∣ D̃′=D̃/D̃0,

T ′=T/Ẽ,

ξ′=ξ/a

(65)

Similarly to the non-replicated free-energy case discussed in section 3.3, we impose
on the one hand that these two parts scale identically, i.e. ca2/b = D̃0a/Ẽ, and on the
other hand we consistently redefine the overall temperature in the Boltzmann weight
with Ẽ = ca2/b. This ‘Flory recipe’ thus yields:

B(tf ; c,D, T, ξ) = a2 B̄DP

(
t̂f =

tf
b

; c′ = 1, D̃′ =
D̃

D̃0

, T ′ =
T

Ẽ
, ξ′ =

ξ

a

)
(66)

with


a =

D̃0

cẼ
b⇐⇒ b =

cẼ

D̃0

a , ζ
(4)
F = 1

Ẽ = ca2/b =
(
D̃2

0b/c
)1/3

= (D̃0a)1/2

(67)

with B̄DP(t̂f ; . . .) a scaling function with adimensional parameters, based on the
assumption of a dominant Brownian scaling of the DP disorder free energy.

So this last Flory construction, based on the replicated DP free energy assuming

a Brownian scaling, yields a new Flory exponent ζ
(4)
F = 1, however Ẽ(a) and Ẽ(b) are

exactly the same as in (61). In fact, if we combine the two relations in (67), we simply
recover their counterparts (61) for the original DP free energy, and in particular that

‘a ∼ b2/3’ (i.e. ζ
(3)
F = 2/3).
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3.5. Summary of the different power countings

Throughout this section, we have explored the different power countings and Flory
rescalings, either on the 1D interface Hamiltonian or on the DP free energy, without
or with replicas, based on a rescaling of the spatial coordinates with (a, b) and of the

energy with Ẽ. These different power countings are listed in table 3.

Table 3. List of the Flory power countings presented in section 3.

Starting point Ref. Power counting ζF Ẽ = ca2/b

H [y(t), V ; tf ] (40)-(41) a =
(
D

1/3
0 c−2/3b

)3/5
, 3/5

(
cD2

0b
)1/5

= (cD0a)1/3

H̃ [y1(t), . . . , yn(t); tf ] (48)-(49) a =
(
D0

cẼ

)1/3
b2/3, 2/3

(
cD2

0b
)1/5

= (cD0a)1/3

FV (tf , y) (60)-(61) a =
(
D̃0/c

2
)1/3

b2/3, 2/3
(
D̃2

0b/c
)1/3

= (D̃0a)1/2

F̃ (tf , y1, . . . , yn) (66)-(67) a = D̃0

cẼ
b, 1

(
D̃2

0b/c
)1/3

= (D̃0a)1/2

We have seen that these quantities have different values for the Flory
exponent, defined by the identical scaling of the two parts of each quantity:

ζ
(1)
F = 3

5 , ζ
(2)
F = 2

3 , ζ
(3)
F = 2

3 , ζ
(4)
F = 1. When we impose moreover that the Boltzmann

weight in statistical averages should not be modified by a Flory rescaling, we recover
the same expressions for the Hamiltonians, and similarly for the DP free energies.

Since all these power countings are based on quantities which are different
incarnations of the same model, these different rescalings turn out to be equivalent, and
it is possible to recover one from each other. Nevertheless, they are nothing more than
power countings at this stage, and an additional physical input is required in order to
assess if a given Flory exponent corresponds (or not) to a physical exponent, and which
features of the Flory construction are to be trusted (or not). For that purpose, in the
next section we will discuss how path-integral saddle points can precisely provide such
an input.

4. Saddle points and optimal trajectories in path integrals

In this section we examine, using a saddle-point asymptotic analysis, the relation
between the roughness exponent at large tf and the Flory exponents arising from
the well-chosen scalings allowing for a common rescaling of elastic and disordered
contributions to the free energy or to the Hamiltonian, as we have just discussed in
section 3. We first justify why the Flory rescaling of the free energy gives the correct
roughness exponent (in section 4.1), while the Flory rescaling of the Hamiltonian does
not (in section 4.2) – noticing the crucial role of the disorder correlation length ξ in the
KPZ problem. The key ingredient is the Lax-Oleinik principle [22, 23, 24, 25], which
gives a condition for the existence of optimal point-to-line trajectories in the zero-
temperature limit. We then describe how the use of this principle makes it possible
to identify the explicit dependency in ξ of the asymptotic roughness, in the zero-
temperature limit, from a saddle-point analysis on the Hamiltonian at T → 0 (in
section 4.3). Last (in section 4.4), we discuss these three cases from the perspective of
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the scaling function B̄(t̂; . . .), as introduced in section 3 for the corresponding Flory
power countings.

4.1. Saddle point on the free energy at large lengthscale tf

As we have recalled in section 2.4, in the large-tf regime and at ξ = 0, the disorder free
energy F̄ (tf , y) rescales as a Brownian process in the coordinate y, cf. (21). Moreover,
we pointed out in section 3.3 that the associated power counting assuming such a
Brownian scaling gives a Flory exponent 2/3. In fact, such a Flory-type argument was
precisely invoked by Huse, Henley and Fisher in Ref. [8] to identify this exponent as the
asymptotic roughness exponent for the disordered interface problem. In [15], we have
proposed a procedure explaining how this power counting generalises at ξ > 0 and why
such a Flory-type arguments holds for predicting the correct roughness exponent, by
using a large-tf saddle-point analysis that we recall here for reference. Indeed, it offers
a good starting point to understand which physical reasons underpin the matching
or not between the Flory exponent and the physical roughness exponent, seen in the
light of a saddle-point asymptotic analysis.

Using the Brownian scaling of the disordered free energy at large tf rederived in
section 3.3, one performs the following rescaling

t = tf t̂, y = (D̃/c2)
1
3 t

2
3

f ŷ, F̄V (t, y)
(d)
= (D̃2tf/c)

1/3F̂ (t̂, ŷ) (68)

where F̂ is a Brownian motion of the coordinate ŷ with unit variance. It implies
from (9) for O(y) = y2 that, in the explicit expression of the roughness function, the
elastic and disorder contribution share a common prefactor as follows:

B(tf) ∼
tf→∞

[ D̃
c2

] 2
3

t
4
3

f b1(tf) (69)

b1(tf) =

∫
R
dŷ ŷ2 exp

{
− 1

T

(
D̃2

c tf
) 1

3

[
ŷ2

2 + F̂ (t̂, ŷ)
]}

∫
R
dŷ exp

{
− 1

T

(
D̃2

c tf
) 1

3

[
ŷ2

2 + F̂ (t̂, ŷ)
]} (70)

where the overline denotes the average over F̂ . At fixed F̂ (i.e. at fixed disorder
configuration), one can evaluate the integrals over ŷ using a saddle-point asymptotic
analysis in the large-tf limit. The numerator and the denominator of (70) are
dominated by the same value ŷ?[F̂ ] of ŷ which minimises the rescaled energy
ŷ2

2 + F̂ (t̂, ŷ). We emphasise that this implies that ŷ?[F̂ ] is independent of tf , and

that b1(tf) = (ŷ?[F̂ ])2 ∼ t0f . We thus deduce from (70) that

B(tf) ∼
tf→∞

(ŷ?[F̂ ])2 (D̃/c2)
2
3 t

4
3

f (71)

which yields as announced the roughness exponent ζ = 2
3 . So, on the one hand the

power counting based on the Brownian scaling puts as a prefactor t
4/3
f prescribed by

the Flory scaling, and on the other hand the independence on tf of the saddle point
ŷ?[F̂ ] selects the Flory scaling as the ‘true’ physical one.

This procedure provides an example where the naive Flory power counting gives
a correct prediction. A key point in the reasoning is that the minimiser ŷ?[F̂ ] of
ŷ2

2 + F̂ (t̂, ŷ) does exist and has a finite variance, which can be justified mathematically.
In fact, in the uncorrelated disorder case (ξ = 0), the Brownian scaling of F̄V can
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be extended to include the large- but finite-tf regime where the fluctuations in the
coordinate ŷ are described by the Airy process [26]. Then, a similar rescaling procedure
follows and leads to the same expression of the asymptotic roughness as (69-70) with
now F̂ being the opposite of the Airy2 process A2(ŷ). The same saddle-point analysis

can be performed where ŷ? is now the minimiser of ŷ2

2 −A2(ŷ), which does exist
and whose distribution has been characterised in Refs. [11, 27, 28]. In particular,

this allows one to evaluate the numerical constant (ŷ?[F̂ ])2 in the prefactor of the
asymptotic roughness (71).

As for the correlated disorder case ξ > 0, as long as the Brownian scaling is
the dominant one in the evaluation of the path-integral saddle point, this argument
remains valid and yields the KPZ roughness exponent. However, it cannot yield more
information than the value of this exponent, and in particular it does not give access
to the temperature dependence of the amplitude D̃, which controls both the disorder
free-energy and the roughness amplitudes, according to (25)-(26). Nevertheless, a non-
perturbative functional renormalisation study of the 1D KPZ at ξ > 0 supports the
assumption of the dominant Brownian scaling of the free-energy [21], in agreement
with previous numerical studies [13, 20], assessing furthermore the validity of the
present argument for the roughness exponent ζ = 2

3 .
We now try to implement the same construction for the Hamiltonian description

of the roughness and explain why it fails.

4.2. Saddle point on the Hamiltonian with the Flory scaling

As we pointed out in section 3.1, from the Flory rescaling of the Hamiltonian

t = tf t̂, y = tζFf

(
D
c2

) 1
5 ŷ, ζF =

3

5
(72)

one gets from the path integral (5) for O [y(t)] = y(t)2 an expression of the roughness
in which the prefactors of the elastic and disorder contributions, in the Hamiltonian,
are rescaled with a common prefactor as follows:

B(tf) =
[D
c2

] 2
5

t2ζFf b2(tf) (73)

b2(tf) =

∫
ŷ(0)=0

Dŷ(t̂) ŷ(1)2 exp
{
− (cD2)

1
5

T t
1
5

f

∫ 1

0

dt̂
[

1
2 (∂t̂ŷ)2 + V̂ξ̂(tf )(t̂, ŷ(t̂))

]}
∫
ŷ(0)=0

Dŷ(t̂) exp
{
− (cD2)

1
5

T t
1
5

f

∫ 1

0

dt̂
[

1
2 (∂t̂ŷ)2 + V̂ξ̂(tf )(t̂, ŷ(t̂))

]} (74)

Here, the (à la Flory-)rescaled disorder correlation length reads

ξ̂F(tf) =
ξ

tζFf

(
D
c2

) 1
5

(75)

and the random potential V̂ξ̂ has a correlation length ξ̂ and a disorder strength equal
to 1:

V̂ξ̂(t̂, ŷ)V̂ξ̂(t̂
′, ŷ′) = δ(t̂′ − t̂)R̂ξ̂(ŷ

′ − ŷ) (76)

We consider at first the case of a strictly uncorrelated disorder (ξ = 0) where

in (74) the arguments of exponentials take the form t
1/5
f times a tf -independent

expression. The path integral (74) thus takes precisely a form which (in appearance) is
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amenable to a saddle-point analysis at tf →∞, similarly to the expression (69) that we
have recalled in the previous subsection. By analogy, let us precisely assume that there
exists an optimal trajectory ŷ?

V̂
(t̂) that minimises the integral of the rescaled energy∫ 1

0
dt̂
[

1
2 (∂t̂ŷ)2 + V̂ξ̂=0(t̂, ŷ(t̂))

]
, with the initial condition ŷ(0) = 0. Then, because

in (74) this minimiser would be the same in the numerator and in the denominator,
one would obtain

B(tf)
wrong!
∼

tf→∞
(ŷ?
V̂

(1))2
(
D
c2

) 2
5 t

6
5

f (77)

where the overline denotes the average over the rescaled random potential V̂ . This
reasoning, that would lead to a roughness exponent ζ = 3

5 , is in fact wrong: the

optimal trajectory ŷ?
V̂

(t̂) does not exist and the saddle-point analysis that we have

sketched is invalid, because the uncorrelated disorder V̂ξ̂=0 is too irregular, for the
assumption of the existence of an optimal trajectory to be valid.

Indeed, for a minimiser of the Hamiltonian (1) to exist, according to the Lax-
Oleinik principle, the disorder has to be smooth enough: in our context, this requires
to have a non-zero correlation length, see for instance Ref. [25] for a discussion of
this optimisation principle in the context of the noisy Burgers equation (the original
variational principle was designed for the noiseless Burgers equation [22, 23, 29] and
was later generalised to the noisy one [24, 25]). Hence, let us consider as a second step
the case of correlated disorder (ξ > 0) and try to implement a saddle-point analysis.
After the Flory rescaling (72) leading to the reformulation (74), the distribution of the
rescaled disorder V̂ξ̂(tf )(t̂, ŷ) depends on tf via its correlation length, according to (75).
In other words, the rescaled Hamiltonian

ĤV̂
[
ŷ(t̂), ξ̂F(tf)

]
=

∫ 1

0

dt̂
[

1
2 (∂t̂ŷ)2 + V̂ξ̂F(tf )

(t̂, ŷ(t̂))
]

(78)

depends on tf and even though, thanks to the Lax-Oleinik principle, a minimising
trajectory ŷ?

V̂
(t̂; tf) does exist, it actually depends on tf . In the end, this means that

one cannot use the corresponding saddle-point asymptotics

B(tf)
true!∼
tf→∞

(ŷ?
V̂

(1; tf))2
(
D
c2

) 2
5 t

6
5

f (79)

to infer directly the value of the roughness exponent. In this expression, in fact, one

necessarily has (ŷ?
V̂

(1; tf))2 ∼ t
2/15
f in order to recover the correct KPZ exponent, as

known from (71) for instance, and thus to be self-consistently compatible with the
Brownian scaling of F̄V . The physical interpretation of this result is the following: the
variance of the endpoint fluctuation of the optimal trajectory b2(tf) = ŷ?

V̂
(t̂; tf) of the

rescaled Hamiltonian (78) depends on tf , and this occurs only through the rescaled

disorder correlation length ξ̂F(tf) ∼ t
−3/5
f given in (75). As tf → ∞, this variance

diverges as t
2/15
f : this is a manifestation that the ξ → 0 limit of the optimal trajectory

of the Hamiltonian is ill-defined.
This very fact is, as we have discussed, at the core of the invalidity of the Flory

roughness exponent ζF = 3/5 for the KPZ fluctuations ; as we have seen, this mismatch
is due to the singular scaling properties of the ξ = 0 uncorrelated disorder. In pictorial
words, the naive (Flory) power counting performed on the Hamiltonian yields a ‘bare’
(or ‘dimensional’ — and incorrect) roughness exponent ζF = 3/5 and amounts to
neglecting the existence of a microscopic length ξ. This very length, in turn, if correctly
taken into consideration, modifies the bare dimensional exponent and ‘dresses’ ζF to
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give the valid ζ = 2/3 KPZ exponent. In section 4.1, the assumption of the dominant
Brownian scaling of the disorder free energy tf →∞ was the key that allowed us to
take a successful shortcut and circumvent this pitfall: otherwise we are simply not

able to guess specifically that b2(tf) ∼ t2/15
f .

4.3. Saddle point on the Hamiltonian at low temperature T

We just used the Lax-Oleinik principle to explain why the Flory power counting on
the Hamiltonian fails to yield the correct roughness exponent. Here we invoke this
principle again, but this time in order to determine the low-temperature asymptotics
T → 0 of our problem. In fact, the Lax-Oleinik principle is the missing ingredient
that completes and thus confirms the saddle-point argument given in section IV.B.1
of Ref. [15].

We consider the following Flory rescaling, as given in section 3.1:

t =
T 5

c

cD2
t̂, tf =

T 5
c

cD2
t̂f , y =

T 3
c

cD
ŷ, Tc = (ξcD)1/3 (80)

with the characteristic temperature that has been previously defined between (25) and
(26). It allows to factor out the dependency of the elastic and disorder contribution
to the Hamiltonian into a common prefactor, while fixing the correlation length of the
disorder to 1 as follows:

B(tf) = ξ2b3(t̂f) (81)

b3(t̂f) =

∫
ŷ(0)=0

Dŷ(t̂) ŷ(t̂f)
2 exp

{
− Tc

T

∫ t̂f

0

dt̂
[

1
2 (∂t̂ŷ(t̂))2 + V̂1(t̂, ŷ(t̂))

]}
∫
ŷ(0)=0

Dŷ(t̂) exp
{
− Tc

T

∫ t̂f

0

dt̂
[

1
2 (∂t̂ŷ(t̂))2 + V̂1(t̂, ŷ(t̂))

]} (82)

Here the disorder V̂1 has a strength D equal to 1 and is correlated with a correlation
length ξ̂ equal to 1 :

V̂1(t̂, ŷ)V̂1(t̂′, ŷ′) = δ(t̂′ − t̂)R̂ξ̂=1(ŷ′ − ŷ) (83)

and the rescaled Hamiltonian∫ t̂f

0

dt̂
[

1
2 (∂t̂ŷ(t̂))2 + V̂1(t̂, ŷ(t̂))

]
(84)

is independent of the temperature T , which means that (82) is amenable to a well-
posed low-temperature asymptotic analysis thanks the large Tc/T prefactor in the
argument of the exponentials.

The numerator and the denominator of (82) are both dominated by the same
minimising trajectory ŷ?

V̂
(t̂; t̂f) whose existence, this time, is guaranteed by the Lax-

Oleinik principle, because the rescaled correlation length of the disorder is finite
(ξ̂ = 1). Since (84) is explicitly independent of the physical parameters, ŷ?

V̂
(t̂; t̂f)

depends only on t̂ and t̂f and on no other parameters. In particular, at t̂f = 1 the path
integral hidden in b3(1) yields a plain numerical constant, which is finite thanks to the
Lax-Oleinik principle, and the corresponding roughness is:

B(tf = Lc(0, ξ)) = ξ2, Lc(0, ξ) =
T 5

c

cD2
(85)
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emphasising the special role played by the zero-temperature Larkin length Lc(0, ξ),
presented in (27) as the typical lengthscale marking the beginning of the asymptotic
regime at large tf . Coming back to (82), if we assume that above the Larkin length,
at large t̂f , we have a scale invariance in the form of a power law, this means that

b3(t̂f) ∼
t̂f→∞

Â t̂ 2ζ
f (86)

where Â = (ŷ?
V̂

(1; t̂f))2 is a numerical prefactor, independent of the physical
parameters. The reasoning exposed above does not allow to extract the value of the
exponent ζ, but the assumption of ζ = 2

3 is supported for instance by the saddle-point
argument presented in section 4.1. From (82)-(85) it follows that

B(tf) ∼
tf→∞

Â ξ2
( T 5

c

cD2

)− 4
3

t
4
3

f , in the T → 0 asymptotics (87)

By direct identification with the result (71), this allows us to identify the low-

temperature asymptotic behaviour of the amplitude D̃ of the disorder free-energy
fluctuations as

D̃ ∼
T→0

cD

Tc
= c2/3D2/3ξ−1/3 (88)

We can immediately see, by comparing it to the exact result limξ→0 D̃ = cD/T recalled
in (21), that the two limits T → 0 and ξ → 0 do not commute.

The relation (88) is one of the few known asymptotic results valid for a
ξ > 0 correlated disorder ; it as been supported by a variety of other analytical
approaches [15, 14] as well as checked numerically [20]. It is one of the essential ways
of characterising the ‘low-temperature’ phase of the KPZ equation, which illustrates
the importance of keeping track of the finite disorder correlation length, especially as
the thermal fluctuations vanish in this specific limit.

4.4. Interpretation of the saddle-points asymptotics for the scalings

We can revisit the three rescalings that we have presented in the previous subsections
by rewriting them with the explicit dependencies of the rescaled roughness functions
B̄ and B̄DP in the physical parameters, as defined by (28)-(30) in section 3. Note that
we consider t = tf , so we have removed thereafter the explicit last parameter giving
the length of the interface.

• The rescaling of section 4.1 is based on a Flory power counting of the free energy,
first assuming a dominant Brownian scaling of the disorder free energy, and
secondly setting t̂f = 1:

B(tf ; c, D̃, T, ξ)
(69)
=

( D̃
c2

) 2
3

t
4/3
f B̄DP

(
1; 1, 1,

T

(D̃2tf/c)
1
3

,
ξ

(D̃t2f /c
2)

1
3

)
(89)

The existence of a large-tf saddle point can then be reformulated as:

b1(tf)
(70)
≡ B̄DP

(
1; 1, 1,

T

(D̃2tf/c)
1
3

,
ξ

(D̃t2f /c
2)

1
3

)
=

tf→∞
B̄DP

(
1; 1, 1, 0, 0

)
∼ t0f (90)

In other words, the limit B̄DP(1; 1, 1, 0, 0) is a well-defined finite numerical
constant, so the roughness scaling can be read straightforwardly from the

prefactor in (89) at large tf : B(tf ; c, D̃, T, ξ) ∼ (D̃/c2)
2
3 t

4/3
f .
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• Similarly, the rescaling of section 4.2 is based on a Flory power counting of the
Hamiltonian, setting again t̂f = 1:

B(tf ; c,D, T, ξ)
(73)
=

[D
c2

] 2
5

t
6/5
f B̄

(
1; 1, 1,

T

(cD2tf)
1
5

,
ξ

(Dt3f /c
2)

1
5

)
(91)

The large-tf limit can be reformulated as:

b2(tf)
(74)
≡ B̄

(
1; 1, 1,

T

(cD2tf)
1
5

,
ξ

(Dt3f /c
2)

1
5

)
∼

tf→∞
t

2
15

f 6= lim
ε→0

B̄
(

1; 1, 1, ε
1
5 , ε

3
5

)
(92)

In fact, this limit is not defined, as b2(tf) diverges at tf →∞. It can only be
characterised indirectly by comparison with (90).

• The last rescaling, of section 4.3, is based on the same Flory power counting of
the Hamiltonian:

B(tf ; c,D, T, ξ)
(81)
= ξ2 B̄

( tf
Lc(0, ξ)

; 1, 1,
T

Tc
, 1
)

(93)

Setting this time t̂f = tf/Lc(0, ξ), the zero-temperature limit can consequently be
reformulated as:

b3(t̂f)
(82)
≡ B̄

( tf
Lc(0, ξ)

; 1, 1,
T

Tc
, 1
)

=
T→0

B̄
( tf
Lc(0, ξ)

; 1, 1, 0, 1
)
∼

tf→∞

(
tf

Lc(0, ξ)

) 4
3

(94)

So the limit B̄(t̂f ; 1, 1, 0, 1) is well-defined and behaves asymptotically as a power
law. Physically, this means that there exists an optimal trajectory in the random
potential, thanks to the Lax-Oleinik principle, whose fluctuations are finite at
fixed t̂f and scale-invariant at large tf � Lc(0, ξ).

The three rescalings (89), (91) and (93) take the form of a prefactor multiplying
the roughness function rescaled in an explicit manner. In the tf → ∞ asymptotic
regime, the two first relations correspond to a joint ξ → 0 and T → 0 limit, which, as
we have discussed, has to be considered with care. The saddle-point analysis allowed us
to show that the first relation gives the correct KPZ exponent (the rescaled roughness
goes to a constant). In the second relation (91), it would be tempting to first send T
to 0 and then to send tf to +∞, assuming that the rescaled roughness would go to a
constant as the rescaled correlation length ξ̂(tf) = ξ/(Dt3f /c

2)
1
5 goes to zero. However,

as we have seen, this is in fact wrong: in (91), the rescaled roughness keeps full memory

of ξ̂(tf) even as ξ̂(tf) → 0. In fact, the rescaling (91) was mentioned in [12], stating
that obviously the simultaneous limit of T → 0 and ξ → 0 begin ill-defined, as these
limits are not exchangeable. Here, thanks to the Lax-Oleinik principle, we can give a
physical meaning to this mathematical statement: the existence (or not) of an optimal
trajectory with a finite variance, which is guaranteed only in a smooth enough random
potential. As for the last relation, (93), it is more amenable to a well-defined zero-
temperature limit, since its correlation length is kept finite, equal to 1. Assuming the
value of the exponent ζ gives the complete prefactor of the asymptotic roughness in
the zero-temperature limit.

We mention finally that an extension of such rescalings and saddle-point analysis
gives access to the non-linear response of the interface to an external force driving it
out of equilibrium [30], characterised by the so-called ‘creep’ law relating the interface
velocity to the force.
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5. Gaussian Variational Method (GVM)

As we have discussed in the previous section, combining scaling and saddle-point
arguments can yield information about the asymptotic behaviour of the roughness
function. However, in order to have access to its full lengthscale dependence,
alternative analytical tools are required, and the GVM approach precisely provides
a framework for computing an approximate expression for B(tf). As a starting point,
thermal and disorder averages of observables are expressed within the replica approach
(see equation (6)) through a replicated Hamiltonian (8) that enters in the definition of
its associated Boltzmann weight (7). In general, the computation of such averages is
difficult because the replicated Hamiltonian is non-quadratic. The GVM computation
scheme [31, 32] consists in finding the ‘best’ quadratic Hamiltonian representing the
replicated one, according to a well-defined extremalisation criterion. It is equivalent
to performing a Hartree-Fock approximation on the field theory associated to the
replicated Hamiltonian [31, 33]. It has been applied to a variety of systems belonging
to the class of elastic manifolds in random media [31, 34, 35, 36, 37].

Here we first recall in section 5.1 the GVM results obtained in previous
works [12, 13, 14] on the interface with a short-range elasticity and in a random-
bond correlated disorder (as defined in section 2.1). For the Hamiltonian description
of the infinite interface, such a GVM approach yields the Flory exponent ζF = 3/5 for
the roughness at large tf instead of the correct KPZ exponent ζ = 2/3 [12, 14]. We
then show in sections 5.2, 5.3 and 5.4 that, in fact, by considering a finite interface
instead of an infinite one, the GVM computation is strongly modified and yields the
correct KPZ exponent for the asymptotic roughness. We finally discuss in section 5.5
the physical interpretation of those results. In addition, the details regarding the
analytical and numerical computations have been gathered in the appendix A and
appendix B, respectively.

5.1. Previous GVM approximation schemes

In a first computation scheme, for an infinite interface (tf = +∞) in the Hamiltonian
description, the replicas y = (ya(q))1≤a≤n are described by continuous Fourier modes
with q ∈ R, for which a quadratic trial Hamiltonian is defined as follows:

H̃0

[
y
]

=
1

2

∫
R
d̄q

n∑
a,b=1

ya(−q)G−1
ab (q)yb(q) (with d̄q ≡ dq

2π ) (95)

with G−1
ab (q) a n× n a ‘hierarchical matrix’, whose lines and columns are obtained

by permutations of the first line [16, 31, 17, 12]. Note that the trial Hamiltonian

H̃0

[
y
]

does not couple the different Fourier modes. The Gibbs-Bogoliubov variational
principle which characterises [31, 12] the best trial Hamiltonian takes the form
δFvar/δGab(q) = 0 (∀a, b, q), for the variational free energy Fvar defined as

Fvar = F0 +
〈
H̃ − H̃0

〉
0

(96)

Here 〈·〉0 denotes the average with respect to the variational Boltzmann weight

∝ e− 1
T H̃0[y]. The Hamiltonians H̃ and H̃0 are respectively given by (8) and (95).

Besides

F0 = − 1

T
logZ0 (97)
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is the free energy corresponding to the partition function Z0 which normalises the

Boltzmann weight e−
1
T H̃0[y]. Once the optimal ‘hierarchical matrices’ G−1

ab (q) and
Gab(q) are found, the roughness is reconstituted from the structure factor computed
in the GVM approximation as

S(q) =

∫
dq′
〈
y1(−q′)y1(q)

〉
0

(GVM)
= T lim

n→0
G11(q) (98)

B(t) =

∫
R
d̄q 2 [1− cos(qt)] S(q) (99)

The details of the computation are given in [12]. We summarise here the structure of
the results for comparison to the ones mentioned or derived in the next subsections.
The quadratic form defined by the replica matrix Gab, whose first line is chosen for
the definition of the other lines by permutation, is parametrized as

G−1
ab (q) = cq2δab − σab (100)

In absence of disorder, σab = 0 so S(q) = T
cq2 , and we recover the pure thermal

roughness Bth(t) = Tt/c (recalled for instance in (24)). With disorder, the first line of
the matrix σab is represented by an increasing function σ(u) of a continuous parameter
u ∈ [0, 1], or, equivalently, by the self-energy function

[σ] (u) = u σ(u)−
∫ u

0

dv σ(v) (101)

Writing explicitly the variational equation and solving it yields [12] that:

[σ](u) =

{
Au10 if u < uc

[σ](uc) if u > uc

(102)

where A is a constant that depends on the physical parameters c,D and T . The
cut-off uc depends on ξ and on the other parameters only through the ratio T/Tc.
The power-law behaviour for u < uc corresponds to a full replica symmetry breaking
(full-RSB) regime, which is often encountered in glassy systems where it indicates the
occurrence of an hierarchical organisation of an infinite number of metastable states
into valleys and sub-valleys [16]. It appears that the exponent 10 in (102), when
reconstituting the roughness function from the structure factor (98), dictates that the
roughness B(t) obtained in the GVM approximation behaves as B(t) ∼ t2ζF at large
t, with ζF = 3/5 being the Flory exponent. This point will be thoroughly discussed in
section 5.5 in the comparison between different GVM approaches.

In a second computation scheme, the GVM approach can be also implemented
at the free-energy level, as described in [12, 14]. In this construction, for a large but
finite interface (tf < +∞), the replicas y = (ya)1≤a≤n describe the position of the
end-point of the replicated polymer. Its replicated free energy is given by (15). At
fixed tf , the quadratic trial replicated free energy is defined as follows:

F̃0(tf ,y) =
1

2

n∑
a,b=1

yaG
−1
ab (tf)yb (103)

The Bogoliubov variational principle characterising the best Gab takes the form
∂Fvar/∂Gab(tf) = 0 (∀a, b), for the variational free energy Fvar defined as in (96-

97) but now for the corresponding Boltzmann weight e−
1
T F̃0(tf ,y). Once the optimal
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hierarchical matrix G−1
ab (tf) is found, the GVM approximation of the roughness

function is reconstituted directly from

B(tf)
(GVM)
'

〈
(y1)2

〉
0

= T lim
n→0

G11(tf) (104)

The structure of the solution of the variational equation is rather different from the
infinite-tf Hamiltonian one: in contrast to (102) one now has two plateaus

[σ](u) =


0 if u < u∗(tf)

Au2 if u∗(tf) < u < uc

[σ](uc) if u > uc

(105)

The form of the solution yields a roughness B(tf) ∼ t4/3f (at tf → ∞) with the KPZ
roughness exponent. This GVM approximation however relies on the assumption that
the disorder free energy F̄V (tf , y) fluctuates as a Brownian process in the coordinate y.
This assumption is only approximate at ξ > 0 and tf <∞, as discussed in section 2.4.
Nevertheless, we have actually checked in a third GVM computation scheme that
including the saturation of the two-point correlator C̄(tf , y) for large y (22), and thus
breaking the Brownian scaling, still self-consistently predicts the same asymptotic
roughness behaviour, see [13] and appendix D of [14].

In the next subsections, we present a new GVM approach, based on the
Hamiltonian description at finite tf (hence not based on such a Brownian
approximation) while still allowing us to recover the correct KPZ exponent.

5.2. Beyond the Flory scaling: a finite-tf GVM scheme in the Hamiltonian
description

Our aim is to adapt the Hamiltonian GVM of the infinite interface to the description
of a finite interface of length tf . To proceed, we first identify the rescaling which
makes it possible to extract as a prefactor of B(tf) the dominant behaviour at large tf .
Instead of using the Flory rescaling (72) of the (non-replicated) Hamiltonian (1), we
use the following rescaling:

t = tf t̂, y(t) = tζf
(
D
cT

) 1
3 ỹ(t̂), ζ =

2

3
(106)

which, in the replicated Hamiltonian (8), absorbs the coefficients of the elastic and
disorder contribution into a common prefactor:

B(tf) =

(
D

cT

) 2
3

t2ζf lim
n→0

∫
ỹ(0)=0

Dŷ(t̂) ỹ1(1)2 exp

−
[
tf
T 5

cD2

] 1
3

H̃
[
ỹ(t̂), ξ̊(tf)

] (107)

with

H̃
[
ỹ(t̂), ξ̊(tf)

]
=

∫ 1

0

dt̂

[∑
a

1
2 (∂t̂ỹa)2 −

∑
a<b

R̂ξ̊(tf )

(
ỹb(t̂)− ỹa(t̂)

)]
(108)

Now instead of the Flory-rescaled correlation length (75), the correlator is taken at a
KPZ-rescaled correlation length

ξ̊(tf) =
ξ

tζf
(
D
cT

) 1
3

=
ξ√

Basympt(tf)
, Basympt(tf) =

(
D

cT

)2/3

t
4
3

f (109)
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We will denote the rescaled inverse temperature appearing in (107) as

β̂(tf) =

[
tf
T 5

cD2

] 1
3

=

[
tf

Lc(T, 0)

] 1
3

(110)

We emphasise that in the large-tf regime, we have ξ̊(tf) ∼ t−2/3
f � 1 and

β̂(tf)
−1 ∼ t−1/3

f � 1, so that studying the asymptotic roughness at tf → ∞ amounts
here to taking a zero-temperature-like limit, since the reduced temperature T/Tc reads

1/(β̂ξ̊1/3) ∼ t−2/9
f � 1.

Although, in (107), the correct large-tf behaviour in t
4/3
f appears as a prefactor of

the roughness, it is not obvious how to extract from the expression (107) the large-tf
asymptotics of B(tf). Indeed, performing a saddle-point asymptotic analysis in the
tf → ∞ regime is not compatible with the n → 0 limit, and a full computation of
the replicated roughness would involve the understanding of a complete tf -dependent
Bethe Ansatz solution [38, 39, 40, 41] — which is out of reach of the presently available
technology and would also only be possible at ξ = 0. Here, we will resort to a study of
the roughness (107) based on the GVM approximation. The choice (106) is the Flory
scaling obtained in section 3.2, and as already mentioned, this power counting coincides
with the high-temperature (or equivalently ξ = 0) asymptotic roughness scaling. As
such, it includes explicitly the high-temperature Larkin length Lc(T, 0) ∼ T 5/(cD2) of
(27). This means in particular that, for our GVM computation to predict the correct
asymptotic roughness, we must have at T � Tc(ξ):

lim
n→0

∫
ỹ(0)=0

Dŷ(t̂) ỹ1(1)2 exp

−
[
tf
T 5

cD2

] 1
3

H̃
[
ỹ(t̂), ξ̊(tf)

] →
tf→∞

cte <∞ (111)

The complete GVM study of this problem is itself rather cumbersome: one has to
separate the fluctuations of the endpoint (at t = tf) from the bulk ones (0 < t < tf) in
order to use a Fourier representation of ỹ(t̂). This requires to use a ‘dual GVM’ scheme,
with distinct Gaussian variational Ansätze for the endpoint and bulk fields [42]. We
restrict our study here to a simplified case yielding physically equivalent results: from
now on, we constrain the interface to start from 0 in 0 and to end in 0 in tf . The
roughness will be measured at any intermediate point 0 < t < tf (for instance in
t = tf/2). In the large-tf limit, the corresponding roughness exponent is not affected
by such a boundary condition. The analysis of the dual GVM will be exposed in a
future study [42].

Because the interface has a finite length t̂ ∈ [0, 1], the Fourier modes are discrete,
and we indexed them ω ∈ 2πZ:

ỹ(ω) =

∫ 1

0

dt̂ e−iωt̂ ỹ(t̂) ỹ(t̂) =
∑
ω

eiωt̂ ỹ(ω) (112)

The rescaled replicated Hamiltonian (108) rewrites

H̃
[
ỹ(ω), ξ̊

]
= H̃el

[
ỹ(ω)

]
+ H̃dis

[
ỹ(ω), ξ̊

]
(113)

H̃el

[
ỹ(ω)

]
=
∑
a

∑
ω

1
2ω

2ỹa(−ω)ỹa(ω) (114)

H̃dis

[
ỹ(ω), ξ̊

]
= −

∫
R
d̄λRξ̊(λ)

∫ 1

0

dt̂
∑
a<b

eiλ[ỹb(t̂)−ỹa(t̂)] (115)
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Since we work at fixed tf , from now on we will skip the explicit dependence on tf of
both ξ̊(tf) and β̂(tf), in order to simplify the notations.

Similarly to the GVM presented in section 5.1, the hierarchical replica matrix
G−1
ab (ω), with a, b ∈ {1, . . . , n} and ω ∈ 2πZ, is parametrized as

G−1
ab (ω) = ω2δab − σab (116)

For its inverse, one has on the one hand the diagonal coefficient

Gaa(ω) = G̃(ω) (117)

which encodes the structure factor and hence the roughness according to (98)-(99).
On the other hand, for a 6= b, as in section 5.1, the Gab(ω) are described by a function
G(ω, u) of a continuous parameter u ∈ [0, 1]. As derived in section A.2 of appendix A,
the variational equations take the following form

σ(u) =
2√
π
β̂

3
2

{
β̂ξ̊2 +

∑
ω

[
G̃(ω)−G(ω, u)

]}− 3
2

(118)

∑
ω

[
G̃(ω)−G(ω, u)

]
=

1

u

coth
(

1
2

√
[σ](u)

)
2
√

[σ](u)
−
∫ 1

u

dv

v2

coth
(

1
2

√
[σ](v)

)
2
√

[σ](v)
(119)

The variational equations of the infinite-tf Hamiltonian GVM [12] present a very

similar structure: the only difference is that the expressions coth
(

1
2

√
[σ](·)

)
in (119)

are then replaced by 1. As we will explain, this difference crucially implies that the
two GVMs possess distinct scalings. From a technical point of view, we will see that
the singular behaviour of cothx as x→ 0 affects the full scaling of the GVM solution.
This corresponds to the fact that the small-[σ](u) regime governs the large physical

scales, and this is precisely the regime where coth
(

1
2

√
[σ](u)

)
behaves very differently

from 1.

5.3. Results of the finite-tf GVM scheme

As detailed in section A.3 of appendix A, one infers from the variational equations (118-
119) that whenever σ′(u) 6= 0 (i.e. when the solution is not a plateau), one has:

1 =
3

5

(27× 29

π

) 1
5

β̂
3
5 u {[σ](u)}− 1

10

×
[ sinh2

(
1
2

√
[σ](u)

)
sinh

(√
[σ](u)

)
+
√

[σ](u)

] 3
5

1 +
1

3

[σ](u) coth
(

1
2

√
[σ](u)

)
sinh

(√
[σ](u)

)
+
√

[σ](u)

︸ ︷︷ ︸
=1 for the infinite-tf GVM

(120)

This equation takes the form u = β̂−
3
5G
(
[σ](u)

)
from which one infers a parametric

form for [σ](u). For the infinite-tf GVM, the solution is simply [σ](u) ∝ u10, as recalled
in section 5.1. We represent on figure 2 the form of [σ](u) implied by the parametric
equation (120) for the finite-tf GVM. Only one branch is physically allowed: the one
with [σ](u) increasing. In the [σ](u) � 1 regime, the result becomes equivalent to
[σ](u) ∝ u10. This is self-consistently checked from (120), where for [σ](u) � 1 the
underbrace goes to 1.

A striking feature of the parametric equation (120) is that there is no solution
for [σ](u) in the regime u → 0. It marks a strong difference with the infinite-tf
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Figure 2. Possible value of [σ](u) deduced from the parametric equation (120)
for the finite-tf Hamiltonian GVM, when σ′(u) 6= 0. (Left) Normal scale.
(Right) Log-Log scale. The increasing branch of [σ](u) is the physical branch.
At large [σ](u), one recovers a behaviour of the form [σ](u) ∼ Au10, akin to
the infinite-tf GVM result (102). However, for small u there is no solution such
that σ′(u) 6= 0, which implies that σ(u) has a plateau on an interval [0, u?] with
u? > 0. This fact marks the main physical difference between the finite-tf and
the infinite-tf GVM solutions. The numerical parameter is β̂ = 10.

Hamiltonian GVM. This is seen from (120), for instance by looking for a solution of
the form [σ](u) ∼ uν � 1 (with ν > 0) in the limit u → 0. One finds ν = −5 which
is self-contradictory with the assumption [σ(u)] � 1. Also, a direct numerical study

of the parametric equation (120), read as u = β̂−
3
5G
(
[σ](u)

)
, shows that the function

G(·) only takes values which are bounded away from 0 – see figure 2. This implies that
(i) there is necessarily a non-empty interval [0, u?[ on which [σ](u) is constant, since
(120) is valid only for σ′(u) 6= 0 ; and that (ii) [σ](u) presents a discontinuity (i.e. a
step) in u?, since the minimal value that a non-constant [σ](u) can take is strictly
positive according to (120).

Note that the discontinuous behaviour of [σ](u) that we have described as resulting
from the parametric equation (120) can be traced back to the singular behaviour of
coth

(√
[σ](u)

)
as [σ](u) → 0 in the variational equation (119). In turn, the coth

function arises from the sum over the discrete Fourier modes ω ∈ 2πZ, i.e. from
the very fact that the interface that we consider has a finite length tf . A sum over
continuous Fourier modes yields 1 instead of the coth function.

5.4. Scaling analysis in the ξ → 0 regime

Solving the variational equations (118-119) and finding the stable optimal solution is
a more complex task for the finite-tf Hamiltonian GVM than for the infinite-tf one,
for which [σ](u) is a pure power law with a plateau at u ∈ [uc, 1]. To help finding the
form of the solution, we have developed a numerical iterative procedure, as exposed
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Figure 3. 7 iterations of the fixed-point procedure deduced from (118-119)
(and described in appendix B.3) for the finite-tf Hamiltonian GVM. It supports
the convergence of σk(u) to a 1-step RSB form, with σ(u < uc) = 0 and
σ(u > uc) = cte., corresponding to (121). The index k of the iteration increases
from the red to the dark purple curves. (Left) σk(u). (Right σk(u) in log-
log scale. One observes that in the region before the cut-off uc, σk(u) does not
converge to any stable power-law regime, contrarily to what is observed for other
GVM procedures (see figures B1 and B2). The numerical parameters are β̂ = 10

and ξ̊ = 0.8.

in appendix B. As a benchmark, we have tested this procedure on the infinite-tf
Hamiltonian GVM (see section B.1) and on the free-energy GVM (see section B.2),
whose analytical solutions are fully known [12, 14]. We have obtained that this iterative
procedure successfully recovers the analytical results recalled in section 5.1.

We have applied the same numerical procedure to the finite-tf Hamiltonian GVM,
for small values of the disorder correlation length ξ (which yield the most stable
numerical results). As shown on figure 3, the iterative procedure for the GVM
equations (118-119), described in appendix B.3, supports a 1-step RSB form for σ(u),
instead of a full-RSB solution. It corresponds for [σ](u) to a step function, with a
plateau Σ1 after a cut-off uc:

[σ](u) =

{
0 u < uc

Σ1 u > uc

(121)

One indeed observes on figure 3 (see also the inset of figure 4 (left) that, in a region
[0, uc], the successive iterations σk(u) converge to zero, while for u > uc, the σk(u)’s
converge to a constant plateau. This means that the iterations σk(u) converge to
the a step function, without developing any stable power-law intermediate regime, in
opposition to the results presented in figures B1 and B2 for the other versions of the
GVM.

We have thus studied analytically the behaviour of a 1-step RSB form (121) of
the solution to the GVM variational equations (118-119). The determination of the
optimal values (according to the variational principle) of the parameters Σ1 and uc

is rather complex. It is detailed in sections A.4 and A.5 of appendix A, in a self-
consistent large tf asymptotics. One finds that, as tf → ∞, and as long as ξ can be
neglected, one has:

uc ∼ β̂−1 ∼
( T 5

cD2

) 1
3

t
− 1

3

f Σ1 ∼ β̂2 ∼
( T 5

cD2

)− 2
3

t
2
3

f (122)

These two asymptotic behaviour also include a purely (ξ, c,D, T -independent)
numerical prefactor that we omit here for clarity. We conjecture that, at finite ξ,



CONTENTS 31

0.05 0.10 0.50 1

10
-19

10
-14

10
-9

10
-4

10

u

σ
(u
)

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

u

σ
(u
)

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

u

σ
(u
)

Figure 4. Iterations σk(u) of the fixed-point procedure for σ(u) (described in
section B.3) for the finite-tf GVM, in the small-ξ regime, where σk(u) converges
to a 1-step RSB form. The iterations σk(u) are evaluated for different values

of tf ∈ {t
(1)
f , t

(2)
f = 23t

(1)
f , t

(3)
f = 26t

(1)
f }. (Left) Results for t

(1)
f (k increasing

from red to violet) and t
(2)
f (k increasing from rose to green). The inset shows

the log-log representation for t
(1)
f , illustrating the absence of power-law regime.

(Right) Results for t
(1)
f , t

(2)
f and t

(3)
f (k increasing from cyan to orange). The

scaling (122) implies that uc is divided by 2 from t
(i)
f to t

(i+1)
f , as observed.

Similarly, the height Σ1 of the plateau σ(u > uc) is multiplied by 8. This supports

the scaling relation (122): β̂uc ∼ t0f that is essential for the determination of the

KPZ exponent ζ = 2
3

, see (128).

the optimal solution to the variational equations consists also in two plateaus, but
separated by a full-RSB branch belonging to the non-constant [σ](u) plotted in figure 2.
We reserve the study of such a solution to a future study [42] ; it would make it
possible to track the role of ξ in the scalings. Since ξ is neglected before obtaining the
solution (122), it is not surprising that the combination of the parameters {c,D, T}
that rescales the length tf of the interface is precisely the high-temperature Larkin

length Lc(T, 0) = T 5

cD2 defined in (27).
We now determine the scaling of the roughness implied by the asymptotic

behaviour (122). One has, defining a roughness function B(t1; tf) at an intermediate
position t1:

B(t1; tf) ≡
〈[
y(t1)− y(0)

]2〉
with 0 < t1 < tf (123)

(106)
=

(
D

cT

) 2
3

t2ζf
〈[
ỹ(t̂1)

]2〉
with t̂1 =

t1
tf

(124)

In the GVM approximation, one uses the following estimate:〈[
ỹ(t̂1)

]2〉 ' 〈[ỹ1(t̂1)
]2〉

0
(125)

Coming back to the Fourier representation, one has〈(
ỹ1(t̂1)

)2〉
0

= β̂−1
∑
ω

(
1− cos

(
ω t̂1

))
G̃(ω) (126)

(A.43)
= β̂−1

∑
ω

(
1− cos

(
ω t̂1

))
ω2

ω2 + Σ̃1/uc

ω2 + Σ̃1

(127)

Using the Poisson summation formula for summing over the discrete Fourier modes,
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one finds

〈(
ỹ1(t̂1)

)2〉
0

= (ucβ̂)−1 t̂1
2

+ β̂−1 (1− uc)
sinh

(
1
2

(
1− t̂1

)
Σ

1
2
1

)
sinh

(
1
2 t̂1Σ

1
2
1

)
√

Σ1uc sinh
(

1
2Σ

1
2
1

) (128)

With the large-tf asymptotics (122), one obtains〈(
ỹ1(t̂1)

)2〉
0

= C0
t̂1
2

+ C1

( T 5

cD2

) 1
3

t
− 1

3

f (129)

where C0 and C1 are numerical constants, independent of tf . At dominant order,

we thus have
〈(
ỹ1(t̂1)

)2〉
0
∼ t0f , and coming back to the original roughness function

through (124), one finally obtains ζ = 2
3 . In other words, the Flory rescaling of the

replicated Hamiltonian (106) has put as a prefactor of the roughness (107) the high-

temperature asymptotic roughness ( DcT )2/3t
4/3
f , and the GVM procedure has shown

that at leading order in the limit tf →∞ the correction to this scaling is only a
numerical factor, as expected from (111).

The numerical iterative procedure for the GVM equations, described in
section B.3, allows one to test the previously obtained scalings (122) of the cut-

off uc ∼ t
−1/3
f and of the amplitude σ1 = Σ1/uc ∼ tf of σ(u) for u > uc, in the

regime where a 1-step RSB form for σ(u) is valid (i.e. at sufficiently small ξ for our
approximation to be self-consistent). As shown on figure 4, the predicted scalings (122)
are in agreement with the numerical observations.

Last, one remarks that the 1-step RSB Ansatz (121) also describes the small tf
regime: one checks from (A.36) and (A.55) that as tf → 0, one has uc → 1 and Σ1 → 0.
One recovers a replica symmetric solution, with σ(u)→ 0 ∀u ∈ [0, 1], so that the trial
replicated Hamiltonian has only an elastic contribution. From the expression (128) of

the rescaled roughness, one finds that 〈
(
ỹ1(t̂1)

)2〉0 ∼ β̂−1t̂1 and inserting this results
in (124) one recovers the expected thermal roughness B(tf) ∼ Ttf/c as tf → 0. In
particular, the typical lengthscale separating the thermal and the KPZ regimes of the
roughness, defined as the intersection point between those two regimes, is the (ξ = 0)-

Larkin length (27) Lc(T, 0) = T 5

cD2 . To study the lower temperature regime of the
Larkin length, one would have to solve the finite-tf Hamiltonian GVM equations at
ξ > 0 [42].

5.5. Discussion

We now explain the reason why taking an interface of finite length tf , compared to
the infinite-tf case, modifies the structure of the Hamiltonian GVM in a way which is
significant enough to induce a change of the asymptotic roughness exponent ζ from
ζF = 3/5 to ζKPZ = 2/3. Let us come back to the roughness B(t1, tf) at position t1,
defined in (123), and to its expression in terms of the diagonal coefficient G̃(ω) of the
hierarchical matrix [31]:

B(t1, tf)
(106)
=

(
D

cT

) 2
3

t2ζf β̂−1
∑
ω

(1− cosω t̂1) G̃(ω) (130)

G̃(ω)
(A.23)

=
1

ω2

(
1 +

∫ 1

0

dv

v2

[σ](v)

ω2 + [σ](v)

)
(131)
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Because of the denominator ω2 +[σ](v), one finds that the large-scale regime (t1 →∞,
tf →∞ with finite t̂1 = t1/tf ) is governed by the behaviour of [σ](u) at small values
of [σ](u), and hence at small u. In fact, in Ref. [12] (section IV.E) it was shown

by analysing (130-131) that the large-tf behaviour of the roughness in ∼ t
2ζasympt

f is
governed as follows whenever [σ](u) behaves as a power-law for small u:

[σ](u) ∼
u→0

uν =⇒ ζasympt =
1

2
+

1

ν
(132)

For the infinite-tf Hamiltonian GVM, the function [σ](u) behaves as a power-law as
u→ 0. This is found by solving explicitly the variational equations (B.1-B.2), but this
can also be obtained heuristically in a simple way. Inserting [σ](u) ∼ uν into (B.2),
one gets ∫

R
d̄q
[
G̃(q)− G(q, u)

]
∼
u→0

u−
2+ν
2 (133)

and thus from (B.1) uν−1 ∼ u 3
2

2+ν
2 which imposes ν−1 = 3

2
2+ν

2 and one finds ν = 10.
Hence, using (132), one finally finds that the infinite-tf Hamiltonian GVM is bound
to have a roughness scaling with the Flory exponent 1

2 + 1
10 = 3

5 at large scales.
For the finite-tf Hamiltonian GVM, on the other hand, as discussed in section 5.3

and shown on figure 2, the function [σ](u) has to start by a plateau at small u. This
implies that the previous reasoning cannot be applied. Since the GVM variational
equations (118-119) intertwine all values of u, one obtains in the end a different GVM
structure. In the ξ → 0 regime discussed in section 5.4, one gets a 1-step RSB solution
instead of a full-RSB one. In other words, formally, the limits u→ 0 and tf →∞ do
not commute: the u→ 0 regime (which governs the large physical scales) is different
in the finite- and in the infinite-tf Hamiltonian GVMs approximations. The physical
interpretation of this statement is as follows: if we discard from the beginning the
existence of a finite interface length tf , we forbid the GVM to take into account
the dependence in tf in its self-consistent variational equation, therefore missing the
correct roughness exponent at the end of the day. In particular, one may wonder
if the behaviour σ[u] ∼ u10 for u far enough from 0 illustrated on figure 2, in the
regime where σ[u] is non-constant, might prevent the GVM from yielding the correct
roughness exponent 2/3. However, since σ[u] has to start by a plateau for small u,
the previous reasoning based on (133) and (B.1) cannot be applied and the roughness
exponent is thus not constrained to be equal to the 3/5 Flory one in our approach.

As a final remark, we emphasise that the free-energy GVM computation was
successful in catching ζ = 2

3 because we had put by hand from the beginning, as a
shortcut, the Brownian scaling of the disorder free-energy. The infinite-tf Hamiltonian
GVM cannot catch this value of the exponent, because it predicts that the structure
factor at small Fourier modes displays a Flory scaling, as we have just discussed.
For the free-energy GVM at fixed tf → ∞, we need some additional input regarding
the scaling of the free-energy, namely, that it has a Brownian distribution [12, 14].
If one accounts for the finite-tf correction to its pure Brownian scaling, the GVM
approximation can be shown to be self-consistent [13]. Keeping track of the finite tf
within a Hamiltonian GVM approach thus appears to be the correct way in order to
avoid the Flory pitfall in this computation scheme.
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6. Concluding remarks

In this work, we first revisited the standard Flory arguments regarding the geometrical
fluctuations of the static 1D interface with a short-range elasticity and a random-
bond disorder, at finite temperature and with a finite disorder correlation length.
This specific problem can be exactly mapped on the free-energy fluctuations of a
growing 1+1 DP, which evolve according to a KPZ equation, and as such is relevant for
the whole 1D KPZ universality class. Comparing different possible power countings,
performed either on the 1D interface Hamiltonian or on the 1+1 DP free energy
(without or with replicas), we identified the physically meaningful power countings
through a saddle-point analysis of path integrals: we found that the validity of
exponents found by power counting arises as a consequence of the existence of optimal
trajectories with finite variance, either at zero temperature or at asymptotically large
timescales. Moreover, we related the failure of the Flory power counting on the
Hamiltonian on the one hand to the absence of such a saddle point, and on the other
hand to having wrongly neglected the scaling of the disorder correlation length ξ.

Secondly, using our new insights on Flory arguments, power countings, and
optimal trajectories, we devised a GVM approximation scheme for the Hamiltonian
description of the interface, taking into account the finite length tf of the interface.
In the large-tf regime, it allowed us to compute the interface roughness with
its correct KPZ asymptotic scaling (B(t) ∼ t4/3), avoiding the usual Flory pitfall
(B(t) ∼ t6/5). We were thus able to address one of the remaining open issues of
Ref. [12], rehabilitating the GVM predictions of scaling exponents. We identified the
precise features of the GVM solution which allow for a non-Flory roughness exponent
to emerge. Another advantage, compared to the free-energy GVM procedure, is that
we do not rely here on a STS decomposition, which is rather specific of the 1+1 DP,
opening perspectives to apply the proposed procedure to other systems. Our solution,
however, is for the moment restricted to the ξ → 0 regime. The understanding of the
GVM dependence in ξ is an open perspective: we conjecture that instead of a 1-step
RSB solution, the GVM variational equation presents a full-RSB solution surrounded
by two plateaus [42]. Such an approach should allow to capture the full temperature
dependence of the interface characteristic crossover length- and energy-scales, taking
into account the finite disorder correlation length ξ. Once this issue is settled, a
natural application of our finite-length GVM framework would be to determine the
polymer endpoint momenta and distribution, following the ideas presented in [35, 43].
Of particular interest are moment ratios such as the kurtosis or the skewness, which
could be computed in principle from this distribution: they are independent of the
amplitude of the fluctuations and their value could be compared to known numerical,
experimental and analytical results [44, 45, 46, 47].

More generally, studying disordered systems, we showed that it can be very useful
to reformulate standard scaling arguments directly on the underlying path integrals
of observable averages, in order to validate (or to invalidate) the corresponding
scaling predictions regarding a given observable, averaged over disorder and thermal
fluctuations. In that respect, the Lax-Oleinik principle played a key role in setting a
rigorous framework for the existence of optimal trajectories. Such a procedure could
of course be generalised to disordered elastic systems beyond the static 1D case that
we have considered. For instance, it can be used for identifying the validity range
of the so-called quasistatic ‘creep’ regime, reformulating the corresponding standard
scaling arguments [48, 2] into the analysis of a saddle point small-force asymptotic
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behaviour of the system velocity (represented as path integral), as we have recently
done with other co-authors in Ref. [30].

Besides, the approach we have presented can be extended to interfaces with more
general boundary conditions: instead of pinning the two extremities of the interface
to 0, one can free its endpoint and include the study of its fluctuations within the
GVM approximation scheme (this requires to device a ‘dual GVM’ description with
two GVM Ansätze capturing the fluctuations of both the bulk and the extremities
of the interface [42]). Other perspectives include for instance the study of the DP in
dimensions higher than 1+1 [49, 50]. The connection to the ‘self-consistent expansion’
approach [51, 52] is also worth investigating, as it corresponds at minimal order to an
Hartree-Fock approximation and as it as been applied to the study of the dynamics of
the KPZ equation [53].

In conclusion, although scalings arguments can be very powerful shortcuts to
potentially long and cumbersome computations, they rely on implicit assumptions
which must be independently validated. In that respect, identifying saddle points of
path integrals describing observable averages is a possible strategy worth keeping in
mind.
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A. The finite-tf Hamiltonian GVM approach

In this section, we provide the details of the finite-tf Hamiltonian GVM computations
presented in section 5.2 and section 5.3. The starting point is the rescaled and
replicated Hamiltonian (108):

H̃
[
ỹ(t̂), ξ̊(tf)

]
=

∫ 1

0

dt̂

[∑
a

1
2 (∂t̂ỹa)2 −

∑
a<b

R̂ξ̊(tf )

(
ỹb(t̂)− ỹa(t̂)

)]
(A.1)

whose different contributions are defined by (113)-(114)-(115). We consider the trial
Hamiltonian (95) but with discrete Fourier modes (ω ∈ 2πZ) instead of continuous
Fourier modes (q ∈ R):

H̃0

[
y, tf

]
=

1

2

∑
ω

n∑
a,b=1

ya(−ω)G−1
ab (ω)yb(ω) (with d̄q ≡ dq

2π ) (A.2)

with G−1
ab (ω) a hierarchical matrix. We emphasise that the successive steps of the

derivation are similar to those presented in [12] until (A.25). As we detail, having
discrete modes instead of continuous ones modifies the GVM solution and affects
drastically the scaling properties at large lengthscales.
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A.1. Variational equations

The Bogoliubov variational principle takes the form ∂Fvar/∂Gab(ω) = 0 (∀a, b, ω) for
the variational free energy

Fvar = F0 + 〈H̃ − H̃0〉0 (A.3)

with

F0 = −β̂−1 logZ0 = −1

2

∑
ω

log det G̃(ω) + const. (A.4)

and

〈H̃el − H̃0〉0 =
1

2

∑
ω

〈 n∑
a=1

ω2ỹa(−ω)ỹa(ω) +

n∑
a,b=1

ỹa(ω)G−1
ab (ω)ỹb(ω)

〉
0

(A.5)

=
1

2

∑
ω

n∑
a,b=1

[
ω2δab +G−1

ab (ω)
]
〈ỹa(−ω)ỹb(ω)〉0 (A.6)

=
β̂−1

2

∑
ω

n∑
a,b=1

[
ω2δab +G−1

ab (ω)
]
Gab(ω) (A.7)

=
β̂−1

2

∑
ω

n∑
a=1

ω2Gaa(ω) + const. (A.8)

For a Gaussian quenched random potential, with a generic two-point correlator of
Fourier transform Rξ̊(λ), the averaged disorder Hamiltonian is:〈
H̃dis

[
ỹ(ω), ξ̊(tf)

]〉
0

= −
∫
R
d̄λRξ̊(λ)

∑
a<b

〈
eiλ[ỹb(t̂)−ỹa(t̂)]

〉
0

(A.9)

= −
∫
R
d̄λRξ̊(λ)

∫ 1

0

dt̂
∑
a<b

e
−λ22

〈
[ỹb(t̂)−ỹa(t̂)]

2
〉
0 (A.10)

Then, using that in the GVM〈
[ỹb(t̂)− ỹa(t̂)]2

〉
0

= β̂−1
∑
ω

[
Gaa(ω) +Gbb(ω)− 2Gab(ω)

]
(A.11)

one obtains finally〈
H̃dis

[
ỹ(ω), ξ̊(tf)

]〉
0

= −
∫
R
d̄λRξ̊(λ)

∑
a<b

e
−λ2

2β̂

∑
ω

[Gaa(ω)+Gbb(ω)−2Gab(ω)]
(A.12)

The extremalisation of Fvar with respect to Gab(ω) (a 6= b) yields that G−1
a6=b(ω) = −σab

is independent of ω:

0 = − 1

2β̂
G−1
ab (ω)−

∫
R
d̄λRξ̊(λ)

λ2

β̂
e
−λ2

2β̂

∑
ω′

[Gaa(ω′)+Gbb(ω
′)−2Gab(ω

′)]
(A.13)

⇐⇒ σab = 2

∫
R
d̄λRξ̊(λ)λ2e

−λ2
2β̂

∑
ω

[Gaa(ω)+Gbb(ω)−2Gab(ω)]
(A.14)

Introducing Gaa(ω) = G̃(ω) the variational equation ∂Fvar/∂Gab(ω) = 0 writes

σab = 2

∫
R
d̄λRξ̊(λ)λ2e

−λ2
β̂

∑
ω

[
G̃(ω)−Ga6=b(ω)

]
(A.15)
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The variation with respect to Gaa(ω) (in which 〈H̃el − H̃0〉0, through (A.8), gives a
non-zero contribution) yields

0 = − 1

2β̂
G−1
aa +

1

2β̂
ω2δaa︸ ︷︷ ︸

= 1
2β̂
σaa

+
1

2β̂

∑
a′(6=a)

σaa′ (A.16)

where for the last term we recognised σaa′ from (A.15). One thus obtains that

σaa = −
∑
a′(6=a)

σaa′ (A.17)

This implies that the sum of the coefficients on each line or column of the hierarchical
matrix, namely its ‘connected part’, stems solely from the elastic part of the
Hamiltonian:

G−1
c (ω) ≡

n∑
a=1

G−1
ab (ω) = ω2 (G−1

c Gc=1)
⇐⇒ Gc(ω) ≡

n∑
a=1

Gab(ω) = 1/ω2 (A.18)

A.2. Continuous parametrization of the variational equation

Then, introducing a continuous parametrization of the space of replicas, we map
a ∈ {1, . . . n} to u ∈ [0, 1] and (A.15) becomes:

σ(u) = 2

∫
R
d̄λRξ̊(λ)λ2e

−λ2
β̂

∑
ω

[
G̃(ω)−G(ω,u)

]
(A.19)

We now use that Gab verifies the replica algebra of hierarchical matrices (see
appendix II of Ref. [31], or, for notations similar to the ones used here, appendix B of
Ref. [12]):

∂u
[
G̃(ω)−G(ω, u)

]
= − σ′(u)(

G−1
c (ω) + [σ](u)

)2 (A.20)

[σ] (u) = uσ(u)−
∫ u

0

dv σ(v) (A.21)

G̃(ω)−G(ω, u) =
1

u

1

G−1
c (ω) + [σ](u)

−
∫ 1

u

dv

v2

1

G−1
c (ω) + [σ](v)

(A.22)

G̃(ω) =
1

G−1
c (ω)

(
1 +

∫ 1

0

dv

v2

[σ](v)

G−1
c (ω) + [σ](v)

+
σ(0)

G−1
c (ω)

)
(A.23)

where the connected term writes G−1
c (ω) = ω2, as mentioned in (A.18).

Besides, in order to go further in explicit computations, we choose specifically a
Gaussian function for the disorder two-point correlator (4):

Rξ̊(λ) = e−ξ̊
2λ2

(A.24)

The integral over the transverse continuous Fourier modes λ in the variational equation
(A.19) can be computed. This yields the form of the variational equation announced
in section 5.2 of the main text:

σ(u) =
2√
π
β̂

3
2

{
β̂ξ̊2 +

∑
ω

[
G̃(ω)−G(ω, u)

]}− 3
2

(A.25)
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where, by summing explicitly over ω ∈ 2πZ the hierarchical inversion relations (A.22),
one has∑

ω

[
G̃(ω)−G(ω, u)

]
=

1

u

coth
(

1
2

√
[σ](u)

)
2
√

[σ](u)
−
∫ 1

u

dv

v2

coth
(

1
2

√
[σ](v)

)
2
√

[σ](v)
(A.26)

This equation resembles that of the infinite-tf Hamiltonian GVM in [12]:∫
R
d̄q
[
G̃(q)−G(q, u)

]
=

1

u

1

2
√

[σ](u)
−
∫ 1

u

dv

v2

1

2
√

[σ](v)
(A.27)

since the only difference is that coth
(

1
2

√
[σ](u)

)
is replaced by 1. Technically, this

difference is the precise origin of the distinct scalings presented by the two GVMs
(due to the singular behaviour of cothx as x → 0). Physically, this is understood by

the fact that the small-[σ](u) regime, where coth
(

1
2

√
[σ](u)

)
is singular, governs the

large-scale behaviour of the roughness.

A.3. Comparison to the Hamiltonian GVM: a self-consistent equation on [σ](u)

In the study of the Hamiltonian GVM of the infinite interface (denoted symbolically
by GVM∞), solving the variational equation is done by differentiating the variational
equation with respect to u and identifying of a self-consistent equation on [σ](u) (valid
when [σ](u) is non-constant). One then finds that it is solved by [σ](u) ∝ u10. The
complete form of [σ](u), recalled in (102), is then a combination between this power-
law behaviour and a plateau. We follow here a similar procedure for the finite-tf GVM
computation, in order to understand the difference between these two procedures.

Since the GVM variational equations are closely related to those of the GVM∞
(see the comment after (A.26)), we indicate using braces the factors which are equal
to 1 in the GVM∞ and different from 1 in our finite-tf settings here. By direct
computation, one directly checks from (A.26) that:

∂u
∑
ω

[
G̃(ω)−G(ω, u)

]
= − σ′(u)

8{[σ](u)} 3
2

=1 for GVM∞︷ ︸︸ ︷
sinh

(√
[σ](u)

)
+
√

[σ](u)

sinh2
(

1
2

√
[σ](u)

) (A.28)

Differentiating (A.25) with respect to u yields

σ′(u) =
3

8
√
π
β̂

3
2

{
β̂ξ̊2 +

∑
ω

[
G̃(ω)−G(ω, u)

]}− 5
2

× σ′(u)

{[σ](u)} 3
2

sinh
(√

[σ](u)
)

+
√

[σ](u)

sinh2
(

1
2

√
[σ](u)

)
︸ ︷︷ ︸

=1 for GVM∞

(A.29)

Hence, if σ′(u) 6= 0

1 =
3π

1
3

214/3
β̂−1σ(u)

5
3 {[σ](u)}− 3

2

sinh
(√

[σ](u)
)

+
√

[σ](u)

sinh2
(

1
2

√
[σ](u)

) (A.30)
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σ(u) =
( 214

27π

) 1
5

β̂
3
5 {[σ](u)} 9

10

[ sinh2
(

1
2

√
[σ](u)

)
sinh

(√
[σ](u) +

√
[σ](u)

)] 3
5

︸ ︷︷ ︸
=1 for GVM∞

(A.31)

Differentiating again with respect to u and assuming σ′(u) 6= 0

1 =
1

5

(27× 29

π

) 1
5

β̂
3
5 u {[σ](u)}− 1

10

3

 sinh2
(

1
2

√
[σ](u)

)
sinh

(√
[σ](u)

)
+
√

[σ](u)


3
5

+

+ [σ](u)

 sinh5
(√

[σ](u)
)

sinh4
(

1
2

√
[σ](u)

) (
sinh

(√
[σ](u)

)
+
√

[σ](u)
)8


1
5

︸ ︷︷ ︸
=1 for GVM∞

It can also be rewritten

1 =
3

5

(27× 29

π

) 1
5

β̂
3
5 u {[σ](u)}− 1

10

×
[ sinh2

(
1
2

√
[σ](u)

)
sinh

(√
[σ](u)

)
+
√

[σ](u)

] 3
5

1 +
1

3

[σ](u) coth
(

1
2

√
[σ](u)

)
sinh

(√
[σ](u)

)
+
√

[σ](u)

︸ ︷︷ ︸
=1 for GVM∞

(A.32)

as the result announced in the main text at (120). This is the equation one has to
solve in order to determine [σ](u) in the segment(s) where σ′(u) 6= 0.

A.4. Study of the finite-tf Hamiltonian GVM solution with a 1-step RSB Ansatz

Supported by the numerical results presented in section 5.4, we study in this subsection
a 1-step RSB form of the solution to the variational equations (A.25-A.26) for the
finite-tf Hamiltonian GVM.

A.4.1. Form of the 1-step RSB Ansatz

The 1-step RSB Ansatz takes the following form (taking notations similar to those
of Ref. [37]):

σ(u) =

{
0 u < uc

Σ1/uc u > uc

(A.33)

which implies

[σ](u) =

{
0 u < uc

Σ1 u > uc

(A.34)

From (A.26):

∑
ω

[
G̃(ω)−G(ω, u)

]
=


+∞ u < uc

coth
(

1
2

√
Σ1

)
2
√

Σ1

u > uc

(A.35)
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The GVM equations (A.25-A.26) become

Σ1 =
2√
π
β̂

3
2uc

{
β̂ξ̊2 +

coth
(

1
2

√
Σ1

)
2
√

Σ1

}− 3
2

(A.36)

A.4.2. Variational free energy in the 1-step RSB Ansatz

In the full-RSB cases recalled in section 5.1 from [12], the variational equation
for σ(u) contained all the information for solving both the power-law behaviour and
the plateau, along with the value of the full-RSB cutoff uc. On the contrary, in the
1-step case, the value of the cut-off uc is determined by differentiating the variational
free energy Fvar with respect to uc and one actually needs to explicitly compute
limn→0

1
nFvar. The computation of three contributions to the variational free energy

Fvar = 〈H̃el − H̃0〉0 + 〈H̃dis〉0 + F0, defined in (A.3-A.9) is the longest computation of
the solution of the 1-step RSB Ansatz. One has first:

lim
n→0

1

n
〈H̃el − H̃0〉0 =

β̂−1

2

∑
ω

ω2G̃(ω) (A.37)

secondly:

lim
n→0

1

n

〈
H̃dis

〉
0

=

∫
d̄λRξ̊(λ)

∫ 1

0

du e
−λ2

β̂

∑
ω

[
G̃(ω)−G(ω,u)

]
(A.38)

=
1

2
√
π

∫ 1

0

du
{
ξ̊2 + β̂−1

∑
ω

[
G̃(ω)−G(ω, u)

]}− 1
2

(A.39)

and thirdly, up to an additive constant:

lim
n→0

1

n
F0 = −1

2
β̂−1 lim

n→0

1

n

∑
ω

log det G̃(ω) (A.40)

=
1

2
β̂−1

∑
ω

[
− logGc(ω) +

∫ 1

0

du

u2
log

Gc(ω)− [G](ω, u)

Gc(ω)

]
(A.41)

=
1

2
β̂−1

∑
ω

[
+ logω2 +

∫ 1

0

du

u2
log
(

1− ω2 [G](ω, u)
)]

(A.42)

with Gc(ω) =
(
G−1
c (ω)

)−1
= 1/ω2 and [G](ω) ≡

∫ u
0
dv G(ω, v). One uses then

G̃(ω)
(A.23)

=
1

ω2

ω2 + Σ1/uc

ω2 + Σ1
(A.43)

G̃(ω)−G(ω, u)
(A.22)

=


1

ucω2
+
(

1− 1

uc

) 1

ω2 + Σ1
if u < uc

1

ω2 + Σ1
if u > uc

(A.44)

∑
ω

[
G̃(ω)−G(ω, u)

]
(A.44)

=
∑
ω


1

ω2

ω2 + Σ1/uc

ω2 + Σ1
if u < uc

1

ω2 + Σ1
if u > uc

(A.45)

=


S(Σ1, uc) if u < uc

coth
(

1
2

√
Σ1

)
2
√

Σ1

if u > uc

(A.46)
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[G](ω, u) =


0 if u < uc

1

ω2

Σ1

ω2 + Σ1
if u > uc

(A.47)

Here the first sum (for u < uc) in (A.45) is singular because of the term ω = 0, and
decomposed as follows, with ω0 = 0+:

S(Σ1, uc) ≡
∑
ω

1

ω2

ω2 + Σ1/uc

ω2 + Σ1
=

1

ucω2
0

+
1

12uc
+
( 1

uc
−1
)( 1

Σ1
−

coth
(

1
2

√
Σ1

)
2
√

Σ1

)
(A.48)

Gathering the results, one has

F1RSB
var =

β̂−1

2

∑
ω

[
ω2 + Σ1/uc

ω2 + Σ1
+ logω2 +

( 1

uc
− 1
)

log
ω2

ω2 + Σ1

]
(A.49)

+
β̂

1
2

2
√
π

[
uc

{
β̂ξ̊2 +

∑
ω

1

ω2

ω2 + Σ1/uc

ω2 + Σ1

}− 1
2

+ (1− uc)
{
β̂ξ̊2 +

coth
(

1
2

√
Σ1

)
2
√

Σ1

}− 1
2

]

=
β̂−1

2

[( 1

uc
− 1
) 1

2

√
Σ1 coth

(
1

2

√
Σ1

)
−
( 1

uc
− 1
)∑

ω

log
(

1 +
Σ1

ω2

)]
(A.50)

+
β̂

1
2

2
√
π

[
uc

{
β̂ξ̊2 + S(Σ1, uc)

}− 1
2

+ (1− uc)
{
β̂ξ̊2 +

coth
(

1
2

√
Σ1

)
2
√

Σ1

}− 1
2

]
+ “∞”

where we have used that∑
ω

ω2 + Σ1/uc

ω2 + Σ1
=
∑
ω

{( 1

uc
− 1
) Σ1

ω2 + Σ1
+ 1

}
(A.51)

=
( 1

uc
− 1
) 1

2

√
Σ1 coth

(
1
2

√
Σ1

)
+ “∞” (A.52)

where +∞ depends on no parameters. Using Euler’s formula for infinite products, one
has ∑

ω

log
(
1 + Σ̃1

ω2

)
= log

sinh
(

1
2

√
Σ̃1

)
1
2

√
Σ̃1

(A.53)

and finally

F1RSB
var =

β̂−1

2

[( 1

uc
− 1
) 1

2

√
Σ1 coth

(
1

2

√
Σ1

)
−
( 1

uc
− 1
)

log
sinh

(
1
2

√
Σ̃1

)
1
2

√
Σ̃1

]
(A.54)

+
β̂

1
2

2
√
π

[
uc

{
β̂ξ̊2 + S(Σ1, uc)

}− 1
2

+ (1− uc)
{
β̂ξ̊2 +

coth
(

1
2

√
Σ1

)
2
√

Σ1

}− 1
2

]
+ “∞”

Differentiating the free energy w.r.t. 1/uc, one gets, sending ω0 to 0 afterwards:

β̂−1

2

[
1

2

√
Σ1 coth

(
1

2

√
Σ1

)
− log

sinh
(

1
2

√
Σ1

)
1
2

√
Σ1

]
= u2

c

β̂
1
2

2
√
π

{
β̂ξ̊2 +

coth
(

1
2

√
Σ1

)
2
√

Σ1

}− 1
2

(A.55)

This equation will allow to determine the cutoff uc.
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Figure B1. 10 iterations of the iterative procedure described in section B.1
for the infinite-tf Hamiltonian GVM, showing the convergence of σk(u) to a
form σ(u < uc) ∝ u9 and σ(u > uc) = σ(uc). (Left) σk(u) for 1 ≤ k ≤ 10.
(Center) σk(u) in log-log scale. (Right) the logarithmic derivative of σk(u). In
all figures, k increases from 1 to 10 from red to blue. The dashed lines correspond
to the full RSB regime σ(u < uc) ∝ u9. Parameters are β̂ = 2 and ξ̊ = 1

2
.

A.5. KPZ Scaling of the 1-step RSB solution at large tf

Assuming that at ξ = 0 the solution of the GVM variational equation is 1-step RSB
with self-consistently,

Σ1 →∞ as tf →∞ (A.56)

one obtains from the variational equation (A.36) that

Σ1 ∼ uc β̂
3
2 Σ

3
4
1 ⇐⇒ Σ1 ∼

(
uc β̂

3
2

)4
(A.57)

We now use the equation (A.55) in Σc, uc, which depends on {β̂, ξ̊}, to determine a
relation on uc: remarking that the dominant terms of the first bracket compensate at
large Σ1, and that the rest yields a constant, one has

β̂−1 ∼ u2
c β̂

1
2 Σ

1
4
1

(A.57)∼ u2
c β̂

1
2 uc β̂

3
2 ∼ u3

c β̂
2 (A.58)

from which we deduce

β̂uc ∼ 1 (A.59)

This implies that at large tf

uc ∼ t
− 1

3

f Σ1
(A.57)∼ t

2
3

f (A.60)

which self-consistently justifies the divergence of Σ1 as tf →∞.

B. Numerical solution to the GVM variational equations

Solving analytically the variational equations of the GVM approach is not an obvious
task. To get a hint of the solutions, we present a numerical scheme to solve the
variational equations iteratively. We first test it on the well-studied cases of the
infinite-tf Hamiltonian GVM in section B.1, and the free-energy GVM in section B.2,
before applying it to the finite-tf Hamiltonian GVM in section B.3.



CONTENTS 43

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

u

σ
(u
)

0.001 0.010 0.100 1

10

20

50

u

σ
(u
)

0.05 0.10 0.50 1

0.0

0.5

1.0

1.5

2.0

u

∂
lo

g
(σ
(u
))
/
∂
lo

g
(u
)

Figure B2. 200 iterations of the fixed-point procedure for the free-energy
GVM, described in section B.2, showing the convergence of σk(u) to a form
σ(u < u∗) = σ(u∗), σ(u∗ < u < uc) ∝ u2 and σ(u > uc) = σ(uc). The index
k grows from 1 to 200 from red to dark purple. (Left) σk(u) for 1 ≤ k ≤ 200
(Center) σk(u) in log-log scale. (Right) the logarithmic derivative of σk(u). The
dashed lines correspond to the full RSB regime σ(u∗ < u < uc) ∝ u2. Parameters

are β̂ = 20 and ξ̊ = 1
20

.

B.1. Iterative procedure: (i) the infinite-tf Hamiltonian GVM

Here the variational equation, similar to (A.25), reads

σ(u) =
2√
π
β̂

3
2

[
ξ̊2 + β̂−1

∫
R
d̄q
[
G̃(q)−G(q, u)

]]− 3
2

(B.1)

and the integral over q of the equivalent of (A.22) yields∫
R
d̄q
[
G̃(q)− G(q, u)

]
=

1

u

1√
[σ](u)

−
∫ 1

u

dv

v2

1√
[σ](v)

(B.2)

This pair of equations can be seen as a fixed-point equation for σ(u). One can thus
solve this pair using an iterative procedure on σ(u), which, if converging, gives a stable
solution to (B.1-B.2).

Starting from an ‘initial’ σ0(u), one iterates numerically for k ≥ 0 the following
procedure to evaluate σk+1(u) from σk(u):

• determine [σk](u) from σk(u)

• determine the corresponding
∫
Rd̄q

[
G̃k(q)− Gk(q, u)

]
from (B.2)

• determine the next iteration σk+1(u) from (B.1) as

σk+1(u) =
2√
π
β̂

3
2

[
ξ̊2 + β̂−1

∫
R
d̄q
[
G̃k(q)−Gk(q, u)

]]− 3
2

(B.3)

If the procedure converges as the number of iteration steps increases (i.e. if
σk(u) → σ∞(u) as k → ∞), one expects to obtain a fixed point σ∞(u) which is a
stable solution of the variational equation (B.1). Figure B1 confirms the convergence
of the procedure to the expected form of the solution that can be obtained analytically
by the full solution of the problem, as discussed in section 5.1, and that σ(u < uc) ∝ u9

and σ(u > uc) = σ(uc), as discussed in section 5.1 and in Refs. [12, 14].

B.2. Iterative procedure: (ii) the free-energy GVM

Here the variational equation reads [12, 14]:

σ(u) =
2√
π
β̂

3
2

{
ξ̊2 + β̂−1

[
G̃−G(u)

]}− 1
2

(B.4)
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Figure B3. G̃−G(u) for the free-energy GVM, after 200 iterations. (Left) log-
log scale. (Center) logarithmic derivative. (Right) logarithmic derivative of the
only first term of (B.5). The dashed orange lines correspond to the full RSB
regime behaviour G̃ − G(u∗ < u < uc) ∝ u−4, see (B.9). The dotted green lines

correspond to a 1/u behaviour of (B.7). Parameters are β̂ = 20 and ξ̊ = 1
20

.

and the equivalent of (A.22) yields (with G−1
c = 1):

G̃−G(u) =
1

u

1

G−1
c + [σ](u)

−
∫ 1

u

dv

v2

1

G−1
c + [σ](v)

(B.5)

We recall that the all the tf dependence is hidden in the rescaled inverse temperature β̂
and disorder correlation length ξ̊. Hence, starting from an ‘initial’ σ0(u) and iterating
numerically the following procedure for k ≥ 0:

• determine [σk](u) from σk(u),

• determine the corresponding
[
G̃k − Gk(u)

]
from (B.5),

• determine the next iteration σk+1(u) from (B.4) as

σk+1(u) =
2√
π
β̂

3
2

{
ξ̊2 + β̂−1

[
G̃k −Gk(u)

]}− 1
2

(B.6)

One can expect, if the procedure converges with σk(u) → σ∞(u), to obtain a
fixed point σ∞(u) which is a solution of the variational equation (B.4). Results
shown on figure B2 confirm the convergence to the expected form of the solution
obtained analytically by the full solution of the problem σ(u < u∗) = σ(u∗),
σ(u∗ < u < uc) ∝ u2 and σ(u > uc) = σ(uc), see section 5.1 and Refs. [12, 14].

Note that in (B.5) there is a non-trivial interplay between the first and second
terms, as seen from figure B3 (right):

1

u

1

G−1
c + [σ](u)

∼


1

u
if 0 < u < u∗

u−4 + constant if u∗ < u < uc

1

u
if uc < u < 1

(B.7)

The behaviour of σ(u) is more complex that in the Hamiltonian GVM. In fact,
one can infer it from the following a heuristic reasoning: if one assumes that

σ(u) ∼


σ(u∗) if 0 < u < u∗

uν−1 if u∗ < u < uc

σ(uc) if uc < u < 1

(B.8)
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then, in the regime u∗ < u < uc, one has [σ](u) ∼ uν . Thus, as read from (B.5) (see
figure B3),

G̃−G(u) ∼


G̃−G(u∗) if 0 < u < u∗

u−(1+ν) if u∗ < u < uc

G̃−G(uc) if uc < u < 1

(B.9)

Finally, (B.4) implies uν−1 ∼ u 1
2 (1+ν), whence ν = 3.

B.3. Iterative procedure : (iii) the finite-time Hamiltonian GVM

The iterative procedure for the GVM equations (A.25)-(A.26), after starting from an
initial σ0(u), is thus

• determine [σk](ω, u) from σk(u),

• determine the corresponding
∑
ω

[
G̃k(ω)− Gk(ω, u)

]
, from (A.26),

• determine the next iteration σk+1(u) from (A.25) as

σk(u) =
2√
π
β̂

3
2

{
β̂ξ̊2 +

∑
ω

[
G̃k(ω)−Gk(ω, u)

]}− 3
2

(B.10)

The numerical results shown on figures 3 and 4 in the main text, support a 1-step
RSB form for σ(u) instead of a full-RSB solution, at least in the regime ξ → 0 that
we considered in the numerical study.
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