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The interaction properties of cold dark matter (CDM) particle candidates, such as those of weakly
interacting massive particles (WIMPs), generically lead to the structuring of dark matter on scales
much smaller than typical galaxies, potentially down to ∼ 10−10M�. This clustering translates into
a very large population of subhalos in galaxies and affects the predictions for direct and indirect
dark matter searches (gamma rays and antimatter cosmic rays). In this paper, we elaborate on
previous analytic works to model the Galactic subhalo population, while consistently with current
observational dynamical constraints on the Milky Way. In particular, we propose a self-consistent
method to account for tidal effects induced by both dark matter and baryons. Our model does not
strongly rely on cosmological simulations as they can hardly be fully matched to the real Milky
Way, but for setting the initial subhalo mass fraction. Still, it allows to recover the main qualitative
features of simulated systems. It can further be easily adapted to any change in the dynamical
constraints, and be used to make predictions or derive constraints on dark matter candidates from
indirect or direct searches. We compute the annihilation boost factor, including the subhalo-halo
cross-product. We confirm that tidal effects induced by the baryonic components of the Galaxy play
a very important role, resulting in a local average subhalo mass density . 1% of the total local dark
matter mass density, while selecting in the most concentrated objects and leading to interesting
features in the overall annihilation profile in the case of a sharp subhalo mass function. Values of
global annihilation boost factors range from ∼ 2 to ∼ 20, while the local annihilation rate is about
twice less boosted.

PACS numbers: 12.60.-i,95.35.+d,96.50.S-,98.35.Gi,98.70.Sa

I. INTRODUCTION

While the long-standing issue of the origin of dark
matter is still pending, many experiments involved in
this quest have recently reached the sensitivity to probe
the relevant parameter space for one of the most pop-
ular particle candidates, the WIMP, which finds spe-
cific realizations in many particle physics scenarios be-
yond the standard model (e.g. [1–3]). Among different
search strategies, indirect DM searches (e.g. Refs. [4–7])
are becoming quite constraining for WIMPs annihilating
through s-waves. This is particularly striking not only for
indirect searches in gamma rays (e.g. [8–10]), but also
in the antimatter cosmic-ray spectrum [11], both with
positrons (e.g. [12]) and antiprotons (e.g. [13]). For in-
direct searches, the way the Galactic dark matter halo
is modeled is a fundamental piece in deriving constraints
or testing detectability. For direct DM searches, whether
the local DM density is smooth or may contain inhomo-
geneities has also important consequences (see e.g. [14]).

A generic cosmological consequence of the WIMP sce-
nario (among other CDM candidates) is the clustering
of dark matter on very small, subgalactic scales, when
the universe enters the matter domination era (e.g. [15–
24], and [25] for a review). Both analytic calculations
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(see a review in e.g. [26]) and cosmological simulations
(e.g. [27–31]) show that many of these subhalos survive
in galaxies against tidal disruption, and further constrain
their properties. Consequently, the DM halo embedding
the MW, if made of WIMPs, is not a smooth distribution
of DM, but instead exhibits inhomogeneities in the form
of many subhalos or their debris. In the context of self-
annihilating DM candidates, this leads to the interesting
consequence of enhancing the average annihilation rate
with respect to the smooth-halo assumption [16]. Generic
methods to account for a subhalo population in the DM
annihilation signal predictions were originally presented
in [32, 33] for gamma rays, and in [34, 35] for antimatter
cosmic rays.

While subhalos are now very often included when de-
riving constraints from the Galactic or extragalactic dif-
fuse gamma-ray emissions (see e.g. [33, 36–39], and a re-
view in [40]), this is still barely the case for the antimatter
channels (e.g. [13, 41]). In the latter case, although it was
shown that subhalos could not enhance the predictions
by orders of magnitude [35, 36], the precision achieved
by current experiments (see e.g. [42–45] for antiproton
measurements) implies that even small changes in the
predicted fluxes could still have strong impact on con-
straints on the WIMP mass. In this paper, our aim is to
provide a dynamically self-consistent model of a Galactic
subhalo component in order to improve the constraints
derived on s-wave annihilating WIMPs.

The paper develops as follows. The main part of our
study is described in Sect. II, where we introduce the dark
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halo setup including both a smooth and a subhalo com-
ponent, and where we discuss the tidal effects induced
by both baryons and dark matter. We then discuss the
mass profiles, the dark matter annihilation profile, and
the corresponding differential and integrated annihilation
boost factors in Sect. III, which can be used in indirect
detection studies. In that part, we also quantify the theo-
retical uncertainties coming from using different Galactic
mass models, different tidal cut-off criteria, or other sub-
halo population properties. We conclude and present our
perspectives in Sect. IV.

II. THE MILKY WAY DARK HALO AND ITS
SUBHALO POPULATION

In this section, we propose a self-consistent method
to constrain the subhalo population of the MW dark
halo and to derive therein the DM annihilation rate in-
cluding all components. This method subscribes to two
main principles: (i) accounting for existing dynamical
constraints in the MW; (ii) starting from general as-
sumptions, then comparing to and calibrating on high-
resolution cosmological simulations only a posteriori. In
the following, any halo mass m will, unless specified oth-
erwise, express the mass contained within a sphere of
radius r200 such that

m = m(r200) = m200 =
4π

3
(200× ρc) r3

200 , (1)

where ρc is the critical density of the universe, which
we compute from the best-fit Hubble parameter obtained
by the Planck collaboration (combined analysis), H0 =
67.74 km/s/Mpc.

A. Dark halo model

The most basic and obvious assumption one can make
about the DM distribution in the Galaxy is that the DM
density profile ρtot can be splitted into two components,
one smooth, ρsm, and another made of subhalos, ρsub,
such that at any position ~x

ρtot(~x) = ρsm(~x) + ρsub(~x) , (2)

such that the total dark mass is given by

M200 =

∫
V200

dV ρtot(~x) , (3)

where V200 is the spherical volume delineated by the as-
sociated pseudo-virial radius R200.

Furthermore, to get reliable predictions for DM anni-
hilation signals, it is important to account for existing
dynamical constraints on the DM profile — it is barely
justified to import physical quantities (scale radius, scale
density, density at 8 kpc, etc.) directly from cosmological
simulations which are by no means reliable descriptions
of our Galaxy, only using generic properties makes sense.

There has been increasing interest on this aspect in the
recent years (e.g. [46–56]), such that modeling the dark
halo in the context of DM searches can strongly benefit
from the obtained results. We stress that global dynam-
ical studies provide constraints on ρtot, but not on ρsm

and ρsub separately.
From cosmological structure formation (see e.g. [57–

59]), we know that galactic halos form rather late (z ∼ 6)
with respect to the smallest-scale halos expected in the
WIMP scenario (z ∼ 80). It is therefore reasonable to as-
sume that the smooth and subhalo components follow the
same spatial distribution when the Galactic halo forms.
Then, as the Galaxy evolves, several changes occur: (i)
further subhalos are accreted, and (ii) subhalos may ex-
perience mergers, stellar encounters, and tidal disrup-
tions. Since the former phenomenon also concerns the
smooth component, it should not modify the overall pic-
ture (subhalos may be considered as test particles among
others). However, the latter must be taken into account,
since it will reduce the subhalo number density in regions
close to the terrestrial observers. This approximate trend
is actually what is found in very high-resolution cosmo-
logical simulations, where the subhalo number density is
shown to depart from the overall DM distribution essen-
tially in the central regions of galaxies [29, 60, 61]. In the
same references, the global DM profile (including subha-
los) is found to be consistent with the seminal earlier
results obtained by Navarro, Frenk and White [62] (here-
after NFW) and subsequent refinements (e.g. [60, 61, 63–
65]). Inner cored profiles can also be found as a result
of efficient feedback originating in star formation and su-
pernova explosions [66, 67].

All this suggests the following method to try to build a
self-consistent dark halo with a substructure component:
(i) assume a global DM halo profile ρtot constrained by
dynamical studies; (ii) start with a subhalo population
tracking the smooth halo, such that both ρsub ∝ ρtot and
ρsm ∝ ρtot; (iii) plug in tidal disruption such that the
mass contained in disrupted subhalos and in the pruned
part of the survivors is transferred to the smooth halo
component; (iii) compare/cross-calibrate the final result
with/onto high-resolution cosmological simulations. Be-
fore we translate this method in terms of equations for
DM searches, we need to figure out how to express the
mass density profile ρsub associated with subhalos. In
practice, the smooth DM component will merely be de-
termined from Eq. (2) as ρsm = ρtot − ρsub, after having
set ρsub.

B. Accounting for dynamical constraints

As a template and dynamically constrained global
dark halo, we will use the best-fit MW mass model ob-
tained by McMillan [48] (M11 hereafter), which turns
out to be fully consistent with more recent studies
(e.g. [51, 52, 68]), while rather simple to implement.
This model was derived from a Bayesian analysis run
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upon several observational data sets, photometric as well
as kinematic, restricting to the terminal velocity curves
measured for longitudes |l| > 45◦ — this model does not
address the complex structure of the very central regions
of the MW, nor does it include any atomic or molecular
gas component (we will use mass models including gas
components in Sect. III C).

1. Global dark halo and baryons

M11 assumes a spherically symmetric NFW profile,
given in terms of the general αβγ parameterization [69,
70] as

ρtot(r) = ραβγ(r) ≡ ρs (r/rs)
−γ {1 + (r/rs)

α}−
(β−γ)
α ,(4)

with (α, β, γ) = (1, 3, 1) for an NFW profile. The M11
best-fit values for the scale density ρs and the scale radius
rs are given in Tab. I. For the sake of comparison, we also
introduce the Einasto dark matter profile [63, 71]:

ρein(r) = ρs exp

{
− 2

αe

[(
r

rs

)α
e

− 1

]}
. (5)

This profile halo was used in a dynamical study com-
plementary to and consistent with M11, presented in
Ref. [72] (CU10 hereafter). The associated parameters
are also given in Tab. I. Irrespective of the MW mass
model, these dark matter profiles will also be used to de-
scribe the subhalos. In the following, we will use M11 as
our reference case.

Since we also aim at considering the baryonic com-
ponents when dealing with tidal effects (see Ref. [73]
for a recent review), we provide the axisymmetric M11
bulge-disk density model below (with the convention
r2 = R2 + z2), where subscript b refers to the bulge and
d to the disk:

ρb(R, z) =
ρb

(1 + r′/rb)αb
exp

{
−
(
r′

rcb

)2
}
,

ρd(R, z) =
Σd
2 zd

exp

{
− R

Rd
− |z|
zd

}
, (6)

where r′ ≡
√
R2 + (z/q)2), q is the axial ratio, Σd is the

disk surface density, and the other parameters are scale
parameters. All parameters are given in Tab. II, where
a two-component disk is explicit (thin and thick disks)
– note that the above disk parameterization can also be
relevant to additional gas components (see Sect. III C).
Since the model was not fitted against observational data
featuring the central regions of the Galaxy, the bulge
parameters but ρb are actually fixed to those obtained
in Ref. [74]. Note that such a disk profile can also be
relevant to describe gaseous components, which have not
been included in M11.

It will turn useful to have a spherical approximation
of the disk density when dealing with global tides (see
Sect. II D 1). We readily derive it by demanding that the
disk mass inside a sphere of radius r equals the actual
disk mass inside an infinite cylinder of radius R. It reads

ρd,sph(r) =
Σd
2 r

exp

{
− r

Rd

}
. (7)

One may find similar expressions with Rd ↔
√
R2
d + z2

d
(e.g. Ref. [123]), but using one or another has absolutely
no impact in this study.

2. The overall subhalo component

The very presence of subhalos in the Galactic host halo
leads to strong DM inhomogeneities, so defining a global
regular mass density function for subhalos implicitly im-
plies averaging over a certain volume. In the following,
we will assume that subhalos are independent objects
described over a phase space wn that includes their po-
sition ~x, mass m, and concentration c (we define these
parameters in Sect. II C), such that their number density
reads

dnN

dwn
=
Nsub

Kw

dPV
dV

dPm
dm

dPc
dc

. (8)

Parameter Kw is a normalization constant determined by
the following closure relation:∫

dwn
dnPw
dwn

= Kw

⇔
∫
dwn

dnN

dwn
= Nsub , (9)

where Nsub is the total number of subhalos over the whole
phase space embedded in the host dark halo. Each indi-
vidual probability distribution function (pdf) dPwi/dwi,
where w = V,m, c (V is the physical volume), is defined
such that it is normalized over its phase-space subvolume
δWi as ∫ wi,max∈δWi

wi,min∈δWi

dwi
dPwi
dwi

= 1 . (10)

We emphasize that as long as these individual pdfs are
uncorrelated, Kw = 1, but this is generally not the case.
In particular, when tidal effects are considered, then each
subhalo is featured by a tidal radius rt which depends on
its initial mass m, its position ~x in the Galactic halo,
and its concentration c — we will detail the individual
pdfs and discuss tidal disruption of subhalos in Sect. II D.
Therefore, tidal effects will induce an explicit correlation
between the pdfs, making the subhalo phase space intri-
cate and non-trivial, and leading to Kw 6= 1.
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MW mass model profile r200 M200 rs ρs r� ρ�
[kpc] [M�] [kpc] [GeV/cm3] [kpc] [GeV/cm3]

M11 NFW 237 1.43 × 1012 20.2 0.32 8.29 0.395
CU10 Einasto(α = 0.22) 208 9.6 × 1011 16.07 0.11 8.25 0.386
M16 NFW 230.5 1.31 × 1012 19.6 0.32 8.21 0.383

TABLE I: Dark matter halo parameters for different Galactic mass models (best-fit models of Refs. [48] [M11], [72]
[CU10], and [68] [M16]).

MW mass model q αb rb rcb ρb Rd zd Σd

[kpc] [kpc] [M�/pc3] (thin/thick)(HI/HII) (thin/thick)(HI/HII) (thin/thick)(HI/HII)
[kpc] [kpc] [M�/pc3] [kpc] [kpc] [M�/pc2]

M11 0.5 1.8 0.075 2.1 95.6 (2.9/3.31)(-/-) (0.3/0.9)(-/-) (816.6/209.5)(-/-)

CU10 0.6 1.85 0.3879 0.872 1.37 (2.45/-)(7/1.5)† (0.34/-)(0.085/0.045)† (1154.12/-)(53.1/2180)†

M16 0.5 1.8 0.075 2.1 98.4 (2.5/3.02)(7/1.5) (0.3/0.9)(0.085/0.045) (896/183)(53.1/2180)

TABLE II: Baryonic component parameters for different Galactic mass models (best-fit models of Refs. [48] [M11],
[72] [CU10], and [68] [M16]). †: The CU10 HI and HII gas disks are inferred from old data points, so we adopt the

same parameterization as in M16 for simplicity – this has negligible impact on the final results.

However, we can still self-consistently define the global subhalo mass density profile as

ρsub(~x) = Nsub 〈̃mt〉(~x)
dPV (~x)

dV
,

with 〈̃mt〉(~x) ≡ 1

Kw

∫ mmax

mmin

dm
dPm
dm

∫ cmax

cmin

dc
dPc
dc

mt(rt(c,m, ~x),m, c) , (11)

where mt is the subhalo mass contained within the tidal radius rt, to be contrasted with m which is the mass
contained inside an approximate virial radius assuming a homogeneous background matter, usually r200 (see Sect. II C

for details). Symbol 〈̃〉 is not the average over the mass and concentration subpart of the phase space because of the
normalization Kw, which is calculated over the full phase space. The real mean mass (or any other quantity depending
on mass and concentration) is actually given by

〈mt〉(~x) =

∫mmax

mmin
dm dPm

dm

∫ cmax

cmin
dc dPcdc mt(rt(c,m, ~x),m, c)∫mmax

mmin
dm dPm

dm

∫ cmax

cmin
dc dPcdc

. (12)

The dependence of the tidal radius rt on position, mass, and concentration will be discussed in Sect. II D. Notice that
there is also spatial dependence hidden in the denominator above, as the minimal concentration will be shown to be
spatial dependent in Sect. II D 4.

The total mass M tot
sub in the form of subhalos is thereby given by

M tot
sub = Nsub

∫
host halo

dV 〈̃mt〉(~x)
dPV (~x)

dV
. (13)

It will also turn useful to define the total subhalo mass contained in a specific subhalo mass subrange ∆m
12 = [m1,m2] ⊂

[mmin,mmax],

M
∆m

12

sub = Nsub

∫
host halo

dV 〈̃mt〉∆m
12

(~x)
dPV (~x)

dV
, (14)

with

〈̃mt〉∆m
12

(~x) ≡ 1

Kw

∫ m2

m1

dm

∫ cmax

cmin

dcmt(rt(c,m, ~x),m, c)
dPm
dm

dPc
dc

. (15)

From Eqs. (3) and (14), we can then define the total
dark mass fraction in the form of subhalos within the

mass range ∆m
12,

f
∆m

12

sub ≡
M

∆m
12

sub

M200
. (16)
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We will actually use this fraction to normalize our sub-
halo population and to calculate Nsub, which we discuss
in the next section.

3. Calibration of the subhalo component

The overall subhalo distribution being defined, we need
to calibrate the subhalo mass content. To proceed, we
will first rely on cosmological simulation results, which
provide pictures of MW-like halos at redshift z = 0, with
subhalo populations that have already experienced all
relevant dark matter-only non-linear disruption or prun-
ing processes (see e.g. [29, 60, 61, 75, 76]). Calibration
from first principles is also possible, while more involved
and subject to large theoretical uncertainties; this gives
similar constraints though, as reviewed in Ref. [26]. Be-
sides, it is well known that cosmological parameters have
significant impact on the global and structural proper-
ties of subhalos, especially the matter abundance Ωm,
the normalization of the power spectrum σ8, and the in-
flation spectral index ns (see e.g. [77–80] and [75, 81, 82])
— larger values of the former lead to more concentrated
halos on all scales, while larger values of the latter in-
creases the power on small scales. Therefore, we should
favor references with input cosmological parameters not
too far from the most recent estimates. In particular, the
Planck mission [83] has provided combined constraints,
Ωm ' 0.31, σ8 ' 0.82, and ns ' 0.97, directly relevant
to the structuring of DM subhalos — note, though, that
there are still mild tensions between different cosmolog-
ical probes (see e.g. Ref. [84] for a recent illustration).
This makes the Via Lactea II ultra-high resolution sim-
ulation [60] (VL2 hereafter) a rather conservative refer-
ence, since it was run with WMAP-3 best-fit parameters,
Ωm ' 0.24, σ8 = 0.74, and ns = 0.951 [85]. For compar-
ison, the Aquarius simulation series [29] were run with
Ωm = 0.25, σ8 = 0.9, ns = 1, and with a spatial resolu-
tion similar to VL2.

We will use the VL2 results to calibrate the subhalo
mass fraction defined in Eq. (16), but the method pre-
sented below can be used with any calibration source.
In particular, the authors of VL2 provide the cumulative
number of subhalos NVL2(> vmax) as a function of the
maximal velocity vmax. Note that their census is made
up to the host halo radius R50 and not R200, as defined in
Eq. (1). A very good fit to this measurement is obtained
in the range vmax ∈ [3 km/s, 20 km/s] = [vmax,1, vmax,2]
with the following parameterization [60]:

NVL2(> vmax) = 0.036

(
vmax

vmax,host

)3

, (17)

with vmax,host = 201 km/s the maximal velocity of the
host halo. The maximal velocity is directly measured
in simulations, and is related to the (sub)halo profile

through the relation

vmax = max

(√
GM(r)

r

)
=

√
GM(rvmax)

rvmax

, (18)

which defines the radius rvmax
, and which can easily be

computed for any choice of subhalo profile once its pa-
rameters are fixed (total mass m, concentration c, and
position ~x in a host halo, if relevant). We can therefore
calculate the effective mass fraction contained in subhalos
within the mass range [m1 = m(vmax,1),m2 = m(vmax,2)]
as

f̃
∆m

12

sub,VL2 =
M

∆m
12

sub,VL2

MVL2
200

(19)

with M
∆m

12

sub,VL2 ≡
∫ vmax,2

vmax,1

dvmaxm(vmax,1)
dNVL2

dvmax
.

This is an effective mass fraction since it is computed
from the pseudo-virial massm = m200 instead of the tidal
mass mt used in Eqs. (14) and (16), which is unknown
here. The subtlety is that the subhalo population un-
der scrutiny here has actually already experienced tidal
effects, which we will ultimately have to account for.

Assuming that VL2 subhalos are well fitted by NFW
profiles and taking a concentration function matching
the VL2 results (we actually take the VL2 concentra-
tion fit proposed in Ref. [36]), we find that the total
effective subhalo mass in the mass range [m(vmax,1) =

3.14×106M�,m(vmax,2) = 1.25×109M�] is M
∆m

12

sub,VL2 =

2.24×1011M�. Taking the global VL2 halo mass M50 =
1.93 × 1012M�, we obtain an effective mass fraction of

f̃50 = 11.6%. If we further assume that the subhalo num-
ber density profile spatially tracks the global halo density
profile in the outer halo regions, then the extrapolation
to R200 < R50 is trivial, f̃200 ' f̃50. For complete-
ness, we can express this result in terms of a relative
mass range, as different halo models come with different
global masses. From the Einasto profile fitted on the VL2
host halo (see the caption of Fig. 2 in Ref. [60]), we get
MVL2

200 = MVL2(RVL2
200 = 225.44 kpc) = 1.42 × 1012M�.

This allows us to propose the following ansatz to nor-
malize the subhalo population:

f̃
∆m

12

sub =
M

∆m
12

sub

M200
= 0.11 (20)

∀m200

M200
∈
[
m1

M200
= 2.2× 10−6,

m2

M200
= 8.8× 10−4

]
.

We note that this is fully consistent with the semi-
analytic result obtained in Ref. [75], which sets this frac-
tion to ∼10% for subhalos in the mass range 10−5 <

m/M < 10−2, assuming that dN/dm
∼∝ m−2 (see also

Refs. [36, 86–88]).

In practice, we will match the fraction f
∆m

12

sub defined in

Eq. (16) to the above f̃
∆m

12

sub by replacing the tidal mass mt

bym200 in Eq. (15). An important subtlety is that we will
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only integrate over the subhalo population which has not
been disrupted by tidal interactions with the host dark
halo (so-called global tides in Sect. II D 1). Indeed, these
interactions are at play in VL2, so this normalization pro-
cedure must take them into account. Note that the calcu-
lation of the phase space normalization factor K defined
in Eq. (9) must also include these tidal cuts, which are
position-mass-concentration-dependent. In practice, this
is done by integrating the concentration function from a
minimal concentration, cmin(m,R) ≥ 1, which is set by
the tidal disruption model and depends on the subhalo
mass and its position in the Galaxy (see Sect. II D 4).

We emphasize that since VL2 is a DM-only simula-
tion, the above normalization can only be used to calcu-
late the total number of subhalos before plugging in tidal
stripping from the baryonic components. This is actu-
ally very fortunate because this really allows us to predict
the baryonic effects (at least those related to tidal strip-
ping), instead of trying to reproduce them. Indeed, we
stress that the way baryons are implemented in simula-
tions is still highly debated in numerical cosmology (see
e.g. Ref. [89]). We will deal with baryonic tides only in
a second, independent step.

To summarize the normalization procedure, we first
fix the total number of subhalos before baryonic tides by

matching f
∆m

12

sub defined in Eq. (16) to the constraint f̃
∆m

12

sub
given in Eq. (20) (replacing the tidal mass mt by m200 in

the definition of f
∆m

12

sub ). In a second step, we plug in bary-
onic tides, which turn out to be dominated by disk shock-
ing effects. It is easy to show that the final number of sub-
halos N ′ will merely be given by N ′ = (K ′/K)×N ≤ N ,
where K (K ′ ≤ K) and N are the phase-space normaliza-
tion and the total number of objects, respectively, before
(after) including baryonic tides. This relies on matching
the global subhalo mass density in the outskirts of the
Galaxy, where baryonic effects can be neglected. Tidal
effects will be discuss in detail in Sect. II D.

C. Global and internal subhalo properties

In this section, we specify the global and internal prop-
erties. The latter are mostly featured by the inner den-
sity profile ρ of a subhalo and its specific concentration
c. For the density profile, we assume spherical symme-
try and adopt the NFW shape given by Eq. (4), with
(α, β, γ) = (1, 3, 1) as our default configuration, unless
specified otherwise. We define the concentration param-
eter c as

c = c200 =
r200

r−2
, (21)

where r−2 is the radius at which the logarithmic slope
d ln(ρ)/d ln(r) = −2. In the αβγ case, we have

κ ≡ r−2

rs
=

{
(β − 2)

(2− γ)

}− 1
α

∀ 0 < γ < 2 ,
β − γ
α

> 2 ,

(22)

such that r−2 = rs for an NFW profile. The same is read-
ily obtained for an Einasto profile. The concentration
parameter will play a significant role not only in ruling
the subhalo annihilation rate, but also in characterizing
the resistance of subhalos to tidal stripping.

We now formulate the overall mass and the tidal mass,

m = m200 = m(r200) = 4π r3
s

∫ c

0

dxx2 ρ(x rs)

mt = m(rt) = 4π r3
s

∫ xt

0

dxx2 ρ(x rs) ζ(xt) , (23)

where the dimensionless parameter x ≡ r/rs, and xt ≡
rt/rs (rt is the tidal radius). Function ζ(xt) takes values
0 or 1 to account for the potential tidal disruption of
the subhalo. We will specify this function as well as our
definition of the tidal radius in Sect. II D. On the same
vein, we also introduce the subhalo effective annihilation
volume ξ,

ξ ≡ ξ200 = ξ(r200) = 4π r3
s

∫ c

0

dxx2

{
ρ(x rs)

ρ0

}2

ξt = ξ(rt) = 4π r3
s

∫ xt

0

dxx2

{
ρ(x rs)

ρ0

}2

ζ(xt) , (24)

which provides a measure of the WIMP annihilation rate
in a subhalo. It actually quantifies the volume a subhalo
would have to supply its annihilation rate if it were an
homogeneous sphere of reference density ρ0. In practice,
we will set ρ0 = ρ�, unless specified otherwise. This is
particularly convenient a choice in the context of indirect
DM searches with antimatter cosmic rays [34–36]. It is
similar to the definition of the J(ψ) luminosity factor in
the context of gamma-ray searches [90].

We now introduce key physical quantities to describe
bounded systems, which we will use when addressing the
tidal effects in Sect. II D. We first define the gravitational
binding energy, i.e. the minimum energy to unbound the
system, as

Eb(rt) = 4πGN

∫ rt

0

dr r ρ(r)m(r) , (25)

where rt is the subhalo tidal radius, ρ(r) its mass density
at radius r, andm(r) its mass inside r; the binding energy
is defined as positive. Alternatively, we also introduce the
potential energy of a bounded system:

Ug(rt) = 2πGN

∫ rt

0

dr r2 ρ(r) φ̃(r) , (26)

where we have used the gravitational potential

φ̃(r) = φ̃(r, rt) ≡ φ(r)− φ(rt) (27)

with φ(r) = −GN
∫ ∞
r

dr
m(r)

r2
,

taking into account that subhalos have finite extensions
set by their tidal radii rt. This potential takes an analytic
expression for an NFW profile, easy to derive and avail-
able in any relevant textbook. Both the binding energy
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and the (absolute value of the) potential energy scale sim-
ilarly with rt for NFW profiles, very roughly ∝ r2

t when
rt � rs, and ∝ ln(rt) when rt � rs.

In the following, we will provide more details on the
overall global phase space characterizing our subhalo
population model. We will discuss the concentration
function in Sect. II C 1, the mass function in Sect. II C 2,
the spatial distribution in Sect. II C 3, and tidal effects
and induced correlations in Sect. II D.

An important point, we will assume that subhalos are
independent of each other, which means that each phys-
ical quantity (mass, annihilation volume, etc.) can be
dealt with as a random variable over the global phase
space. This will allow us to compute different moments
of any observable and thereby estimate the associated
statistical uncertainty.

1. Concentration function

The concentration of DM (sub)halos has long been
studied in the literature (see e.g. [29, 61, 81, 91–98]). In
Ref. [97] (SCP14 hereafter), the authors compared the
concentration model of Ref. [96] to various sets of cosmo-
logical simulation data, spanning a large range of subhalo
masses, notably from ∼ 10−6M� (from Refs. [27, 30, 99]),
and also including the VL2 data. It turns out that
in spite of the slightly different input cosmological pa-
rameters, these data can be relatively well described
by the model within statistical errors — note that the
rather large values of Ωm and σ8 inferred from the recent
Planck data would even favor a more optimistic model-
ing [81, 82]. The authors of SCP14 also provide a fitting
function of the central concentration value, inspired by
Ref. [35], which is quite convenient for our purposes:

c̄(m, z = 0) =

5∑
i=0

ci

[
ln

(
m

h−1M�

)]i
, (28)

with ci = [37.5153, 1.5093, 1.636 · 10−2, 3.66 ·
10−4, 2.89237 · 10−5, 5.32 · 10−7], which gives values
from ∼ 65 at the lower subhalo mass edge ∼ 10−10M�
to ∼ 10 at the bigger mass edge ∼ 1010M�. This is
reminiscent from the fact that smaller objects have
formed earlier, in a denser universe, and this further

induces a larger luminosity-to-mass ratio ξ/m
∼∝ c3 for

lighter objects.
Furthermore, there is a scatter about this central value

related to the fact that structure formation is a statistical
theory of initial density perturbations. The associated
pdf can be very well described by a log-normal distribu-
tion (see e.g. Refs. [93–95, 100, 101]):

dPc
dc

(c,m) =
1

Kc

exp
{
− (c−c̄(m))2

2σ2
c

}
c
√

2π σ2
c

, (29)

where we will fix the variance in log space to σc =
σdec
c × ln(10), with σdec

c = 0.14, a mass-independent and

rather generic value consistent with several detailed stud-
ies (e.g. [93, 94, 101]). Parameter Kc = Kc(m) allows a
normalization to unity over the range considered in this
work, that we set in practice to c ∈ [1, exp(ln(c̄(m)) +
8σc)]. The lower value cmin = 1 is constrained by the
definition of r−2, which is no longer consistent when the
halo extent is found smaller in the case of both NFW
and Einasto profiles. This does not mean that subhalos
for which one cannot specify r−2 are nonphysical, this
is just a limit of our definition of the concentration itself
[28, 102]. However, this has no impact on the observables
we will be dealing with along this article, for which only
large values of the concentration will be relevant.

Note that, according to Eqs. (28) and (29), the central
concentration c̄ and the averaged concentration 〈c〉 do
not coincide:

〈c(m)〉 =

∫
dc c

dPc
dc

(c,m) (30)

' c̄(m) e
σ2c
2 ' 1.05 c̄(m) 6= c̄(m) .

To summarize, once the density profile is fixed, the
inner structure of a subhalo is fully determined from its
mass m and its concentration c. The former gives r200

from Eq. (1), and the latter provides the scale radius rs
and the scale density ρs from Eqs. (21) and (23).

Finally, we emphasize that concentration will play a
crucial role in characterizing the resistance of subhalos to
tidal effects, as we will discuss in more detail in Sect. II D.

2. Mass function

An important part of the subhalo phase space con-
sists in the mass function. The Press and Schechter
(PS) formalism and its extensions (see Refs. [57, 58,
75, 77, 79, 103–105]), in the frame of hierarchical struc-
ture formation and standard cosmology, provide the ba-
sic theoretical paradigm to understand why cosmological
simulations exhibit power-law (sub)halo mass functions
down to very small subhalo masses (see e.g. Refs. [29,
60, 61, 86, 106]). The mass index is actually related
to the index of the power spectrum of primordial per-
turbations, and remains weakly constrained on the very
small scales relevant to DM subhalos (for recent studies,
see e.g. [107, 108]). However, we will still assume that
the mass function is regular over the whole subhalo mass
range, as expected in standard cosmology, such that the
initial mass pdf may be written as a simple power law,

dPm
dm

= Km

{
m

M�

}−αm
and

∫ mmax

mmin

dm
dPm
dm

= 1 ,

(31)

where Km = Km(mmin,mmax) allows the normalization
of the pdf to unity over the mass range delineated by
[mmin,mmax]. Note that we implicitly assume m = m200.
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The mass index αm is typically expected . 2 as a predic-
tion of the PS theory with standard cosmological param-
eters, which is actually recovered in cosmological simu-
lations [29, 60, 61, 86, 106]. In the following, we will
assume 1.9 ≤ αm ≤ 2, unless specified otherwise.

We emphasize that the actual subhalo mass distribu-
tion, which should incorporate tidal stripping and disrup-
tion, and depends on the tidal subhalo mass mt rather
than on m200, is not directly described by Eq. (31). In-
deed, tidal effects will make mt become position depen-
dent, and thereby the subhalo mass range too. Neverthe-
less, the procedure presented in Sect. II A (see Sect. II B 2
and Sect. II B 3) includes all this self-consistently while
still based on Eq. (31) as the initial mass function.

3. Spatial distribution

The spatial distribution of subhalos in the Galaxy is a
very important input in this work because it will allow to
compute the local number density of subhalos, which will
itself set the local annihilation boost factor, relevant, for
instance, to indirect DM searches with antimatter cos-
mic rays. As for the mass function introduced above, we
will also define the initial spatial distribution, which will
further be distorted by tidal effects from the procedure
defined in Sect. II A. As argued above, since small-scale
subhalos have already virialized when the Galaxy forms,
it is reasonable to match the initial spatial pdf to the
global dark halo profile, such that

dPV (~x)

dV
=
ρtot(~x)

M200
, (32)

where M200 is the global dark halo mass within R200,
and ρtot is the global DM density profile discussed in
Sect. II B 1. This pdf is normalized to unity within a
sphere or radius R200 by construction.

Of course, tidal effects will strongly distort this initial
distribution because of tidal disruption, such that the ef-
fective and real spatial distribution of subhalos will even-
tually not look like Eq. (32). Actually, tidal effects will
make this spatial distribution become mass-dependent,
exactly as the actual mass function becomes spatial de-
pendent, such that the mass and spatial distributions
are fully intricate in practice (tidal effects are discussed
in Sect. II D). Therefore, even though we do use Eq. (32)
to formally describe the initial spatial distribution, the
effective spatial distribution is still self-consistently de-
termined through the procedure described in Sect. II B 2
and II B 3.

D. Tidal effects

Tidal effects play a fundamental role in shaping the
phase space relevant to Galactic DM subhalos as defined
in Eq. (8). As discussed above, they affect their mass,
concentration, and spatial distributions, and will thereby

distort and mix the pdfs defined in Eqs. (31) and (29) by
pruning and disrupting subhalos. In the following, we
describe in detail the way we implement these effects,
which are critical to our final results.

Many studies have been, and are still being, carried
out on this topic (e.g. Refs. [61, 76, 109–121]). In this
study, we will mostly consider two distinct effects: tidal
stripping from the overall Galactic potential, and tidal
shocking by the Galactic disk, which are known to be
the most significant processes (see e.g. Ref. [26]).

Implicit in what follows, we will assume that any de-
rived tidal radius cannot exceed r200, such that formally,
throughout all this paper, we will always impose

rt = Min {rt, r200} . (33)

1. Global tides from the host halo

Tidal effects generated by the host Galactic halo in-
duce a pruning of subhalos that can be accounted for by
setting the actual spatial extent of a subhalo to its tidal
radius. In the simplest approximation where both the
host halo and its subhalo are considered as point-like ob-
jects, and taking into account the centrifugal force, the
tidal radius can be defined as [76, 122–124]

rt• = rt•(R,m,M) =
{ mt

3M

}1/3

R , (34)

where M and mt are the point masses of the whole host
galaxy and the subhalo, respectively, and R is the ra-
dial position of the subhalo in the host galaxy. Note that
mt = m(rt•) features the above equation, not m200. This
formula can be generalized to the case of objects orbit-
ing galaxies with continuous mass density profiles, more
relevant to our case, as (see Ref. [123])

rt = rt(R,mt, ρtot(R)) (35)

=

 mt

3M(R)
(

1− 1
3
d lnM(R)
d ln(R)

)


1/3

R ,

where M(R) is the host galaxy mass within a radius R,
which depends on the global mass density profile ρtot.
This equation may be solved iteratively as it implies the
tidal subhalo mass mt = m(rt) defined in Eq. (23), and is
shown to provide a rather good description of a subhalo
radial extent in DM-only cosmological simulations (see
e.g. Ref. [29]).

For completeness, we may also introduce an empirical
tidal radius definition where we just delineate the sub-
halo by the radius at which its density equals the overall
density locally, i.e.

rt such that ρ(rt) = ρtot(R) . (36)

We finally stress that when baryons are included, they
also contribute to ρtot and thereby to M(R) in the equa-
tions above [for the baryonic disk, we will use the spher-
ical approximation of the density, given in Eq. (7)]. We
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will discuss the impact of using one or the other definition
in Sect. II D 4. Besides, note that although global tides
from the host halo are indeed important in the outskirts
of the Galaxy, other processes become more and more
efficient in the inner regions, as the ratio of baryons to
dark matter increases, as we will see below.

2. Baryonic disk shocking

An important source of destructive gravitational in-
teraction arises during disk crossing, where subhalos can
acquire a substantial amount of kinetic energy which can
unbind them (see Refs. [110, 114, 116, 125, 126]). Termed
disk shocking, this effect dominates over more local de-
structive effects like encounters with stars, and is actually
found the most efficient subhalo disruption mechanism
in the luminous part of spiral galaxies [26]. These effects
are much more tricky to include than those discussed in
Sect. II D 1.

Below, we discuss the physical steps that allow to ac-
count for disk shocking in a subhalo population model.
We first review the seminal results obtained in Ref. [125]
by Ostriker, Spitzer, and Chevalier, and further extended
in e.g. Ref. [126], which were related to the study of
Galactic stellar clusters.

We wish to evaluate the kinetic energy gained by a
WIMP orbiting a subhalo only subject to the gravita-
tional field of the Galactic disk during one crossing. As-
suming the disk is an infinite slab (radial boundaries are
sent to infinity), then the disk gravitational force field is
directed along the axis perpendicular to the disk and of
unitary vector ~ez, so the z coordinate is the only rele-
vant here. This is a fair approximation when a subhalo
is about to cross the disk. Setting ~x the full 3D WIMP
position and ~x0 the subhalo center position, the change
in the WIMP velocity along the z axis and in the subhalo
frame reads:

dvz
dt

=
d(~̇x− ~̇x0)

dt
· ~ez = gz,disk(Z)− gz,disk(Z0)

= gz,disk(Z0 + δZ)− gz,disk(Z0)

≈ δZ dgz,disk(z)

dz
, (37)

where we have defined δZ ≡ Z − Z0 = (~x− ~x0) · ~ez, and
where the latest line is merely obtained from a Taylor
expansion to first order. We have used the disk gravita-
tional force field gz,disk, which can be inferred from the
baryonic disk profile introduced in Eq. (6),

|gz,disk(R, z)| = 4πGN zd ρd(R, z) . (38)

Eq. (37) can further be integrated over the disk cross-

ing time δt = t>− t< to get the net velocity change ∆vz,

∆vz =

∫ t>

t<

dt δZ
dgz,disk(z)

dz
(39)

≈ δt δZ (gz,disk(z(t>))− gz,disk(z(t<))

z(t>)− z(t<)

= δZ

{
δt

z(t>)− z(t<)
=

1

Vz

}
× 2 gz,disk(z = 0) ,

where Vz is the component of the subhalo velocity per-
pendicular to the disk. This approximation is licit as long
as δZ does not vary much over the crossing time (i.e. the
WIMP orbital time in the subhalo is much longer than
the disk crossing time) and as long as the modulus of
the gravitational force field remains close to its maximal
value (but for the flip of sign when crossing z = 0). This
is known as the impulsive approximation.

We can therefore derive the net average gain in kinetic
energy per unit WIMP mass for a single disk crossing,

ε0k(z) ≡ ∆E0
k

mχ
=

1

2
(∆vz)

2

=
2 g2

z,disk(z = 0) z2

V 2
z

, (40)

which depends on the squared vertical coordinate z rela-
tive to the subhalo center.

A key assumption in deriving the previous results is
that δZ does not vary significantly as the subhalo crosses
the disk. This is very likely not verified for the innermost
orbits, nor for the smallest objects, for which the impul-
sive approximation readily breaks down. Indeed, had
subhalo particles enough time to circulate several times
about the center as the object crosses the disk, conserva-
tion of angular momentum would prevent them to leave
the system, and disk shocking would become inefficient.
This is an example of the manifestation of adiabatic in-
variance, which was extensively studied in the context
of stellar clusters in Refs. [126–130], from both analytic
and numerical calculations. Following Ref. [126], captur-
ing the results derived in Ref. [128] from the linear theory
approximation, we introduce an adiabatic correction,

A(η) = (1 + η2)−3/2 , (41)

where η is the so-called adiabatic parameter, with η � 1
for orbits close to the object’s center, and η � 1 close
to the tidal radius. This gives A(η � 1) → 0, and
A(η � 1) → 1, the latter case corresponding to the the
parameter space for which the impulsive approximation
holds. The adiabatic parameter is formally defined as

η(r,R) ≡ ω(r) τ(R) , (42)

where ω is the orbital frequency that can be estimated
from the inner dispersion velocity, ω =

√
〈v2〉(r)/r, r

being the distance to the subhalo center, and τ is the
effective crossing time. The latter is given in terms of
the half-height H of the disk, and of the vertical com-
ponent of the subhalo velocity Vz(R) at radius R in the
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Galactic frame. In the following, we will make use of
the isothermal approximation, such that each Cartesian
component of the velocity dispersion, for any system of
mass m(r) inside a radius r, is related to the circular
velocity according to

σ2
v,i(r) =

1

2
v2
c (r) =

1

2

GN m(r)

r
. (43)

Consequently, we get

ω(r) ≡
√

3GN m(r)

2 r3
(44)

≈ 3.5× 10−2Myr−1

√
m/6× 10−8M�

(r/3.5 pc)3

and

τ(R) ≡ H

Vz(R)
= H

√
2R

GN M(R)
(45)

≈ 0.45 Myr
(H/100 pc)

(Vz/200 km/s)
,

where m(r) stands for the subhalo mass inside a radius r,
while M(R) is the total Galactic mass inside a radius R.
The orbital frequency is indicated for the typical mass
a subhalo of m200 = 10−6M� has inside its scale radius
rs ≈ 3.5×10−8M�, taking a median concentration. This
shows that except in the very central parts of subhalos
where A(η)→ 0, we will essentially have A(η) ∼ 1, corre-
sponding to a maximal efficiency for disk shocking. Nev-
ertheless, since m(rs)/r

3
s ∝ c3, we see that this efficiency

will decrease as the concentration increases, protecting
the most concentrated objects from disk-shocking effects.
Actually, for a flat Galactic velocity curve of ∼ 200 km/s,
we find assuming an NFW profile that to get η > 1,
condition for the disk-shocking efficiency to start to be
damped out, one needs x = r/rs . 10−3c, regardless of
the subhalo mass.

The adiabatic correction A(η) allows to modify the ki-
netic energy transfer defined in Eq. (46) in such a way
that it is now valid over the full extent of any considered
subhalo. This reads

εk(z) ≡
2 g2

z,disk(z = 0) z2

V 2
z

A(η) , (46)

where the vertical subhalo velocity component Vz(R) has
been implicitly defined in Eq. (45).

Finally, assuming circular orbits for WIMPs in a sub-
halo, one can easily express the average kinetic energy
gain as a function of the radius r only, as 〈z2〉 =
(1/2)

∫
d cos θ r2 cos2 θ = r2/3. We get

〈εk〉(r) =
2 g2

z,disk(z = 0) r2

3V 2
z (R)

A(η) . (47)

The scaling with r is explicit, but for the quasi-
exponential suppression when r → 0 due to adiabatic
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Disk shocking at R=R¯
Disk shocking energy ∆εk  (theory-based)

Potential energy per particle |φ(r)−φ(r200)|
Potential energy per particle |φ(r)−φ(r200/10)|

m200 =10−6 M¯

m200 =10+6 M¯

FIG. 1: Average kinetic energy gain induced by a single
encounter with the Galactic disk as a function of r/rs, for

two NFW subhalos (10−6 and 106M�) located at R� — see
the definition in Eq. (47) (here, we use the M11 mass model
parameters). Also shown are their gravitational potentials.

We plot the results in units of GN ρs r
2
s , which comes out as

a natural scaling, to make the comparison more striking.

invariants: the gain in kinetic energy increases like the
squared radius, and is maximal close to the tidal bound-
ary of the subhalo. This scaling is shown as red curves
in Fig. 1 for two different subhalo masses, 10−6 (solid
curve) and 106M� (dashed curve), and further compared
to the moduli of their gravitational potentials, defined in
Eq. (27).

The calculations presented above are at the basis of
the methods we propose to follow to account for disk
shocking, and thereby to further prune or destroy subha-
los. Below, we discuss two different strategies, that we
will call differential and integrated disk shocking to make
the distinction clear. Common to both methods is the
number of disk crossings, Ncross, which is computed from
the circular velocity of a subhalo in the Galactic frame
(we implicitly assume circular orbits) and the age of the
Galaxy TMW:

Ncross(R) =

√
GN M(R)

R

TMW

π R
. (48)

Throughout this paper, we will set TMW = 10 Gyr.
Beside the disk-shocking methods presented below,

which are aimed to determine subhalo tidal radii in
Galactic regions encompassing the baryonic disk, our
tidal disruption criteria will be discussed in Sect. II D 4
where the disk-shocking methods will be further com-
pared.
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a. Tidal radius from differential disk shocking

The so-called differential disk shocking method will be
our primary one, and relies on a comparison between the
kick in velocity induced by disk shocking, as effectively
described in Eq. (47), and the escape velocity,

vesc(r) =

√
−2 φ̃(r) . (49)

If the kick induced by disk shocking is such that the par-
ticle reaches the escape velocity, then it gets unbound
to the system. Therefore, for each disk crossing, we will
accordingly define the tidal radius as the radius at which
the kick in velocity equals the escape velocity. In terms
of energies, this reads:

rt such that 〈εk〉(rt) = −φ̃(rt) . (50)

This procedure must be applied at each crossing, such
that it may somehow capture the dynamics of disk shock-
ing. Indeed, hidden in φ̃ [see Eq. (27)] is the radial bound-
ary of the subhalo, which means that the above equation
must be applied iteratively up to the number Ncross of
disk crossings given in Eq. (48). More explicitly, we have
for the ith crossing

rt,i such that 〈εk〉(rt,i) = −φ̃(rt,i, rt,i−1) . (51)

In practice, we start with the tidal radius inferred from
the global tidal effects induced by the host halo and dis-
cussed in Sect. II D 1. This method can easily be applied
to any subhalo model, irrespective of the inner density
profile. It also provides a dynamical description of disk
shocking, while only approximately. Indeed, this iter-
ative procedure assumes that the internal structure of
the shocked subhalo is not altered between two crossings,
while part of the energy could actually be redistributed.
Anyway, this picture is still consistent with adiabatic in-
variance, which partly protects the inner parts of subha-
los against tidal pruning.

An illustration of this differential disk shocking method
is shown in Fig. 1, where we have plotted the disk-
shocking energy 〈εk〉(r) (red curves) and the gravitational

potential modulus |φ̃(r)| as a function of the scaling vari-
able r/rs (rs is the subhalo scale radius). We have con-
sidered two different NFW subhalos, 10−6 (solid curves)
and 106M� (dashed curves, respectively), both located
at R�. The corresponding gravitational potential mod-
uli evaluated using two different radial boundaries for
subhalos, one set to r200 (blue curves), the other set
to r200/10 (green curves), about which they are expo-
nentially suppressed — the 1/r scaling expected beyond
rs is poorly seen as the potential goes from ∝ cst to
∝ (1/r−1/rt) ≈ e−r/rt/r very fast. These radial bound-
aries can be thought of as initial tidal radii before disk
crossing. By virtue of Eq. (50), the tidal radius after
one disk crossing will be set to the radius at which the
kinetic energy and the potential curves intersect. There-
fore, Fig. 1 nicely illustrates why the tidal stripping effi-
ciency is much larger (i) in the outer regions of the sys-
tem, and (ii) for more massive subhalos. This is due to
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Disk shocking (DS) at R=8 kpc (single crossing)

Integrated DS energy (theory-based)

Integrated DS energy (simu-based)

Subhalo potential energy |Ugrav|/(GN ρ 2
s r 5

s )

Subhalo binding energy Ebind/(GN ρ 2
s r 5

s )

m200 =10−6 M¯

m200 =10+6 M¯

FIG. 2: Integrated kinetic energy gain induced by the
Galactic disk as a function of rt/rs, for two NFW subhalos
(10−6 and 106M�) located at 8 kpc, assuming two different
concentration values (the median one, and twice it) — see
the definitions in Eq. (52) for the theory-based calculation,
and Eq. (54) for the simulation-based estimate. Also shown
are the binding and potential energies. We plot the results
in units of GN ρ2s r

5
s , which leads to the same binding and

potential energies for both subhalo masses.

the different scaling in r/rs, which is much sharper for
the disk-shocking energy than for the gravitational po-
tential. Not only do these results follow expectations,
but they also allow to make specific calculations related
to the phenomenology of subhalos.

b. Tidal radius from integrated disk shocking
In contrast to what was presented above as a differen-

tial disk-shocking method, we can now try to integrate
the kinetic energy gain over the whole subhalo – so the
denomination integrated disk shocking method. Such a
method was partly followed in Ref. [114], where the au-
thors used the Eddington equation in the isothermal limit
to convert the energy gain in phase space into a mass loss.
Here, instead, we will use spherical symmetry, and sim-
ply assume that WIMPs take only circular orbits, such
that the integrated kinetic energy gain can be expressed
as

Ek(rt, R) = 2π

∫ rt

0

dr r2

∫ 1

−1

d cos(θ) εk(z,R)
ρ(r)

mχ
,

(52)

where εk(z,R) is given by Eq. (46), and ρ is the inner
subhalo mass density profile. Spherical symmetry merely
implies that z2 = r2 cos2(θ), which makes the computa-
tion easy. This integrated energy gain can then be com-
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pared to the binding energy or to the potential energy,
for each subhalo. For an NFW profile, the scaling goes
from roughly ∝ r4

t for rt � rs, to ∝ r2
t for rt � rs.

This is illustrated for a single disk crossing in Fig. 2,
for two subhalos of 10−6 (solid curves) and 106M� (dash-
dotted curves) located about the solar position – for com-
pleteness, we use two different concentration values for
each subhalo: the median value (thin curves), and twice
it (thick curves). The red curves show the integrated
disk-shocking energy given in Eq. (52), as compared to
the binding (green curve) and potential (blue curve) ener-
gies [see Eqs. (25) and (26), and the associated comments
about the radial scaling]. Using units of GN ρ

2
s r

5
s allows

to get a single curve for each of the latter energies, for
both subhalo masses. The scaling of the disk-shocking
energy with rt/rs is again sharper than that of the po-
tential or binding energy, as expected. This implies that
the central subhalo regions will be less prone to tidal
stripping. We also see that as in the case of differen-
tial disk shocking, more massive subhalos will be more
efficiently affected by tidal stripping.

Since we are dealing with integrated energies, we define
the subhalo tidal radius after Ncross disk crossings as

rt such that NcrossEk(rt, R) = Eb(rt) , (53)

where we use the binding energy Eb defined in Eq. (25)
as a reference.

c. Tidal radius from integrated disk shocking (fits on
cosmological simulations)
For the sake of comparison, we now introduce a result
fitted on dark matter-only zoomed-in cosmological simu-
lations, given in Ref. [116], wherein a baryonic disk po-
tential was grown adiabatically to study the induced tidal
disruption of subhalos. The qualitative features of this
result were recently recovered in cosmological simulations
including baryons, and discussed in Ref. [61]. The au-
thors of Ref. [116] have tried to capture disk shocking ef-
fects by a simple and physically motivated ansatz, which,
as they found, match rather well with their simulation
results (see e.g. Ref. [123] for the dynamical grounds).
They introduced an integrated-like disk-shocking energy
Ẽk(rt, R) given by

Ẽk(rt, R)

Eb(rt)
=

(1.84 r1/2)2 g2
z,disk

3 σ̃2
v V

2
z

, (54)

where r1/2 is the radius containing half the subhalo
mass, gz,disk is the disk gravitational force field given
in Eq. (38), σ̃ is an estimate of the internal dispersion
velocity given by σ̃2 = 0.4GN mt/r1/2, and Vz is the
velocity component perpendicular to the disk, that will
be inferred from the approximation given in Eq. (43).
This disk-shocking energy is shown as purple curves in
Fig. 2, for the two subhalo prototypes introduced above.
It still scales more sharply with rt (readily inferred as
∝ r3

t from the equation just above) than the potential or
binding energy, though less sharply than the integrated
disk-shocking energy discussed in the previous paragraph
while with similar amplitude around rt/rs ' 10. This

means that this way to implement disk shocking will
likely disrupt subhalos more efficiently, as gravitational
stripping toward the central regions becomes more effi-
cient. Still, we note that Eq. (54) relies on fits on simu-
lation results, and could therefore be more specific to the
subhalo mass range probed by cosmological simulations,
which is still strongly limited by resolution issues. Any-
way, the resulting subhalo tidal radius after Ncross disk
crossings can then be calculated by means of Eq. (53),

merely by replacing Ẽk(rt, R) by Ẽk(rt, R).
d. Disk-shocking summary

We have introduced the so-called differential and inte-
grated disk-shocking energies. For the latter, we have
derived two expressions, one consistent with the differ-
ential one, another inspired by cosmological simulation
and fully independent. These physical quantities allow
us to derive the subhalo tidal radius rt after Ncross disk
crossings for any method. These calculations lead to dif-
ferent results, but common to all is the fact that rt does
depend either on the subhalo mass m, its concentration
c, its position in the Galaxy R, and its internal den-
sity profile. Our primary method will be the one based
on the differential disk-shocking energy, as it relies on
fewer assumptions. We will compare all these results in
Sect. II D 4.

3. Subhalo mass-independence of xt = rt/rs

A striking property of all the tidal radius calculation
methods discussed above, either those involving global
tides and those involving disk shocking, is that the ratio
xt = rt/rs turns out to be independent of the subhalo
mass. Actually, xt depends only on the subhalo concen-
tration c and on its radial position R in the Galaxy. If
the latter dependence is rather easy to understand (tidal
stripping depends on the position), the former is much
less trivial.

For the global tides discussed in Sect. II D 1, it is easy
to show that the methods based on the Jacobi limit can
be formulated along

xt =

[
∆200 f(xt)

∆t(R) f(c)

]1/3

κ c

⇔ xt [f(xt)]
−1/3

=

[
∆200

∆t(R) f(c)

]1/3

κ c ,

which makes it clear that xt is only a function of R and
c. Here, κ = r−2/rs is set by the choice of the inner
profile, and function f can be defined on general grounds
by means of the subhalo mass, m(x) = 4π ρs r

3
s f(x),

where x = r/rs – for an NFW profile, it is simply f(x) =
ln(1+x)−x/(1+x). We have also defined ∆x = 〈ρ〉rx/ρc,
i.e. the ratio of the average subhalo density within a
radius rx to the critical density (∆200 = 200). In the case
of the point-like Jacobi approximation corresponding to
the tidal definition of Eq. (34), for instance, we have

∆t(R) = 9M/(4π R3 ρc) ,
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where M is the whole host galaxy mass.
The demonstration for the method setting the tidal ra-

dius from equating the inner density to the outer density,
given in Eq. (36), is trivial, and relies on the fact that
the subhalo scale density ρs, regardless of its profile and
its mass, is only set by the concentration parameter —
for an NFW profile, it reads

ρs =
∆200 ρc

3

c3

f(c)
.

If we write the density profile as ρ(r) = ρ(x = r/rs) =
ρs u(x), then Eq. (36) translates into u(x) = ρtot(R)/ρs,
which makes it clear again that xt depends only on c and
R.

Finally, the cases of disk-shocking tidal effects are more
subtle. In the differential method, xt can readily be
shown to be a function of c and R only from Eq. (50).

This is simply because the potential φ̃(rt) ∝ r2
sg(xt, c),

where it is not necessary to specify function g, while the
kinetic energy 〈εk〉(rt) ∝ r2

t ḡ(xt, c, R), function ḡ be-
ing unspecified too, such that equating them leads to an
equation that involves only variables xt, c and R. This
proves that xt only depends only on c and R. The rea-
soning is similar for the so-called integrated disk-shocking
methods, and also leads to the dependence only on R and
c of the associated xt.

4. Tidal disruption criterion and minimal concentration

Equipped with several tidal radius definitions, we can
now define a tidal disruption criterion by specifying the
function ζ(rt) introduced in Eq. (23), where rt is the sub-
halo tidal radius. We remind that the latter depends on
all the specific subhalo properties, and on its position in
the host halo. In light of results obtained in Ref. [76], we
may define the following very simple disruption function,

ζ

(
xt ≡

rt
rs

)
≡ θ (xt − εt) , (55)

where θ is the usual dimensionless step function, rs =
rs(m, c) is the subhalo scale radius, and parameter εt
sets the minimal value allowed for xt. This parameter
very likely depends on the inner subhalo density profile,
and could also depend on the specific process responsi-
ble for tidal stripping. Typical values found using dark
matter-only simulations are εt ≈ 2 (see Ref. [76]), but we
may wonder whether simulations can efficiently capture
the continuous limit due to their limited spatial/mass
resolution. For definiteness, we will set εt = 1 in the
following, unless specified otherwise.

This translates into a minimal bound on the subhalo
concentration, cmin(R), as the surviving subhalos are
only those with scale radii such that rt/rs ≥ εt. This
concentration cut-off reads

cmin(R) =
εt
κ

r200(m)

rt (cmin(R),m,R)
, (56)
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FIG. 3: Minimal concentration as a function of the
dimensionless Galactocentric radius R/R200, induced by

different tidal effects. The solid curves show the global-tides
effects discussed in Sect. II D 1, and the non-solid curves

show the disk-shocking effects discussed in Sect. II D 2. See
more comments in Sect. II D 4.

a transcendental equation that can be solved iteratively.
Here, κ = r−2/rs is fixed by the choice of density profile
(κ = 1 for an NFW or an Einasto profile). In practice,
we will further impose that

cmin(R) = Max {cmin(R); 1} . (57)

We emphasize that cmin does actually not depend on the
subhalo mass, only on its location R in the Galaxy. This
is because xt is only a function of the concentration c and
R, as explained in Sect. II D 3.

This concentration lower bound, cmin(R), is the very
variable that differentiates the tidal stripping methods
discussed in Sect. II D 1 and in Sect. II D 2. We report
our calculations of cmin in Fig. 3, as a function of the
dimensionless Galactic radius R/R200 (R200 = 237 kpc
in the M11 model). The curves related to the global
tides are shown as solid colored lines, while those asso-
ciated with disk shocking are the non-solid ones. Note
that we have also included the baryons in the calcula-
tion of the global-tide effects (see Sect. II D 1). We also
stress that we did the calculation assuming two different
inner subhalo profiles: an NFW profile (thick curves),
and an Einasto profile (thin curves) — we took an index
of αe = 0.17 for the latter. From the plot, there is no sig-
nificant qualitative difference between these profiles, but
that Einasto subhalos are very slightly more resistant to
gravitational tides.

We note that the most approximate method for the
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global tides, the point-like Jacobi limit given in Eq. (34),
is also the one that destroys subhalos most efficiently,
even more efficiently than disk shocking in the central
parts of the Galaxy. It can therefore be used for fast and
conservative calculations, while it is highly sensitive to
the estimate of the total mass of the Galaxy, which is of-
ten ambiguous as it depends on the choice for the virial
radius. To make the discussion more quantitative, we
recall that a 10−6M� subhalo has a peak concentration
of ∼ 60, which will serve as a reference value here. We
see from the plot that the point-like tide method already
affects such tiny objects already from 20 kpc and pushes
them to exponentially high concentration inward. This
means that at the solar position these objects have al-
ready been almost fully disrupted. The two other global-
tides methods [given in Eqs. (35) and (36)], much more
realistic, give similar results and lead to much less tidal
stripping than the point-like approximation. Subhalos
of 10−6M� start to be strongly affected around 2-4 kpc
from the MW center in these scenarios.

Disk-shocking effects start to play a role only from 20
kpc inward, as expected from the typical gravitational
size of the Galactic disk. All disk-shocking methods lead
to more stripping than global tidal effects, except for the
point-like approximation discussed above. Here again,
we see that the most approximate method, the integrated
disk-shocking method fitted on cosmological simulations
and given in Eq. (54), is the most efficient to destroy or
prune subhalos. Besides being based on very crude ap-
proximations, we stress that it is also likely biased by
the resolution limit inherent to cosmological simulations,
where only subhalos with masses & 104−7 can be tracked.
These massive objects are much less concentrated than
their lighter brothers and sisters, and more prone to strip-
ping and disruption. In contrast, the less efficient method
is the one based on integrated disk shocking and given in
Eq. (53). Intermediate is the method the most motivated
on theoretical grounds. Interestingly, the latter starts to
deplete subhalos of 10−6M� around the position of the
Sun.

In summary, global tides tend to dominate the strip-
ping beyond the disk, while disk shocking dominates in-
ward. This was obviously expected, but we quantified
and illustrated these effects rather exhaustively. More-
over, we showed that the point-like Jacobi approximation
makes it irrelevant to include disk shocking, as it super-
sedes all over effects over the whole Galactic range. Nev-
ertheless, as we discussed above, this point-like approxi-
mation is by far the worst to make, while being conserva-
tive. Obviously, in a consistent and complete model, one
has to include all tides, those coming from global grav-
itational effects, and those coming from disk shocking.
This is what we will do when discussing our final results
in Sect. III.
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FIG. 4: Minimal concentration as a function of the
dimensionless Galactocentric radius R/R200, induced by

different tidal effects. The solid curves show the global-tides
effects discussed in Sect. II D 1, and the non-solid curves

show the disk-shocking effects discussed in Sect. II D 2. See
more comments in Sect. II D 4.

5. Tidal selection of the most concentrated objects: shift of
the average concentration

By depleting the lower tail of the concentration dis-
tribution, tidal effects modify the average concentration
of subhalos as a function of their mass. This can be
explicitly calculated by means of the first moment of
the concentration function, given in Eq. (30). The in-
crease in the average concentration merely comes from
that tidal effects reduce the concentration range from be-
low by cin(R) ≥ 1. In reality, the concentration function
should not be truncated that sharply, but this truncation
still captures the main physical effects at play.

We illustrate this in Fig. 4, where we report our cal-
culations of 〈c(m)〉 as a function of the dimensionless
Galactic radius X200 = R/R200 for three different sub-
halo masses, 10−6, 1, and 106M�, and for all the tidal-
stripping methods introduced above. The asymptotic
values of 〈c(m)〉 at X200 → 1 correspond to the av-
erage concentration computed in the range cmin = 1,
cmax =∞. As we go inward, tidal effects come into play
and cmin increases, leading to the increase in 〈c(m)〉. Re-
calling that the concentration function is Gaussianly sup-
pressed beyond the median value c0(m) ≈10-100, in the
considered subhalo mass range, we can therefore read off
from the plot that most of subhalos with masses larger
than that of a given curve are tidally depleted as the
curve exceeds ∼ 100. This trend is consistent with previ-
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ous studies performed from dark matter-only cosmologi-
cal simulation results (see e.g. [28, 76, 88, 119, 121, 131]),
or from simple analytic approximations (see e.g. [118]),
but these works did not include baryonic effects. Here
we provide quantitative estimates for both baryonic and
dark matter tidal effects, and comparisons between dif-
ferent approaches.

6. Impact of tidal effects on the calibration and
normalization procedure

It may turn useful to summarize the way tidal effects
are integrated in the full procedure in practice. As dis-
cussed in Sect. II B 3, we calibrate the subhalo popula-
tion by considering only the so-called global tidal effects
presented in Sect. II D 1. These global tidal effects trans-
late into a function c0min(R) that cuts the concentration
pdf from below, and allows us to determine both N0

sub
and the associated normalization of the whole subhalo
phase space K0. This must be done without baryons
at all, consistently with the fact that the calibration is
based upon dark matter-only simulation results. Then,
we compute the final phase-space normalization K that
accounts for the baryonic tides (both the global-tide and
the disk-shocking calculations), which are characterized
by a new cut-off function cmin(R). We obtain the final
number Nsub of subhalos by demanding that the overall
subhalo mass density is unaffected at very large radii, far
from the disk, where baryonic effects can be neglected.
This can be rephrased as setting Nsub = (K/K0)N0

sub.

III. CONCRETE RESULTS: MASS PROFILES,
LUMINOSITY PROFILES, AND BOOST

FACTORS

In the previous section, we have introduced the whole
scheme to derive a Galactic subhalo population consis-
tently with current dynamical constraints, assuming only
a smooth halo component and spherical symmetry. This
scheme was integrated in a C++ numerical code, and
in this section, we will present our main results. In
Sect. III A, we will first inspect the overall subhalo mass
profile that comes out as a result of our tidal-stripping
procedure. Then, in Sect. III B, we will show how the
obtained subhalo distribution translates into annihilation
profile, and subsequently quantify the associated annihi-
lation boost factor. Throughout this section, we will also
comment on the specific impacts of the initial subhalo
mass distribution index α and the minimal subhalo mass
(see Sect. II C 2).

A. Mass profiles

In Sect. II A, we have introduced the smooth and sub-
halo dark matter components from the overall density
profile ρtot in Eq. (2), that we rewrite with an explicit
spherical symmetry to make the present discussion clear:

ρtot(R) = ρsm(R) + ρsub(R) . (58)

We remind that ρtot is subject to dynamical constraints, and we have adopted the M11 model as a template Galactic
mass model (see Sect. II B). The smooth dark matter component ρsm featuring above can only be derived a posteriori,
after having determined the subhalo component ρsub given in Eq. (11). Making the tidal cut-off cmin(R) explicit, the
latter reads:

ρsub(R) =
Nsub

Kw

dPV (R)

dV

∫ mmax

mmin

dm

∫ cmax

cmin(R)

dcmt(rt(c,m,R),m, c)
dPm
dm

dPc
dc

with Kw = 4π

∫ R200

0

dRR2 dPV (R)

dV

∫ mmax

mmin

dm

∫ cmax

cmin(R)

dc
dPm
dm

dPc
dc

, (59)

where Nsub is the total number of subhalos, mt is the subhalo mass contained in the tidal radius rt, and the P’s define
the global subhalo phase space, normalized to unity thanks to Kw, and were introduced in Sect. II B 2.

Taking the M11 Galactic mass model as a reference, the
associated prediction of the overall subhalo mass den-
sity profile is shown in Fig. 5, where we also repre-
sent the impact of the mass index (αm = 1.9/2 in the
top/bottom row panels) and of the minimal subhalo mass
(10−6/10−10M� in the left/right column panels). In each
panel, we give predictions for all the methods introduced
in Sect. II D to compute the tidal stripping and associ-
ated subhalo disruption – the upper part of each plot
shows the mass density profile, and the lower part the
subhalo mass fraction, as functions of the dimensionless

Galactic radius R/R200. Subhalo mass profiles relying
on global tides only are reported as solid colored curves
– see Sect. II D 1 – while those incorporating also disk-
shocking effects are shown as dashed (differential), dash-
dotted (integrated), and dotted (simulation-fit inspired
method, respectively) – see Sect. II D 2. We recall that
our reference model is based on the global tides evaluated
for a smooth halo in the Jacobi limit (dubbed smooth
host in the plots), given in Eq. (35), and on the differen-
tial disk-shocking tides given Eq. (51). It is represented
as dashed red curves in each panel. Some illustrative
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FIG. 5: .

numbers can also be found in Tab. III.

Overall, these results show that tidal effects strongly
deplete the subhalo population in the central parts of
the Galaxy, and underline the effects of disk shocking,
which plays an important role. This leads to a cored-
like spatial distribution inward, before the full disrup-
tion of subhalos in the very center (. 4 kpc). These
are generic features observed in cosmological simulations,
but our analytic procedure allows us to make predic-
tions down to much lower spatial and mass scales, in

a dynamically constrained and consistent frame. Going
to more specific global tidal stripping configurations, we
see that the global point-like Jacobi method, which is
clearly too approximate as it does not account for the
host halo and subhalo profiles details, disrupts almost
all subhalos within R/R200 . 0.1 ⇔ R . 20 kpc, mak-
ing disk-shocking effects even irrelevant. This leads to
a negligible local (R/R200 ∼ 0.3-0.4) subhalo mass frac-
tion, typically� 1%. The two other more physically mo-
tivated global methods provide slightly more optimistic
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Mass function index Total number Phase-space normalization Fraction in Total mass fraction
αm of surviving subhalos Kw local density (average) within R200

αm = 1.9 5.19 × 1018 0.9638 0.04% 14.69%
αm = 2 2.84 × 1020 0.9639 0.84% 47.88%

TABLE III: Results for our subhalo model as embedded in the M11 Galactic configuration, when all tidal effects are
included (global smooth Jacobi limit, and differential disk-shocking method). Here, we take a cut-off subhalo mass

of 10−10M�, and a tidal disruption efficiency of εt = 1.

predictions, with a subhalo mass fraction ∼ 10%. When
disk-shocking effects are further included, however, it de-
creases down to . 1%. Still, we will see in Sect. III B
that this low fraction is somewhat compensated for, in
terms of annihilation rate, by a tidal selection of more
concentrated objects. The impact of the minimal sub-
halo mass is only noticeable for a mass index of 2, as
most of the mass fraction is then carried by the smallest
objects, which are much more resilient to tidal effects.
Since the minimal subhalo mass can in principle be de-
termined by the interaction properties of WIMPs (more
or less straightforwardly related to its mass), most of the
theoretical uncertainties is then featured by αm. For or
reference model, we see that while the mass fraction can
vary by a factor of ∼ 2 between αm = 1.9 and αm = 2
in the outskirts of the Galaxy, its differential value is
much more sensitive because of more efficient tidal selec-
tion of lighter subhalos. In the latter case, the variation
can reach an order of magnitude. This should have im-
pact on predictions for direct subhalo searches (see e.g.
Refs. [132, 133]).

Finally, we note that the amount of subhalo mass lost
during disk crossings could in principle be quantified from
our method, which may be used to size the impact of the
smallest pruned subhalos on the high tail of the WIMP
velocity distribution (see e.g. Refs. [134, 135]). Indeed,

disk shocking induces a net kinetic energy gain for the
pruned WIMPs. This, however, goes beyond the scope
of this work.

B. Annihilation rate profiles and boost factors

In this paragraph, we discuss the potential enhance-
ment the presence of dark matter subhalos may induce
in the WIMP annihilation rate in the Galaxy, usually
dubbed as boost factor. Here, we will only determine the
differential and integrated boost factors on the annihila-
tion rate, not on the observable cosmic-ray or gamma-
ray fluxes. We remind the reader that in terms of these
fluxes, the annihilation boost factor is angular-dependent
for gamma rays [32], while energy-dependent for antimat-
ter cosmic rays [34, 35].

In this work, we will assume that subhalos do not su-
perimpose, such that we will not account for the poten-
tial existence of sub-subhalos, which might be relevant in
the most massive subhalos as they have formed at later
epochs than the lightest ones. We still stress that any
inclusion of sub-subhalos should be consistent with the
normalization and calibration procedures one subscribes
to (in particular, the overall mass function should be re-
covered after all layers of subhalos have been accounted
for).

With this assumption, the total annihilation rate can be derived starting from a discrete distribution of Nsub

subhalos, where the total dark matter density would be given by

ρtot,Nsub
(~x) = ρsm(~x) +

Nsub∑
i

Mt,iδ(~x− ~xi) , (60)

where each subhalo i is point-like and allocated a tidal mass Mt,i, and ρsm is the smooth dark matter density. Squaring
this equation, we get

ρ2
tot,Nsub

(~x) = ρ2
sm(~x) +

Nsub∑
i≥j

Mt,iδ(~x− ~xi)Mt,jδ(~x− ~xj) + 2 ρsm(~x)

Nsub∑
i

Mt,iδ(~x− ~xi) . (61)

Neglecting sub-subhalos formally implies that ~xi 6= ~xj ∀ i 6= j. If we now take the continuous limit and make spherical
symmetry explicit, we obtain

ρ2
tot(R) = ρ2

sm(R)

+
Nsub

Kw

dPV (R)

dV

∫ mmax

mmin

dm
dPm(m)

dm

∫ ∞
cmin(R)

dc
dPc(c,m)

dc

∫ rt(R,c,m)

0

dr 4π r2
{
ρ2(r) + 2 ρ(r) ρsm(R)

}
= ρ2

sm(R) +Nsub
dPV (R)

dV

{
ρ2
�〈̃ξt〉(R) + 2 ρsm(R) 〈̃mt〉(R)

}
(62)
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FIG. 6: Annihilation/luminosity profiles for different assumptions. Upper part of each panel: Black curves show the
profile when neglecting subhalos; blue solid curves show the overall profile when subhalos are included and all tidal effects
considered; green curves show then the separate contribution of the smooth halo, red curves the contribution of subhalos,

magenta curves the contribution of the subhalo-smooth halo cross product; dashed lines show the impact of neglecting
disk-shocking effects. Lower part of each panel: differential (blue curves) and integrated (red curves) boost factors.

Upper/lower row: αm = 1.9/2. Left/right column: minimal subhalo mass of 10−6/10−10M�.

where mt and ξt are the subhalo tidal mass and annihilation volume, defined in Eqs. (23) and (24) respectively.

Symbol 〈̃〉 denotes the averaging over the concentration and mass parts of the subhalo phase space, made explicit in
Eq. (11), which is position-dependent. Notice the crossing term above induced by the interaction between subhalos
and the host halo. Usually assumed subleading and thereby neglected, it may actually dominate over the smooth
contribution at large Galactic radii, as will be shown below.
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We now define the dimensionless WIMP luminosity L,
which measures the spatial dependence of the annihila-
tion rate, as

L(R) ≡ ρ2
tot(R)

ρ2
�

, (63)

where the normalization ρ� is made at the solar position.
We further introduce the differential annihilation boost
factor B(R), and the integrated annihilation boost factor
B(R), as

B(R) ≡ L(R)

Lno sub.(R)
, (64)

B(R) =

∫ R
0
dr r2 L(r)∫ R

0
dr r2 Lno sub.(r)

.

Defined so, these boost factors are merely the multiplica-
tive corrections to apply to the differential or integrated
annihilation rate as computed by neglecting the subhalo
component. Note that in principle, any WIMP signal
prediction involving subhalos should be affected by a sta-
tistical variance, reflecting the possible fluctuations of the
number of contributing objects [34, 35]. We keep this as-
pect for further dedicated studies.

We report our calculation results for the annihilation
profiles in Fig. 6, where we again adopt M11 as the ref-
erence Galactic mass model — this is the translation of
Fig. 5 in terms of annihilation profiles. Global tides are
calculated from the smooth Jacobi method [see Eq. (35)],
while disk-shocking effects are described from the differ-
ential method [see Eq. (51)]. Top (bottom) row panels
correspond to a subhalo mass index of 1.9 (2, respec-
tively). Left (right) column panels correspond to a min-
imal subhalo mass of 10−6M� (10−10M�, respectively).
In each panel, the upper part shows the different com-
ponents of the annihilation profile, and the lower part
shows the differential and integrated boost factors as de-
fined above. We display the impact of neglecting disk
shocking as dashed curves, which demonstrate the im-
portance of this effect in the central parts of the Galaxy.

A generic result is that the subhalo contribution domi-
nates at large radii, typically from the edge of the Galac-
tic disk for a subhalo mass index of αm = 1.9, even from
much more inner regions in the case of αm = 2. For an
overall NFW profile, this leads to a characteristic scaling
of 1/r2 toward the Galactic center, where the smooth
halo dominates, progressively changing to 1/r3 outward,
when the luminosity profile tracks the subhalo spatial dis-
tribution. Interestingly, in the case of αm = 2, where the
global subhalo luminosity is enhanced, a plateau arises
in the overall luminosity profile at the transition between
smooth-halo domination and subhalo domination. This
is actually an imprint of disk-shocking effects, which de-
lay the rising of the subhalo contribution. We will see
later that this plateau does not depend on the tidal dis-
ruption efficiency, and is also preserved in the case of an
overall Einasto profile. This striking feature might be
used in gamma-ray searches.

Finally, we comment on our results for the differential
and integrated boost factors. The so-called differential
boost factor (reported as “local” in the plots) is mostly
relevant to indirect dark matter searches with antimatter
cosmic rays because of the limited horizon of the latter
induced by propagation effects. It also represents the cor-
rection to apply to the integrand of the line-of-sight inte-
gral used in gamma-ray searches. On the other hand, the
integrated boost is related to the absolute Galactic lumi-
nosity, and thereby to extragalactic gamma-ray searches
— then the Galaxy appears as a template case character-
izing other galaxies close in mass. We see that at the solar
position (R/R200 ∼ 0.03-0.04), the boost is locally < 2
for αm = 1.9, while it reaches ∼ 5 for αm = 2. Though
moderate, these values may have some impact on the ex-
isting limits on WIMPs as the precision in the cosmic-ray
data has strongly increased in the recent years. We also
remark that the differential boost increases up to 103-104

toward the edge of the Galaxy, which strongly affects, for
instance, the diffuse gamma-ray signal on high Galactic
latitudes, as known from long ago (see e.g. Refs. [32, 36]).
Regarding the integrated boost, the values obtained at
the edge of the dark halo can represent useful calibration
values for calculations of the dark matter contribution to
the extra-galactic diffuse gamma-ray. These go from ∼ 3
for αm = 1.9, to ∼ 20 for αm = 2. This is fully consistent
with the recent study in Ref. [121] (see Fig. 6 in this ar-
ticle), which is based on fits of cosmological simulations,
and does not include baryonic effects – while global tides
are merely the outcomes of the simulations themselves.
That baryons play no role for the integrated boost at the
whole Galactic scale should not come as a surprise, as
they only affect the dynamics in the very central parts of
the halo.

At this stage, we illustrated our results assuming a
tidal efficiency of εt = 1 [see Eq. (55)]. It is important to
check their stability against changes in this parameter.
In Fig. 7, we investigate the impact of εt by computing
the annihilation profiles for εt = 0.5 (subhalos can be
pruned down to rs/2 before getting disrupted), and for
εt = 0.5 (subhalos can be pruned only down to 2 × rs
before getting disrupted). We adopt the configuration
for which the plateau discussed above is visible, namely
αm = 2. We see that the plateau is slightly smeared
when εt = 0.5, as disk-shocking effects are then less dis-
ruptive and smear the previously abrupt rising of the
subhalo contribution. On the contrary, the plateau is
much more salient when εt = 2, as expected. Values of
0.5 are rather small compared to what is found in cos-
mological simulations (see e.g. Ref. [76]), but could be
relevant, for instance, to the very concentrated cores of
ultra-compact mini-halos, close to the minimal cut-off
mass (see e.g. Ref. [26] for further discussion). Neverthe-
less, we see that except close to the smooth-halo/subhalo
luminosity domination transition, changes in εt have no
significant impact on our predictions. In particular, the
plateau feature does not seem to be spoiled.
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FIG. 7: Impact of the tidal disruption efficiency on the
annihilation profile [see Eq. (55)]. Decreasing values of ε

imply a less efficient disruption (tidal pruning allowed down
to smaller radii).

C. Comparison between different Galactic mass
models

Throughout this study, we have adopted the M11
Galactic mass model as a reference. It is interesting to
check how our predictions are affected by changes in the
Galactic model itself, while still trying to use dynami-
cally constrained scenarios. To this aim, we will use two
other Galactic models: (i) the one of Ref. [46] (CU10
hereafter), which is particularly interesting as it relies on
an Einasto dark halo instead of an NFW one, and (ii)
the upgraded and updated version of M11, recently re-
leased in Ref. [68] by the same author (M16 henceforth),
still based on an NFW profile for the dark halo, but with
additional constraints from novel kinematic data. Beside
the details of the dark matter halo profile and the data
sets used as dynamical constraints, changes with respect
to M11 also come from the additional inclusion of a two-
component gaseous disk (HI and HII) in both models.
Including gas has actually no significant impact on the
dark matter profile on large scales, as this mostly tunes
the distribution of the inner overall gravitational poten-
tial among all, baryonic and dark, components. Rather,
this mostly influences the understanding of the very local
stellar dynamics. Note that since the gas components of
CU10 are directly inferred from data points, we will in-
stead, for convenience, use that of M16 in both M16 and
CU10, which may be described from Eq. (6) (we further
trade the original vertical sech2 of M16 for an exponential

function, which has no impact on the final result). The
sets of parameters of these models are given in Tab. I and
Tab. II.

Concrete comparisons are displayed in Fig. 6 in terms
of annihilation and boost-factor profiles, where solid
(dashed and dotted) curves correspond to M11 (CU10
and M16, respectively) predictions. We adopt the “best-
case” configuration where αm = 2 and the cut-off subhalo
mass is 10−10M�. The color code is the same as in Fig. 6.
Luminosity profiles are measured in units of the squared
dark matter density ρ2

� at the solar position R�, which
(barely) change from one model to another. The up-
per horizontal axes feature the Galactic radius in units
of R200, which also varies between configurations – see
Tab. I. We add another lower panel that provides the real
annihilation profile ratio with respect to M11, where the
luminosity is then evaluated at the corresponding M11
radius for each model – consequently, the lower horizon-
tal axis features R/R200 as inferred from M11 only.

We first notice that the difference between M11 and
M16 is hardly visible, and amounts to . 10% over the
full Galaxy, M16 being slightly less luminous in terms
of dark matter annihilation. This is not surprising as
the only changes between M11 and M16 are the addi-
tion of a gaseous disk and a new set of constraining data.
On the other hand, differences are more pronounced be-
tween CU10 and M11-M16: CU10 is brighter than M11-
M16 in the central parts of the Galaxy, typically for
R/R200 < 0.1. This is obviously a consequence of the
different halo shape, as Einasto profiles are known to
be more luminous than NFW profiles within the scale
radius (but for the divergence of NFW profiles at the
very centers – see e.g. Ref. [36]), while having a faster
luminosity decrease outward because of the exponential
cut-off in the halo shape. This amounts to an increase of
∼ 20% in integrated luminosity at the solar position, and
a decrease of the same order at the edge of the Galaxy.
In terms of boost factors, which measure the impact of
subhalos relative to the host halo and therefore can be
directly compared between different mass models, we see
that the difference is very moderate for the differential
boost, leading to an integrated difference < 2 at the edge
of the dark halo (CU10 leads to a slightly smaller inte-
grated boost factor).

Finally, we remark that the plateau feature emphasized
in Sect. III B as a signature of a sharp subhalo mass func-
tion also shows up in CU10, despite the different overall
halo shape. This prediction is therefore robust against
systematic uncertainties in the overall dark halo model-
ing, provided the smooth halo density continues increas-
ing inward, where the subhalo population has been fully
depleted — this plateau could convert into a bump for a
cored smooth halo profile.
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IV. CONCLUSIONS

We have proposed a method to model a galactic dark
matter subhalo population consistently with dynamical
constraints, focusing on the Milky Way – subhalos are un-
avoidable galactic components if dark matter is made of
WIMPs or any other dark matter candidates with sup-
pressed self-interactions and devoid of additional pres-
sure. Dynamical consistency is important to make sense
of contraints or discovery potentials of both direct and
indirect dark matter searches (see e.g. Ref. [136] for an
illustration in direct searches). We have assumed that
subhalos initially track the host halo profile when the
galaxy forms and then we have explicitly calculated the
effects of tidal stripping and subsequent potential disrup-
tion induced not only by the overall gravitational poten-

tial but also by baryonic disk crossing. We have devel-
oped and compared different theoretical approaches to
deal with the latter, and retained the so-called differ-
ential disk-shocking method as our reference case, since
built upon more accurate physical grounds. This method
was inspired by previous works dedicated to the under-
standing of stellar clusters, in particular by Refs. [125–
127, 129, 130]. These works’ results were already used
in other analytic studies (see e.g. Ref. [114]), but were
dealt with in a significantly different way, leading to a
different formulation of tidal mass losses without explicit
links to the definition of the tidal radius. Nevertheless,
even if it is difficult to make quantitative comparisons be-
tween the mentioned study and ours, it seems that both
approaches are in agreement at least at the qualitative
level. Our study was more aimed to quantify the impact
of a subhalo population on the dark matter annihilation
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rate and to size the related theoretical uncertainties in a
realistic Galactic mass configuration, while Ref. [114] was
more concerned with the survival probability of subhalos
against different types of tidal effects. On the whole, our
method to include disk-shocking effects is likely simpler
to implement in numerical calculations.

The main inputs of our model are (i) the Galactic mass
model, (ii) the subhalo mass function, and (iii) the sub-
halo concentration function, for which we adopted con-
sensual prescriptions. Further assumptions regard the
choice of the inner subhalo profile. We considered a
spherically symmetric host halo, hence a spherically sym-
metric subhalo distribution. Our model can in principle
easily be extended to axisymmetric host halos, while its
numerical implementation will then likely become much
trickier. We stress that we calibrated the subhalo mass
fraction using constraints from cosmological simulations
without baryons. This is important to use dark matter-
only simulations because baryonic components in hydro-
dynamic simulation are likely to differ significantly from
those of the real Milky Way, while strongly affecting the
dynamics of subhalos: it would then become impossible
to disentangle the global from other tidal effects, and it
would make it spurious to calibrate a subhalo popula-
tion model a posteriori. This underlines the need to still
continue running dark matter-only simulations with in-
creased resolution and up-to-date cosmological parame-
ters, even in a context where issues related to the impact
of baryons on cold dark matter halos are certainly the
most pressing ones.

Using the recent and constrained Galactic mass mod-
els from Refs. [48, 68, 72] (dubbed M11, CU10, and M16
– M11 being used as the template case), characterized by
different assumptions on the dark halo profile while pro-
viding results consistent with each other, we computed
the overall subhalo mass profiles and further made pre-
dictions for the induced annihilation profiles. We stress
that these results incorporate a self-consistent calcula-
tion of the tidal radius for each subhalo, depending on its
mass, concentration, and position in the Galaxy; individ-
ual mass and luminosity are calculated up to the tidal ra-
dius for each subhalo. We used different assumptions for
the mass index αm and the cut-off subhalo mass. Since
the latter could in principle be determined from WIMP
interaction properties in specific scenarios, the main the-

oretical uncertainty is actually carried by αm. We showed
that the global or integrated boost factor could vary be-
tween ∼ 2 (for αm = 1.9) and ∼ 20 (for αm = 2, re-
spectively) for all choices of Galactic mass models. This
may provide interesting and complementary calibration
points for estimates of the dark matter contribution to
the extragalactic diffuse gamma-ray background (see e.g.
Ref. [39]). We also derived differential boost factors (i.e.
the boost factor profile) that could be used to revisit es-
timates of the dark matter contribution to the Galactic
diffuse gamma-ray emission (e.g. Refs. [137–140]), or to
the local antimatter cosmic-ray flux (e.g. Refs. [13, 141–
143]). Interestingly, our model predicts a plateau in the
overall annihilation rate in the case of a sharp mass func-
tion (αm = 2) that could lead to specific observable ef-
fects. This feature seems to persist within the considered
theoretical and systematic uncertainties of the model.

The local subhalo population and induced boost fac-
tor, relevant to direct searches and antimatter searches,
respectively, are very sensitive to αm. For antimatter
searches, though, the precision achieved in the most re-
cent measurements is such that even a moderate effect
could have significant impact on the existing limits or
discovery prospects. In the most optimistic case, when
αm = 2, the enhancement can reach a factor of 10.

It would be interesting to test this model against cos-
mological simulations with baryons in the relevant sub-
halo mass range in the near future, but this is clearly
beyond the scope of the present study. In any case, the
model is easily tunable in terms of initial distribution
functions, provided internal consistency with the dynam-
ical constraints, which was the main purpose of this work.
Finally, self-made predictions for direct and indirect dark
matter searches are left to further studies.
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Hawthorn, K. Freeman, B. Gibson, G. Gilmore, E. K.
Grebel, G. Kordopatis, J. F. Navarro, Q. Parker, W. A.
Reid, G. Seabroke, A. Siebert, F. Watson, and T. Zwit-
ter, MNRAS 445, 3133 (2014), arXiv:1406.4130.

[52] P. R. Kafle, S. Sharma, G. F. Lewis, and
J. Bland-Hawthorn, Astrophys. J. 794, 59 (2014),
arXiv:1408.1787.
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