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Hyperspectral Anomaly Detectors using Robust
Estimators

Joana Frontera-Pons, Student Member, IEEE, Miguel A. Veganzones, Member, IEEE, Frédéric Pascal, Senior
Member, IEEE, and Jean-Philippe Ovarlez, Member, IEEE

Abstract—Anomaly detection methods are devoted to target
detection schemes in which no a priori information about the
spectra of the targets of interest is available. This paper reviews
classical anomaly detection schemes such as the widely spread
Reed-Xiaoli Detector and some of its variations. Moreover, the
Mahalanobis distance based detector, rigorously derived from a
Kelly’s test-based approach, is analyzed and its exact distribution
is derived when both mean vector and covariance matrix are
unknown and have to be estimated. Although, most of these
techniques are based on Gaussian distribution, we also propose
here ways to extend them to non-Gaussian framework. For this
purpose, elliptical distributions are considered for background
statistical characterization. Through this assumption, this paper
describes robust estimation procedures (M-estimators of location
and scale) more suitable for non-Gaussian environment. We show
that using them as plug-in estimators in anomaly detectors leads
to some great improvement in the detection process. Finally, the
theoretical contribution is validated through simulations and on
real hyperspectral scenes.

Index Terms—Hyperspectral Imaging, anomaly detection, el-
liptical distributions, M-estimation.

I. INTRODUCTION

TARGET detection and anomaly detection of
multidimensional signals have proved to be valuable

techniques in a wide range of applications, including
search-and-rescue, surveillance, rare mineral and land mines
detection, etc (see for e.g. [1], [2], [3]). Target detection
aims to discover the presence of a specific signal of interest
among a set of signals. Statistical target detection is based
on the Neyman-Pearson (NP) criterion, which maximizes the
probability of detection (PD) for a given probability of false
alarm (PFA).

Classical target detection methods require the knowledge
of the spectra of the desired targets. One could be interested
in a large number of possible targets each with different
signatures. Thus, the variety of sought spectra corresponding
to the different kind of targets and the difficulties due to
the atmospheric compensation for the measured spectral
signatures (used as steering vectors) have led to the derivation
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of new algorithms that intend to distinguish unusual materials
in a scene without reference to target signatures. In this
work, we are focused on anomaly detection (see e.g. [4] and
references therein). It can be interpreted as a particular case
of target detection in which no a priori information about the
spectra of the targets of interest is available. Hence, the aim
of anomaly detection is to locate objects in the image that
are anomalous with respect to the background. The type of
interesting targets can differ significantly from one application
to another, e.g. in forestry applications infected trees are the
anomalies of interest, whereas in defense and intelligence
applications, the anomalies to be detected are usually vehicles.
Note that, since anomaly detectors do not use any a priori
knowledge, they cannot distinguish between true targets and
detections of bright pixels of the background or targets that
are not of interest. This fact makes extremely difficult to
define a false alarm rate for the detectors as highlighted in [5].

Anomalies are defined with reference to a model of the
background. As for the previous target detection methods, the
background model is developed adaptively using reference
data (see e.g. [6] for a complete survey in anomaly detec-
tion methods). Most of these methods rely on the classical
Gaussian distribution assumption and need for the statistical
characterization of the background usually through first and
second order parameters (i.e. the mean vector and the co-
variance matrix). In this case, the reference data are taken
either from a local neighborhood around the observation vector
either using all the pixels in the image. Both approaches
have their benefits (see e.g. [7]). Local strategy provides
more realistic scenario for the background characterization.
However, it can be sensitive to the presence of false alarms
due to isolated anomalies. While the global approach is not
likely to generate this kind of false alarms, it will decrease
the detection capability for isolated targets. From here on,
local procedures will be considered for the different detection
schemes.

A. Related work

The actual distribution of the background pixels differs from
the theoretically predicted under Gaussian hypothesis (see [8]
for a recent overview on background modelling for HSI). In
fact, as stated in [9], [10], the empirical distribution usually
has heavier tails compared to the Gaussian distribution, and
these tails strongly influence the observed false-alarm rate of
the detector. Therefore, the class of Elliptical distributions
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is assumed for background statistics characterization. The
family of Elliptical distributions were originally introduced
by Kelker in [11] and widely studied in [12]. They account
for non-Gaussianity providing a long tailed alternative to
multivariate normal model. They are proven to represent a
more accurate characterization of HSI than models based on
Gaussian assumption [9]. However, when considering elliptical
distributions, the classical Gaussian-based estimators do not
provide optimal performance anymore. Complementary to the
paper [8] focused on the non-Gaussian background modeling
with Elliptical distributions, this work aims at studying appro-
priate robust parameters estimates.

B. Contributions

We consider on the first part of the paper the most popular
Gaussian-based anomaly detectors, and we provide a rigorous
derivation of the Mahalanobis distance through a Kelly’s test-
based approach. Moreover, one of the theoretical contribution
is the derivation of the exact distribution for the classical
Mahalanobis-based anomaly detector when both the mean
vector and the covariance matrix are unknown in Gaussian
environment.

Furthermore, robust estimation methods are considered in
classical anomaly detection schemes for non-Gaussian dis-
tributed background assumption, and the improvement brought
in most scenarios is pointed out. The Fixed Point estimators
(also known as Tyler’s estimators [13]) are proposed for the
parameters estimation. These can then be used as plug-in
estimators in place of the unknown mean vector or/and of
the covariance matrix in the detection scheme (see for e.g.
[14], [15]). This is a simple but often efficient method to
obtain robust properties for signal processors derived under the
Gaussian assumption. One of the contributions of this work is
to extend the results presented in [16].

C. Outline and notation

This paper is organized as follows. Section II revisits clas-
sical anomaly detection schemes and provides the theoretical
contribution of this paper by deriving the distribution of one
of the detectors. Section III describes the family of elliptical
distributions and the robust estimation methods studied in this
paper for anomaly detection purposes. Section IV illustrates
the theoretical analysis through simulations and Section V
reveals the theoretical improvement over real hyperspectral
images. Finally, Section VI concludes this work.

In the following, vectors (resp. matrices) are denoted by
bold-faced lowercase letters (resp. uppercase letters). T rep-
resents the transpose operator. |A| represents the determinant
of the matrix A and Tr(A) its trace. j is used to denote the
unit imaginary number. ∼ means ”distributed as”. Γ(·) denotes
the gamma function. Eventually, ||x|| represents the Euclidean
norm of the vector x.

II. ADAPTIVE ANOMALY DETECTION METHODS

Before detailing the analysis of the corresponding detectors,
let us recap the most common Gaussian-based estimators.

Along with their well-known properties and their simplicity
of analysis, the Sample Covariance Matrix (SCM) and the
Sample Mean Vector (SMV) are the most extended estimates
since they are the Maximum Likelihood Estimators (MLE) for
Gaussian case, as shown in [17]:

µ̂SMV =
1

N

N∑
i=1

xi, (1)

Σ̂SCM =
1

N

N∑
i=1

(xi − µ̂SMV )(xi − µ̂SMV )T . (2)

Further, we shall denote the Centered SCM (CSCM) as:

Σ̂CSCM =
1

N

N∑
i=1

(xi − µ)(xi − µ)T . (3)

where N denotes the number of secondary data. However,
such widespread techniques are suboptimal when the noise is
a non-Gaussian stochastic process. Section III reviews some
robust procedures particularly suited for estimating the covari-
ance matrix and the mean vector of elliptical populations.
Let us now detail the most popular Gaussian-based anomaly
detectors .

A. Reed-Xiaoli Detector

The original Reed-Xiaoli Detector (RXD) proposed in [18]
is commonly considered as the benchmark anomaly detector
for hyperspectral data. The considered signal model can be
written as:{

H0 : xi = bi, , i = 1, . . . , N

H1 : xi = pαi + bi, , i = 1, . . . , N,

where xi are the N available data vectors on the image of
dimension m. bi ∼ N (0,Σ) represents the residual back-
ground, p is the spectral signature of the possible anomalous
material assumed to be unknown; and αi stands for the ampli-
tude of the intended targets through the N available data, i.e. it
is a known vector α of dimension N that indicates the strength
and position of the sought targets over the image. Remark that
each vector from the available data can potentially contain an
anomaly while in classical detection problem secondary data
are assumed to be signal free. Thus, one can arrange the vector
data into a matrix as X = [x1,x2, . . . ,xN ], and the detection
scheme derived in [18] takes the form:

Λ(X) =
(XαT )T (XXT )−1(XαT )

ααT

H1

≷
H0

λ .

Since hyperspectral data are not zero mean, let us now consider
that the background bi is distributed according to N (µ,Σ)
and the mean vector µ is supposed to be known. In the case
just one anomaly in the data under test is intended to be
detected, the corresponding amplitude vector can be written
as αi = [0 . . . 0 1 0 . . . 0]T where 1 is at the ith position and
the previous detector, whatever i ∈ [1, N ], takes the form:

ΛRXD = (xi − µ)T Σ̂
−1
CSCM (xi − µ)

H1

≷
H0

λ .
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Finally, since the mean vector is usually unknown, it can
be replaced on the detector in by its estimate µ̂SMV . The
resulting detector, commonly known as two-step Generalized
Likelihood Ratio Test, yields:

ΛARXD = (xi − µ̂SMV )T Σ̂
−1
SCM (xi − µ̂SMV )

H1

≷
H0

λ . (4)

The covariance matrix estimation Σ̂SCM in Eq. (4), is per-
formed over all the data set, i.e. including the vector xi under
test. In the following, the test in Eq. (4) will be referred as
the Adaptive RXD (ARXD), to underline the fact that the
unknown mean vector is replaced by its estimate.

B. Kelly Anomaly Detector

We detail here a classical anomaly detector often mistakenly
referred as the RXD. Following the development proposed in
[19], let us now assume the following signal model:{

H0 : x = b, xi = bi , i = 1, . . . , N

H1 : x = αp + b, xi = bi , i = 1, . . . , N,

and the b1, . . .bN are assumed to an independent identically
distributed (IID) sample from a Gaussian distribution bi ∼
N (µ,Σ) As in classical Kelly detector, the covariance matrix
Σ is unknown and the mean vector µ is supposed to be known.
However for anomaly detector derivation, the amplitude of the
signal α is supposed to be known and the unknown parameter
is now the steering vector p. Therefore, N+1 m-dimensional
vectors are observed under each hypothesis and the joint
probability density function (p.d.f.) of the the N secondary
data and the observation vector x under the two hypotheses
Hi can be written as:

fi(x) =

(
1

2π
m
2 |Σ| 12

exp

[
−1

2
Tr(Σ−1Ti)

])N+1

, (5)

where Ti is the composite sample covariance matrix con-
structed from both the secondary data and observation vector:

T0 =
1

N + 1

(
(x− µ)(x− µ)T + Ŵ

)
,

T1 =
1

N + 1

(
(x− (αp + µ))(x− (αp + µ))T + Ŵ

)
,

and Ŵ = N Σ̂CSCM . The first step is to maximize with
respect to (w.r.t) the unknown covariance matrix Σ. Thus,
the matrix maximizing the PDF fi is simply Ti. When this
estimator is replaced in the PDF, one obtains:

max
Σ
fi =

(
1

(πe)m|Ti|

)N+1
2

. (6)

and the Generalized Likelihood Ratio Test (GLRT), neglecting
the exponent (N + 1)/2 is given by:

Λ(x,p) =
|T0|
|T1|

H1

≷
H0

η . (7)

It remains to maximize this expression over the unknown
spectral signature p and the resulting MLE takes the form:

p̂ =
x− µ

α
. (8)

After replacing p by Eq. (8) in Eq. (7), it is easy to show that
the resulting GLRT test is equivalent to:

ΛKellyAD Σ̂ = (x− µ)T Σ̂
−1
CSCM (x− µ)

H1

≷
H0

λ . (9)

The quadratic form in Eq. (9) corresponds to the Maha-
lanobis distance detailed in [20]. It performs statistically as
an outlier detector. When Gaussian assumption is valid, the
quadratic form (x−µ)T Σ−1 (x−µ) follows a χ2-distribution
with m degrees of freedom for Σ and µ perfectly known. In
case the parameter Σ is replaced by its MLE, the CSCM, the
distribution of the quadratic form can be written according to
(see [21]):

Λ
(N)

KellyAD Σ̂
∼ T 2 , (10)

becomes a Hotelling T 2 distribution and thus,

N −m+ 1

mN
Λ
(N)

KellyAD Σ̂
∼ Fm,N−m+1 (11)

where Fm,N−m+1 is the non-central F -distribution with m
and N −m + 1 degrees of freedom [22] and the superscript
(N) is used to stress the dependence on the number of
secondary data N . For high values of N, (N > 10m), the
distribution can be approximated by the χ2-distribution.

As discussed above, when the mean vector is unknown, it
can be replaced on the detector (two-step GLRT) by its MLE
leading to:

Λ
(N)

KellyAD Σ̂,µ̂
= (x− µ̂SMV )T Σ̂

−1
SCM (x− µ̂SMV )

H1

≷
H0

λ .

(12)

Remark II.1. Interestingly, note that ΛRXD (resp. ΛARXD)
and the ΛKellyAD Σ̂ (reps. Λ

(N)

KellyAD Σ̂,µ̂
) differ only on

the fact that the vector x under test is also present in the
covariance matrix estimation in Eq. (4). Therefore, in ΛRXD,
the N secondary data are not assumed to be signal free
and the proposed detector aims to compare every sample
to the covariance matrix over all the samples. While in the
second approach, ΛKellyAD Σ̂, one intends to differentiate
the observation vector from the background statistically
characterized using N samples. Hence, N + 1 vectors are
available in the latter and ΛKellyAD Σ̂ does not represent
anymore a benchmark structure. Often, the local Kelly
detector is mistakenly referred as the local RXD when the
users, either remove the vector xi from the secondary data or
they prevent it to be part of this set by using a guard window.

The distribution of this detection test is given in the next
Proposition.
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Proposition II.1. The distribution of the detector under Gaus-
sian assumption is given by

N −m
m (N + 1)

Λ
(N)

KellyAD Σ̂,µ̂
∼ Fm,N−m , (13)

with Fm,N−m is the non-central F -distribution with m and
N −m degrees of freedom.

Proof: For simplicity matters, the following notations are
used: Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .
Let us set ∀i = 1, ..., N,xi ∼ N (µ,Σ) and x ∼ N (µ,Σ),
where all these vectors are independent. Now, let us denote

ŴN−1 =

N∑
i=1

(xi − µ̂)(xi − µ̂)T = N Σ̂SCM .

Note that as an application of the Cochran theorem (see e.g.
[23]), one has

ŴN−1
dist.
=

N−1∑
i=1

(xi − µ)(xi − µ)T = (N − 1) Σ̂CSCM ,

where dist.
= means is distributed as.

Since µ̂ ∼ N
(
µ, 1

NΣ
)
, one has x − µ̂ ∼ N

(
0, N+1

N Σ
)
.

This can be equivalently rewritten as

y =
√
N/(N + 1)(x− µ̂) ∼ N (0,Σ).

As we jointly estimate the mean and the covariance matrix, a
degree of freedom is lost, compared with the only covariance
matrix estimation problem.

Let us now consider Λ
(N−1)
KellyAD Σ̂

(i.e. µ known) built from

N − 1 secondary data, rewritten in terms of ŴN−1:

Λ
(N−1)
KellyAD Σ̂

= (N − 1)
(

(x− µ)TŴ−1
N−1(x− µ)

)
where (x − µ) ∼ N (0,Σ) and whose distribution is given
by Eq. (11) where N is replaced by N − 1.

Now, for the joint estimation problem, the ΛKellyAD Σ̂,µ̂ can
be rewritten as:

Λ
(N)

KellyAD Σ̂,µ̂
= N

(
(x− µ̂)TŴ−1

N−1(x− µ̂)
)

= N
N + 1

N

(
yTŴ−1

N−1y
)

dist.
=

N + 1

N − 1
Λ
(N−1)
KellyAD Σ̂

This concludes the proof.

The “PFA-threshold” relationship is easily obtained as the
complementary cumulative density function (c.d.f.) of the
detector distribution.
It is worth pointing out from Eq. (12) that ΛKellyAD Σ̂,µ̂

performs similarly to a matched filter structure applied to
x− µ̂SMV :

Λ(x) = cHT (x− µ̂SMV ) , (14)

where HT is the matched signal and c a constant that can be
also a function on x. The expression in Eq. (14) is completely

characterized by the matched signal HT and the scale constant
c. Hence, one can identify from Eq. (12) the matched signal
HT = (x− µ̂SMV )T Σ̂

−1
SCM and c = 1.

C. Normalized-RXD and Uniform Target Detector
Following the same approach than in Eq. (14), one can

derive many different anomaly detection schemes. We recall
here two popular variants of the Mahalanobis distance
described in [4]: the Normalized-RXD (N-RXD) and the
Uniform Target Detector (UTD).

The N-RXD takes the form:

ΛN−RXD =
(x− µ̂SMV )T

||x− µ̂SMV ||
Σ̂
−1
SCM

(x− µ̂SMV )

||x− µ̂SMV ||
H1

≷
H0

λ ,

(15)
where ||x − µ̂SMV ||2 = (x − µ̂SMV )T (x − µ̂SMV ) stands
for the Euclidean norm of the vector. The detection test in
Eq. (15) can be immediately identified as the normalized
version of ΛKellyAD. In addition, ΛN−RXD takes also the
form of a matched filter specified in Eq. (14) with matched
signal HT = (x − µ̂SMV )T Σ̂

−1
SCM the same as in Eq. (9)

and a different scale constant c = ||x− µ̂SMV ||−2.

The UTD is another widespread anomaly detection test. It
was firstly introduced in [24] and can be defined as:

ΛUTD = (1− µ̂SMV )T Σ̂
−1
SCM (x− µ̂SMV )

H1

≷
H0

λ . (16)

with 1 = [1, . . . , 1]T is the m-dimensional unity vector. Once
again the detector in Eq. (16) can be interpreted as a matched
filter where HT = (1−µ̂SMV )T Σ̂

−1
SCM is the matched signal.

If there is no a priori information about the target spectra,
the non-prior approach is the one that does not introduce any
information into the detector and consists on assuming uniform
distribution for the spectra over all the bands.

D. Generalized Kelly Anomaly Detector
In the previous detection schemes, it has not been taken into

account in the derivation of the test that both mean vector µ
and covariance matrix Σ were unknown. One simply replaced
the mean vector by a plug-in estimate in the detector (two-step
GLRT). In case both covariance matrix and mean vector are
unknown, we need to derive a new detector. This strategy is
similar to the one proposed in [25] for the generalized Kelly
detection test. The likelihood functions under H0 and H1 are
given in (5). Under H0 and H1, the maxima are achieved at

max
Σ,µ

fi =

(
1

(πe)m|Ti|

)N+1
2

, for i = 0, 1,

where

(N+1)T0 = (x−µ0)(x−µ0)T +

N∑
i=1

(xi−µ0)(xi−µ0)T ,

(N + 1)T1 = (x− αp− µ1)(x− αp− µ1)T

+

N∑
i=1

(xi − µ1)(xi − µ1)T ,
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and

µ0 =
1

N + 1

(
x +

N∑
i=1

xi

)
, (17)

µ1 =
1

N + 1

(
x− αp +

N∑
i=1

xi

)
. (18)

Following the same lines than in [25], one has to maximize
the LR in Eq. (7) w.r.t. p. This is obtained by taking:

p̂ =
N + 1

N

(x− µ0)

α
. (19)

Hence, the resulting detector can be written according to:

ΛG−KellyAD = (x− µ0)H S−10 (x− µ0)
H1

≷
H0

λ , (20)

where S0 =

N∑
i=1

(xi − µ0)(xi − µ0)H , and µ0 =

1

N + 1

(
x +

N∑
i=1

xi

)
. Once again the mean vector estimate

µ0 and the covariance matrix S0 depend on the data under
test x. Hence, x − µ0 and S0 are not independent. Remark

that one can write (x−µ0) =
N

N + 1
(x−µ̂SMV ). Neglecting

the multiplicative constants, the test in Eq. (20) appears to
be equivalent to the classical ΛRXD obtained throughout a
different approach but built with N + 1 available data.

III. ROBUST ANOMALY DETECTION

In this section, the class of elliptical distributions and robust
estimation procedures are reviewed.

A. Elliptical Distributions

Hyperspectral data have been proven not to be multivariate
normal but long tailed distributed [9]. In order to take into
account these features, the class of elliptical distributions (see
for e.g. [12] and [26] for a complete survey on elliptical
distributions) is considered to describe the statistical behavior
of the hyperspectral background. An m-dimensional random
real vector x has a multivariate elliptical distribution if its
characteristic function is of the form:

Φx(c) = exp
(
jcTµ

)
φ

(
1

2
cT Σ c

)
, (21)

for some function φ : R+ → R, called characteristic generator,
a positive semidefinite matrix Σ, called scatter matrix and
µ ∈ Cm the location vector. We shall write x ∼ E(µ,Σ, φ).
From Eq. (21), it does not follow that x has a p.d.f. fx(·), but
if exists, it has the form:

fx(x) = cm,h|Σ|−
1
2 hm

(
1

2
(x− µ)T Σ−1 (x− µ)

)
, (22)

where cm,h is a normalization constant and hm(·) is any
function such as Eq. (22) defines a p.d.f. in Rm. The function
hm is usually called density generator and it is assumed to
be only approximately known. In this case, we shall write

E(µ,Σ, hm) instead of E(µ,Σ, φ). Remark that the p.d.f.
in Eq. (22) depends on x only through the quadratic form
(x − µ)T Σ−1 (x − µ). Thus, the level sets of the density
fx(x) are ellipsoids in the Euclidean m-space.

If the second-order moment exists, then Σ reflects the
structure of the covariance matrix of the elliptically distributed
random vector x, i.e. the covariance matrix is equal to the
scatter matrix up to a scalar constant. It serves to characterize
the correlation structure existing within the spectral bands. It
is worth pointing out that the family of elliptical distributions
includes a large number of distributions, notably the Gaussian
distribution, multivariate t-distribution, K-distribution or
multivariate Cauchy. Thus, it allows for heterogeneity of the
background power with the texture.

In order to improve the parameter estimation, the objective
is to find an appropriate model and to use the corresponding
MLEs. Therefore, if the density generator hm is perfectly
known, once could obtain the optimal MLEs for such hm.
This method leads to asymptotically efficient estimators but
not necessarily robust. Indeed, the robust estimator is rather
one that is still fairly reliable, regardless of the data departure,
failing to be optimal in some scenarios. In a real life appli-
cations, although elliptical distributions offer a great deal of
possible distributions, the risk that the data do not follow the
model considered still remains. Thus, the models used always
correspond to simplifications of the reality. The fact that a
slight deviation between reality and the model assumed has
little or no influence on the parameter estimates, is precisely
the robustness of the estimator.

B. Robust parameters estimation

We detail in this section robust estimation procedures
suitable for estimating the mean vector and scatter matrix
within the class of elliptical distributions.

1) Maximum Likelihood Estimators: When the density gen-
erator hm(.) is perfectly known, i.e. the p.d.f. of the underlying
distribution is explicit, then the MLEs of µ and Σ can be
derived and they are given by:

µ̂MLE =

N∑
i=1

ψ(ti) xi

N∑
i=1

ψ(ti)

Σ̂MLE =

N∑
i=1

ψ(ti) (xi − µ̂)T (xi − µ̂MLE) ,

where ti = (xi − µ̂MLE)T Σ̂
−1
MLE (xi − µ̂MLE) and

ψ(t) = −2h′m(t)/hm(t).

Note that the two quantities µ̂MLE and Σ̂MLE appear
on both sides of these equations, characterizing fixed-point
equations µ̂MLE = f

(
µ̂MLE , Σ̂MLE

)
and Σ̂MLE =
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g
(
µ̂MLE , Σ̂MLE

)
. Note that, due to the classical ML theory,

solutions of such equations exist.
2) Fixed Point Estimators: Generalizing these MLEs leads

to the class of M -estimators, introduced in hyperspectral
community in [27]. More precisely, the main idea is to define a
class of estimates that are not directly related to the underlying
p.d.f.: ψ(.) is not anymore a function of hm(.). However, the
asymptotical distribution of these M -estimates are very close
to those obtained in the Gaussian context, i.e. for Σ̂SCM and
µ̂SMV . In the elliptically distributed background context, they
appear to be more appropriate and robust to potential outliers
present in the data. For consequence, this implies that these
M -estimates can replace conventional Gaussian estimates in
all detection schemes without degrading their performance in
Gaussian context but with enhancing their performance in non-
Gaussian context. Among the large class of M -estimators,
the Fixed Point (FP) estimators, according to the definition
proposed by Tyler in [13], appears to be the most robust
estimates satisfying the following implicit equations:

µ̂FP =

N∑
i=1

xi(
(xi − µ̂FP )T Σ̂

−1
FP (xi − µ̂FP )

)1/2
N∑
i=1

1(
(xi − µ̂FP )T Σ̂

−1
FP (xi − µ̂FP )

)1/2
(23)

Σ̂FP =
m

N

N∑
i=1

(xi − µ̂FP ) (xi − µ̂FP )T

(xi − µ̂FP )T Σ̂
−1
FP (xi − µ̂FP )

. (24)

The joint solutions can be obtained using the recursive algo-
rithm given by:

µ̂
(0)
FP = µ̂SMV Σ̂

(0)

FP = Σ̂SCM µ̂
(n+1)
FP = f

(
µ̂

(n)
FP , Σ̂

(n)

FP

)
Σ̂

(n+1)

FP = g
(
µ̂

(n)
FP , Σ̂

(n)

FP

) . (25)

The FP estimates have been widely investigated in statistics
and signal processing literature. We refer to [28] for a detailed
performance analysis. It is worth pointing out that Σ̂SCM and
Σ̂FP have the same asymptotic Gaussian distribution which
differs on their second order moment by a factor m+1

m N , i.e.
for N sufficiently large, Σ̂FP behaves as a Wishart matrix
with m

m+1 N degrees of freedom. Indeed, these estimators
belong to the wider class of robust M-estimators [29].

3) Shrinkage estimators: We present now shrinkage meth-
ods that are suitable for high dimensional problems with small
number of samples (large m small N ). In these ”large m
small N” problems, classical estimators suffer from a distorted
eigen-structure and improved estimators are required.

A common regularization approach has been widely studied,
the shrinkage-SCM approach introduced in [30], [31]. Thus,
in Gaussian context the regularized SCM takes the form:

M̂Shr−SCM (β) =

1− β
N

N∑
i=1

(xi − µ̂SMV ) (xi − µ̂SMV )T + β Im . (26)

In presence of non-Gaussian, impulsive background the esti-
mate in Eq. (26) suffers from the same drawbacks than the
SCM and the class of robust estimates are more appropriate.
Yet, the FP estimators described above exhibit important
shortcomings in high dimensional context and they can not
be computed for the undersampling case when m > N .

Morover, we extend here FP covariance matrix estimator to
the high dimensional setting using shrinkage regularization.
Let us consider now the shrinkage FP introduced in [32] and
defined as the solution of the following fixed point equation:

M̂Shr−FP (β) = (1− β)
m

N
×

N∑
i=1

(xi − µ̂FP ) (xi − µ̂FP )T

(xi − µ̂FP )T M̂−1
Shr−FP (β) (xi − µ̂FP )

+ β Im, (27)

for β =∈ (0, 1] and µ̂FP given in Eq. (23).
It was shown in [32] that when β tends to 0, the proposed

shrinkage estimator in Eq. (27) tends to the FP estimator in
Eq. (24) whose inverse has its trace equal to m. A different
approach that introduces a normalization constraint in the
algorithm for the shrinkage FP estimates is found in [33].
Moreover, in [34], [35], [36], this estimator has been used
within the Expected Likelihood framework. The optimization
of the shrinkage parameter β has been discussed in [37].

The basis of the proposed method are the FP estimators.
However, the approach presented here could be extended to
other M -estimators.

C. Robust Kelly Anomaly Detector
All the detection schemes explained in Section II are derived

under Gaussian assumption. In this section, we explore the use
of robust estimation methods presented above for anomaly
detection. These can then be used as plug-in estimators in
place of the unknown mean vector and/or of the covariance
matrix in the detection scheme. This is a simple but often effi-
cient method to obtain robust properties for signal processors
derived under the Gaussian assumption.

The Kelly anomaly detector has the advantage that the mean
vector and the covariance matrix are independent to each
other and to the observation vector, which is not the case
for the Generalized Kelly or the classical RXD. This allows
replacing the unknown parameters by a robust FP estimators
or Shrinkage estimators and the detector can be written as:

ΛKellyAD Σ̂,µ̂ = (x− µ̂Robust)
T Σ̂
−1
Robust(x− µ̂Robust)

H1

≷
H0

λ,

(28)
where µ̂Robust and Σ̂Robust are those described in Section
III-B. It is important to highlight that the distribution of
this detector is still an open question, as far as the authors
are aware. In fact, it will surely depend on the underlying
particular CE distribution, i.e. the distribution will change with
the choice of hm(·).

IV. SIMULATIONS

In this section, we validate the theoretical analysis on
simulated data. Firstly, we validate through Monte-Carlo sim-
ulations the distribution of ΛKelly AD detailed above. The
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Fig. 1: PFA versus threshold for the ΛKelly AD (m = 5) when
(1) µ and Σ are known (Mahalanobis) (red and black curves)
(2) only µ is known (gray and blue curves) (3) Proposition
II.1: both µ and Σ are unknown (yellow and green curves).
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Fig. 2: Probability of detection for different SNR values, m =
5, N = 10 and PFA = 10−3 in Gaussian case.

experiments have been conducted on Gaussian vectors of
dimension m = 5 and for different values of N . The compu-
tations have been made through 106 Monte-Carlo trials. The
true covariance is chosen as a Toeplitz matrix whose entries
are Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is
arbitrary set to have all entries equal to 3. Exceedance plot
shows the fraction of points in the data set whose Mahalanobis
distance is larger than the indicated value. This is essentially
a cumulative histogram of Mahalanobis distance values which
correspond to the ”PFA-threshold” relationship. Remark that
the definition of false alarms is not unique and it depends on
the application. Thus, we will rather refer to the distribution
of the detector in target absent hypothesis.

Fig. 1 illustrates the distribution of the detector under null
hypothesis. The case where both covariance matrix and mean
vector are perfectly known corresponds to the χ2-distribution
and the adaptive versions of the quadratic form become a
T 2 Hotelling. The perfect agreement of the green and yellow
curves bears out the results of Proposition II.1. Furthermore,
we compare, in Fig. 2, the five proposed anomaly detectors in
terms of PD for different values of the Signal-to-Noise Ratio
(SNR). The experiments were on Gaussian vectors of dimen-
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Fig. 4: Probability of detection for different SNR values and
PFA = 10�3 in Gaussian case.

are estimated using a sliding window of size 7 ⇥ 7, having
N = 48 secondary data.
The outcome of the detectors for this image are shown on the
Fig. 6, Fig. 7 and Fig. 8 respectively. The results obtained
on real HSI data on a Gaussian distributed region agree with
the theoretical relationships presented above. Remark that the
false-alarm rate that can be achieved depends on the number
of points on which the detector is calculated (in a similar
manner to the Monte-Carlo trials). As the homogenous area
is bounded and the data set is small, the distribution of the
detectors may divert for small values of the PFA directly
related to the size of the region.

Depending on the underlying material, the detector of the
distribution might divert from the expected behavior when
Gaussian distribution is assumed. This suggests the use of non-
Gaussian distributions to model the background for hyperspec-
tral imaging. The class of elliptically contoured distributions
has already been popularized for background characterization
in HSI [23], [24]. We propose in another paper the study of
false-alarm regulation when elliptical distributions are consid-
ered. Moreover, we analyze some robust estimation procedures
(M -estimators introduced in [16], [25], [26]) more suitable
when non-Gaussian distributions are assumed.

V. CONCLUSION

Three adaptive detection schemes, the AMF, the Kelly
detector and the ANMF, have been analyzed in the case
where both the covariance matrix and the mean are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates. The
theoretical analysis has been validated through simulations
and the performances of the detectors has been compared
in terms of probability of detection. Finally, the analysis
on experimental hyperspectral data validates the theoretical
contribution through real application. This work finds its

Fig. 5: True color composition of the Hyperion scene.
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Fig. 6: AMF false-alarm regulation for a real HSI image

purpose in signal processing methods for which both mean
vector and covariance matrix are unknown.
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sion m = 5, for N = 10 and the artificial targets signature
used for the simulations is the unity vector p = [1, . . . , 1]T .
On a first step, the threshold is determined to ensure exactly
the same PFA = 10−3 for all detectors. The best results are
obtained for the Mahalanobis-based detectors, i.e. the classical
RXD, Kelly AD and generalized Kelly AD. The two detectors
derived according to Kelly’s approach perform fundamentally
the same and slightly better than the RXD. This improvement
may be due to the fact that N + 1 data are available for
the Kelly’s strategies, while only N samples are used in the
classical RXD. The matched filter based detectors deliver poor
performance in the case of the UTD, as the matching signal is
the unity vector, which is shown to be not optimal even in the
case the artificial targets signature used for the simulations is
the unity vector. The N-RXD presents an almost flat curve as
the normalization factor grows as the SNR gets higher. The
outcome of this detector can be assimilated to the residual
background level and its use in Gaussian environment should
be avoided.

V. REAL HYPERSPECTRAL DATA

A. Gaussian Background

The same experiments that in simulations have been con-
ducted on a real hyperspectral image. The scene analyzed is

the NASA Hyperion sensor dataset displayed in Fig. 3. The
image is constituted of 798 × 253 pixels and 116 spectral
bands after water absorption bands have been removed. The
analysis has been done on a homogenous part of the image
corresponding to the water region on the top left of the image.
The part extracted consists on 60 × 20 pixels. In order to
ensure the validity of the proposed methods, we show in Fig. 4
the outcome of a classical Gaussianity test ”Q-Q plot” for
the selected region over the band 42. Even if this allows to
”validate” the Gaussianity of each band, it cannot ensure the
Gaussianity of the corresponding multivariate vector.

To avoid the well-known problem due to high dimen-
sionality, we have chosen sequentially m = 6 bands. In
this approach, both covariance matrix and mean vector are
estimated using a sliding window of size 5×5, having N = 24
secondary data.

Fig. 5 shows the distribution of the ΛKellyAD Σ̂,µ̂ in real
hyperspectral data (red curve). We also plot the theoretical
relationship defined by Eq. (13). The results obtained on real
HSI data on a Gaussian distributed region agree with the
theoretical relationships presented above.

Finally, we illustrate the detection capability of the pro-
posed methods when artificial anomalies with known spectral
signature are inserted on the real hyperspectral image. For
this purpose, we extract the spectral signature from ground
materials in Fig. 3 and the anomaly spectra is depicted in
Fig. 6. Fig. 7(a) details the position and the shape of the
targets. For the same fixed value of FA PFA = 0.1, we
present in Fig. 7 the outcome of the different conventional
detectors for m = 6 and N = 24 secondary data. Note that the
edges of the image are not processed and the detection maps
are trimmed in function of the window size. The detectors
based on the Mahalanobis distance deliver best results for
detection purposes as expected and the matched filter based
detectors do not detect properly the artificial targets. These
detection maps are in agreement with the SNR figure detailed
above. Remark that the two-pixel targets are not detected
by any of the detection schemes. This problem is due to
the presence of a strong target in the secondary data that
pollutes the covariance matrix estimation. Its occurrence has
a significant impact on the detection process and it degrades
the performances of conventional detectors.

Fig. 8 shows the results of the extended ΛKelly AD detector
(m = 6, N = 24) built now with FP estimators and with
Shrinkage estimators, both SCM and FP. The same value
of FA PFA = 10−1 is considered for the three detectors.
Remark that all the anomalies of interest are now detected
even those bigger than one pixel. Thereafter, due to their
robustness, the proposed estimation methods allow for better
detection results in Gaussian case.

Receiver Operating Characteristics (ROC) curves are widely
used in signal processing to evaluate the performances of
the detectors [38]. ROC curves depict the outcome for a
set of thresholds instead of showing the misclassification for
only one. The x-axis represents the PFA and the y-axis, the
probability of detection (PD). A good detector presents high
PD values at low PFA, i.e., the curve is closer to the upper
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(a) Original (b) RXD (c) Kelly AD (d) G-Kelly (e) N-RXD (f) UTD

Fig. 7: Conventional Anomaly Detection for artificial targets in real HSI (m = 6, N = 24, same PFA=10−1).

left corner. Fig. 9 shows the results of the ROC curves for
the different detectors presented above (m = 6, N = 24)
computed on the Gaussian water region of the Hyperion image.
For a fixed value of the SNR = 10 dB, RXD, Kelly AD built
with the different estimators and Generalized Kelly AD exhibit
perfect classification while N-RXD and UTD provide worse
results.

(a) FP (b) Shr-SCM (c) Shr-FP

Fig. 8: Extended Kelly AD detectors built with robust esti-
mates for artificial targets in real HSI (m = 6, N = 24, same
PFA=10−1).

B. Non-Gaussian Background

Let us now present some results on a real hyperspectral
image in which the background can not be characterized with
Gaussian distribution and artificial targets were introduced as
anomalies. The original data set consists on 50×50 pixels with
126 bands, from which we have chosen sequentially m =
9 bands, see Fig. 10 (a). For this example, both covariance
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Fig. 9: ROC curve comparing the different detectors in Gaus-
sian environment (m = 6, N = 24 and SNR=10dB).

matrix and mean vector are estimated using a sliding window
of size 9× 9 having N = 80 secondary data. The results for
the ΛKelly AD built with classical SMV-SCM estimates, FP
estimates and shrinkage estimators are shown in Fig 10, the
FA being fixed at the same value of PFA = 0.03. In this
case, FP estimators and notably shrinkage FP estimates are
capable of locating all the artificial targets and exhibit a lower
number of false alarms. This improvement is due to the fact
that FP estimates treat the outliers and impulsive samples in
order for them to have a smaller contribution to the background
characterization process, while the SMV-SCM estimates (and
its respective shrinkage version) suffer from the presence of
strong reflectance pixels in the secondary data. Remark that
the shrinkage FP estimates lead to a better detection compared
to FP estimates.

Let us now consider the dataset in Fig. 10(a) with all
126 bands available. In high-dimensionality problems, the
SMV-SCM and the FP estimators suffer from distorted
eigen-structure. This fact motivates the use of shrinkage
estimators. As the background is shown to be non-Gaussian,
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(a) Original (b) SCM (c) Shr-SCM

(a) FP (b) Shr-FP

Fig. 10: Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI with all the bands
(m = 9, N = 80, same PFA = 0.03).

(b) SCM (c) Shr-SCM (a) FP (b) Shr-FP

Fig. 11: Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 126, N = 288,
same PFA=10−1).
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Fig. 12: ROC curve comparing the different estimation meth-
ods in non-Gaussian environment (m = 9, N = 80 and
SNR=10dB).

the shrinkage FP estimators are the most appropriate solutions
when dealing with all the bands. We show in the Fig.11 the
results when using all the bands, m = 126, and the sliding
window has been increased to 17×17, N = 288. Note that the
edges of the image are not processed and the detection maps
are trimmed in function of the window size. The shrinkage
FP are still capable of detecting all the targets while all the
other estimation techniques lead to poor detection results.

Fig. 12 displays the different ROC curves in non-Gaussian
background for the image in Fig. 10 (a), with m = 9, N = 80
and a fixed value of SNR = 10dB . Classical SMV-SCM
provide worse results than their shrinkage counterpart.
Moreover, in non-Gaussian case, FP estimators and the
corresponding shrinkage FP estimators allow for better
detection while keeping the false alarm low. This is translated
in ROC curves closer to the upper left corner and improved
detection performances.
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(a) MUSE data cube (b) SMV-SCM (c) FP estimates

Fig. 13: Anomaly detection in a MUSE hyperspectral image (size 300× 300) with m = 36 channels and N = 120 secondary
data. a) Original image. b) Kelly AD built with conventional estimates. c) Kelly AD built with FP estimates

The algorithm has also been applied for galaxy detection on
the MUSE data cube. The Multi Unit Spectroscopic Explorer
(MUSE) project (see [39]) aims to provide astronomers with
a new generation of optical instrument, capable of simulta-
neously imaging the sky (in 2D) and measuring the optical
spectra of the light received at a given position on the sky.
MUSE was installed on the VLT telescope and operational in
2013, and its performances are expected to allow observation
of far galaxies up to 100 times fainter than those presently
detectable. MUSE will deliver a 3D data-cube made of a
stack of images recorded at 3578 different wavelengths over
the range 465-930 nm. Each monochromatic image represents
a field of view of 60 × 60 arcsec, recorded with a spatial
sampling of 0.2 arcsec. Each record results in a data cube of
size 1570 MB encoding 3578 images of 300 × 300 pixels,
possibly containing thousands of objects (galaxies) existing
over different subsets of wavelengths.

An example of MUSE data cube image is displayed in
Fig. 13 (a), from the 3578 available bands, we have chosen
one band of each 100. The results for anomaly detection
are presented in Fig.13 for the same imposed FA value
PFA = 10−3. Note that detection with FP estimators (c)
provides better and clearer results than the classical ones (b).

These examples illustrate the robust behavior of FP es-
timators in non-Gaussian environments or for close targets
detection problems.

VI. CONCLUSION

The classical RXD test is explored and compared to other
four detectors. The different advantages and drawbacks for the
different detection schemes are commented. Furthermore, the
comparison is performed through Monte Carlo simulations in
Gaussian context and extended to real hyperspectral data with
simulated anomalies. The family of elliptical distributions is
considered for impulsive background characterization in hy-
perspectral imaging. In this context, robust estimation methods
for mean vector and covariance matrix are used to overcome
the non-Gaussianity of the background and the presence of
outliers or strong scatters in the secondary data. Moreover the
robust methods presented in this work outperform significantly
the classical Gaussian-based SMV-SCM. Therefore, robust
estimators offer a versatile alternative to Gaussian estimates.

They allow to obtain better performances in impulsive envi-
ronments while keeping good results in Gaussian background.
The theoretical improvement provided by the robustness of the
estimators is borne out through two real hyperspectral images.
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