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Low-Complexity Algorithms for Low Rank Clutter
Parameters Estimation in Radar Systems

Ying Sun, Arnaud Breloy, Student Member, IEEE, Prabhu Babu, Daniel Palomar, Fellow, IEEE, Frédéric
Pascal, Senior Member, IEEE, Guillaume Ginolhac, Member, IEEE

Abstract—This paper addresses the problem of the clutter
subspace projector estimation in the context of a disturbance
composed of a low rank heterogeneous (Compound Gaussian)
clutter and white Gaussian noise. In such a context, adaptive
processing based on an estimated orthogonal projector onto the
clutter subspace (instead of an estimated covariance matrix)
requires less samples than classical methods. The clutter subspace
estimate is usually derived from the Singular Value Decompo-
sition of a covariance matrix estimate. However, it has been
previously shown that a direct Maximum Likelihood Estimator of
the clutter subspace projector can be obtained for the considered
context. In this paper, we derive two algorithms based on
the block majorization-minimization framework to reach this
estimator. These algorithms are shown to be computationally
faster than the state of the art, with guaranteed convergence.
Finally, the performance of the related estimators is illustrated
on realistic Space Time Adaptive Processing for airborne radar
simulations.

Index Terms—Covariance Matrix and Projector estimation,
Maximum Likelihood Estimator, Low Rank structure, Com-
pound Gaussian, majorization-minimization.

I. INTRODUCTION

IN array processing, many applications require the use of the
covariance matrix (CM) of the noise; these include source

localization techniques [1], [2], radar and sonar detection
methods [3], [4], and filters [5]. In practice, the CM is
unknown and has to be estimated from a set of samples
zk ∈ CM , k ∈ [[1,K]], which are K signal-free independent
realizations of the noise. The CM estimate is then used to
perform the so-called adaptive process. In radar systems, the
noise is composed of a correlated noise, referred to as clutter
(caused by the response of the environment to the emitted
signal), and White Gaussian Noise (WGN, the thermal noise
due to electronics). The total covariance of this disturbance is
therefore

Σtot = Σ + σ2I, (1)

where Σ is the clutter CM and σ2I is the CM of the WGN.
In most cases, the clutter belongs to a subspace of limited
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dimension, meaning that the clutter CM Σ has rank R < M .
Consequently, the total CM is structured as a Low Rank (LR)
plus a scaled identity matrix.

When the clutter corresponds to a strong interference con-
tained in a low dimensional subspace (R�M ), one can use
the following LR approximation [6], [7]:

Σ−1tot '
1

σ2
Π⊥c '

1

σ2
(I−Πc) ,

where Πc, named clutter subspace projector, is the orthogonal
projector onto the clutter subspace. This subspace is spanned
by the R eigenvectors vr associated with the R largest
eigenvalues of the matrix Σ, i.e., Πc =

∑R
r=1 vrv

H
r . This

approximation allows developing an adaptive process (e.g.,
filter or detector) that relies on a clutter subspace projector
estimate Π̂c rather than a total CM estimate Σ̂tot. Note that
in this paper, we consider that the clutter rank R is known or
fixed from a prior estimation step. There are several methods
of rank estimation present in the literature (e.g., [8]–[10] and
references therein). Moreover, in some applications, the clutter
rank can be directly derived from the geometry of the system
(such as in STAP [11] thanks to the Brennan rule [12]).

The practical use of the LR approximation is that an
adaptive LR process requires less samples to reach the equiv-
alent performance to the classical ones, which is valuable
since the number of available samples is often limited. For
example, if we consider the case of a Gaussian distributed
clutter, the optimal adaptive filter is built from the Sample
Covariance Matrix (SCM), which is the Maximum Likelihood
Estimator (MLE) in that scenario. In this case, K = 2M
samples are required to ensure a 3 dB loss of the output Signal
to Noise Ratio (SNR) compared to the optimal non-adaptive
filter [13]. If instead we use the MLE of the clutter subspace
projector, which corresponds to the subspace spanned by the
R largest eigenvectors of the SCM and can be obtained
from its EigenValue Decomposition (EVD), one can build an
adaptive LR filter that reaches the equivalent performance to
the previous scheme with only K = 2R� 2M samples [14].

However, it is now well-known that most modern radar
clutter measurements are not Gaussian and behave hetero-
geneously. Therefore, the SCM may not provide the optimal
solution since it is not an accurate estimator of the CM for
heavy-tailed distributions or in the presence of outliers. To
account for the heterogeneity of the clutter, one can model it
with a Compound Gaussian distribution, which is a sub-familly
of the Complex Elliptically Symmetric (CES) distribution [15].
The Compound Gaussian family covers a large panel of well-
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known and useful distributions, notably Gaussian, Weibull,
K-distribution, t-distribution, etc. Moreover, it has a well-
founded physical interpretation and presents good agreement
with several real data sets [16]–[19]. Eventually, the total
disturbance will be modeled in this paper as an LR Compound
Gaussian clutter plus a WGN (as done in [7], [20]–[22]).

We point out that the sum of a Compound Gaussian and a
WGN cannot be represented as a simple Compound Gaussian
vector with different distribution parameters (except for the
trivial Gaussian case). Nevertheless, most of the related works
consider the case of a full rank Compound Gaussian clutter
and neglect the possible LR plus WGN structure. Under this
framework, robust estimation1 of the CM can be performed
using the so-called M -estimators [23]–[25] that are seen as
generalized MLEs for CES distributions. A detailed review
of this framework can be found in [15]. These estimators
have been studied in detail and successfully applied in modern
detection/estimation literature due to their interest both from
a theoretical and an application point of view [26]–[32]. To
cope with an under-sampled scenario, regularization of these
estimators has been studied intensively in the literature, and
is still an on-going cutting-edge topic. For example, shrinkage
estimators for the CES model have been considered in [33]–
[36] that shrink the estimator to the identity matrix. Regu-
larization by imposing constraints on the condition number
of the covariance matrix for the compound Gaussian model
has been studied in [37]. Another class of works tackle this
problem by imposing structural constraints, including group
symmetry, Toeplitz, Kronecker structures, on the covariance
matrix, see [37]–[41] for example. Instead of the SCM, it is
possible to derive clutter subspace projector estimators from
the EVD of a (regularized or not) M -estimator. However,
despite their robustness properties, M -estimators may not
achieve the optimal clutter subspace estimation performance
as they do not take into account the noise structure (1) that
we consider in this work.

For this noise model, the seminal work [21] derived the
MLE of the clutter subspace projector under the assumptions
that the CM of the LR Compound Gaussian clutter has iden-
tical eigenvalues, and the Probability Density Function (PDF)
of the texture is known. The assumption of known texture
PDF has been relaxed in [42] by treating the texture as an
unknown deterministic parameter. The expression of the MLE
of the clutter CM parameters (eigenvectors and eigenvalues)
was derived in [43], which does not have a simple closed-form
and therefore requires an iterative algorithm to be reached.
Initially, [43] focused on the clutter subspace projector MLE
and proposed an ad-hoc algorithm to obtain it. This leads to
an accurate clutter subspace projector estimator, but a poor
recovery of the total CM. In [44], the high Clutter to Noise
Ratio (CNR) assumption was made to derive a general "2-
Step MLE" algorithm (with several possible adaptations) that
was shown to provide accurate estimates of the CM. Most
algorithms developed [43], [44] require the use of a gradient
descent algorithm on the manifold proposed in [45], which
can be difficult to tune and computationally costly.

1i.e., not highly sensitive to the underlying distribution

In this paper, we propose to apply the block majorization-
minimizaton algorithm framework to the problem of comput-
ing the considered MLE. We derive two new algorithms that
enjoy the following properties:
• They do not rely on any heuristic (as in [43]) or high

CNR assumption (as in [44]).
• They are computationally faster than the ones derived in

[43] and [44], hence more suitable for implementation.
• Compared to the gradient descent algorithm [45], which

requires many trials to find the descent step, the proposed
algorithms only require basic matrix operations or Sin-
gular Value Decomposition (SVD).

The paper is organized as follows. Section II states the prob-
lem formulation and briefly reviews the block majorization-
minimizaton methodology. Then, Sections III and IV derive
the two new algorithms for computing the MLE of the con-
sidered problem. The difference between the two algorithms
lies in the choice of the variables with respect to which the
likelihood function is cyclically optimized. In section V, we
discuss possible methods for of estimating the clutter rank
and the white Gaussian noise power, which are assumed to
be known in this study. Section VI validates the performance
of the proposed algorithms with simulations. Moreover, the
proposed algorithms are applied to a realistic Space Time
Adaptive Processing (STAP) for airborne radar simulation.
Finally, Section VII draws the conclusions of this study.

Throughout the paper the following conventions are
adopted: italic indicates a scalar quantity, lower case boldface
indicates a vector quantity, and upper case boldface a matrix.
H denotes the transpose conjugate operator or the simple
conjugate operator for a scalar quantity. T denotes the trans-
pose operator. d (·) denotes the differential operator. CN (a,Σ)
is a complex-valued Gaussian distribution of mean a and
covariance matrix Σ. I is the identity matrix of appropriate
dimension. det (·) and Tr(·) stand for the determinant and
the trace of a matrix, respectively. d̂ is an estimate of the
parameter d. {wn}n∈[[1,N ]] denotes the set of n elements wn
with n ∈ [[1, N ]], and will often be abbreviated to {wn} in the
sequel. ei is the ith vector of the canonical basis of appropriate
dimension.

II. BACKGROUND

A. Problem Formulation

We assume that K samples {zk}k∈[[1,K]] are available. Each
of the data zk ∈ CM corresponds to a realization of a
proper circular LR Compound Gaussian process ck plus an
independent additive zero-mean complex WGN nk:

zk = nk + ck. (2)

The WGN nk follows the distribution

nk ∼ CN (0, σ2I), (3)

where the power of the WGN σ2 is assumed to be known2

and fixed to be σ2 = 1 without loss of generality. The LR

2This hypothesis is made for describing a valid theoretical framework. In
practice, presented results can be applied with an estimate of σ2 used as its
actual value.
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Compound Gaussian [15] ck is an M -dimensional zero-mean
complex Gaussian vector (the speckle) with CM Σ, multiplied
by the square root of an independent positive random power
factor (the texture) τk. Each ck follows then, conditionally to
τk:

(ck|τk) ∼ CN (0, τkΣ), (4)

where the Compound Gaussian clutter CM Σ has a Low Rank
structure with rank(Σ) = R < M . The rank R is assumed to
be known and a discussion on this assumption will be provided
in the remark below. In this work, we do not assume the
knowledge of the texture PDF, and treat each τk as an unknown
deterministic variable. The likelihood function is then

f({zk}|Σ, {τk}) =

K∏
k=1

e−zH
k Σ−1

k zk

πM det (Σk)
, (5)

with Σk = τkΣ + I.
The MLE of the clutter CM Σ is therefore defined as

the minimizer of the following problem (equivalent to the
maximizer of the log-likelihood function):

minimize
Σk,{τk},Σ�0

K∑
k=1

log det (Σk) +

K∑
k=1

zHk Σ−1k zk

subject to Σk = τkΣ + I

τk ≥ 0

rank (Σ) ≤ R,

(A)

where Σ is of size M ×M . Denote the objective function by
L (Σ, {τk}).

B. Block MM principle

To solve Problem (A), we adopt the block majorization-
minimization (MM) algorithm framework, which is briefly
stated below.

Consider the following optimization problem:

minimize
x

f (x)

subject to x ∈ X ,
(6)

where the optimization variable x can be partitioned into m
blocks as x =

(
x(1), . . . ,x(m)

)
, with each ni-dimensional

block x(i) ∈ Xi and X =
∏m
i=1 Xi.

At the (t+ 1)-th iteration, the i-th block x(i) is updated by
solving the following problem:

minimize
x(i)

gi

(
x(i)|xt

)
subject to x(i) ∈ Xi,

(7)

with i = (t mod m)+1 (so blocks are updated in cyclic order)
and the continuous surrogate function gi

(
x(i)|xt

)
satisfying

the following properties:

f (xt) = gi

(
x
(i)
t |xt

)
,

f
(
x
(1)
t , . . . ,x(i), . . . ,x

(m)
t

)
≤ gi

(
x(i)|xt

)
∀x(i) ∈ Xi,

f ′
(
xt; d

0
i

)
= g′i

(
x
(i)
t ; di|xt

)
∀x(i)

t + di ∈ Xi,
d0
i , (0; . . . ; di; . . . ; 0) ,

where f ′(x; d) stands for the directional derivative at x along
d. In short, at each iteration, the block MM algorithm updates
the variables in one block by minimizing a tight upperbound
of the function while keeping the value of the other blocks
fixed.

In practice, the surrogate functions are usually designed so
that each sub-problem (7) can be solved easily, for example
in closed-form.

III. DIRECT BLOCK MAJORIZATION-MINIMIZATION
ALGORITHM

As rank (Σ) ≤ R, the variable Σ can be reparameterized
as Σ = WWH with W ∈ CM×R. Problem (A) can then be
written equivalently as

minimize
Σk,{τk},W

K∑
k=1

log det (Σk) +

K∑
k=1

zHk Σ−1k zk

subject to Σk = τkWWH + I

τk ≥ 0.

(B)

Following the block MM methodology, we partition the
variables as {{τk} ,W} and derive an algorithm that updates
the blocks in cyclic order (note that variables Σk are implicitly
optimized at every iteration while optimizing either τk or W).
In each iteration, an upperbound of the objective function is
minimized, which guarantees a monotonic decrement of the
objective value.

To be precise, given a starting point
{
{τk}t=0

,Wt=0
}

, one
iteratively
• updates {τk}t+1 for fixed W = Wt by minimizing a set

of surrogate functions L (τk|τ tk,W) for k ∈ [[1,K]],
• updates Wt+1 for fixed {τk} = {τk}t+1 by minimizing

a surrogate function L (W| {τk} ,Wt),
until convergence, which will produce a stationary point
of Problem (B). This procedure is summed up in the box
Algorithm 1.

A. Update {τk} with fixed W

Let W = Wt and Σ = WtWtH . To lighten notation, we
omit the reference on t for these variables in this part. The
objective function is separable in the τk’s, and for each of
them, the following problem should be solved:

minimize
τk

log det (τkΣ + I) + zHk (τkΣ + I)
−1

zk

subject to τk ≥ 0.
(B1)

Eigendecompose Σ as Σ = UΛUT , with Λ =
diag (λ1, . . . , λR, 0, . . . , 0) and U = [u1, . . . ,uM ]. The ob-
jective function of (B1) can be simplified to

L (τk|W) =

M∑
m=1

log (τkλm + 1) +

M∑
m=1

skm (τkλm + 1)
−1

=

R∑
m=1

log (τkλm + 1) +

R∑
m=1

skm (τkλm + 1)
−1

+ const.,

(8)
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where skm =
∥∥zHk um

∥∥2. This function is the sum of quasi-
convex functions, which is not necessarily quasi-convex, and
has no closed-form minimizer.

Applying the block MM algorithm, we find an upperbound
(surrogate function) of L (τk|W), with equality achieved at
τk = τ tk, and minimize this surrogate function. The update of
τk is derived based on the following two propositions:

Proposition 1. The function L (τk|W) in (8) can be upper-
bounded by the surrogate function L (τk|τ tk,W) defined as

L
(
τk|τ tk,W

)
= −βk log τk+(

R∑
m=1

αkm

)
log


(∑R

m=1
αkmλm

1+λmτt
k

)
∑R
m=1 αkm

τk +

∑R
m=1

αkm

1+λmτt
k∑R

m=1 αkm


+ const.,

(9)
where

αkm = skm
τ tkλm

τ tkλm + 1
+ 1 (10)

and

βk =

R∑
m=1

skm
τ tkλm

τ tkλm + 1
. (11)

The equality is achieved at τk = τ tk.

Proof: See Appendix A.

Proposition 2. The surrogate function L (τk|τ tk,W) is quasi-
convex and has a unique minimizer given by

τ t+1
k =

1

R
·

(∑R
m=1 skm

τt
kλm

τt
kλm+1

)
·
(∑R

m=1
αkm

1+λmτt
k

)
∑R
m=1

αkmλm

1+λmτt
k

. (12)

Proof: See Appendix B.

B. Update W with Fixed {τk}

Let now fix {τk} = {τk}t+1. To lighten the notation, we
omit the reference on t for this set of variables in this part.
To obtain the update of W, we need to solve

minimize
Σk,W

K∑
k=1

log det (Σk) +

K∑
k=1

zHk Σ−1k zk

subject to Σk = τkWWH + I.

(B2)

Without loss of generality assume that τk > 0, otherwise the
terms with τk = 0 can be deleted from the summation in the
objective function as they are constants.

Problem (B2) has no closed-form minimizer. As in the
previous part, we are going to derive a tight upperbound of
the objective function L (W|τk), with equality achieved at
W = Wt.

Proposition 3. The function

L (W|τk) =

K∑
k=1

log det (Σk) +

K∑
k=1

zHk Σ−1k zk, (13)

where Σk = τkWWH + I, can be upperbounded by the
convex quadratic function

L
(
W|τk,Wt

)
= Tr

(
WHWH

)
−Tr

(
LWH

)
−Tr

(
LHW

)
,

(14)
with equality achieved at W = Wt, where the matrices H
and L are defined according to (41), (42), (46), and (47).

Proof: See Appendix C.

The matrix H is positive definite by definition, hence the
upperbound L (W|τk,Wt) has a unique minimizer given by

Wt+1 = LH−1.

To efficiently compute this solution, let the SVD of Wt be
Wt = USVH . Then

L =

K∑
k=1

Ltk =

(
K∑
k=1

zkz
H
k US

(
τ−1k I + S2

)−1)
VH , (15)

and

H =

K∑
k=1

((
Wt
)H

Wt + τ−1k I
)−1

+

K∑
k=1

Ht
k

=

K∑
k=1

V
(
τ−1k I + S2

)−1
SHUHzkz

H
k US

(
τ−1k I + S2

)−1
VH

+

K∑
k=1

V
(
τ−1k I + S2

)−1
VH ,

(16)
where S2 = SHS (since S is a real diagonal matrix). Wt+1

can therefore be computed as

Wt+1 =

(
K∑
k=1

zkz
H
k US

(
τ−1k I + S2

)−1)×(
K∑
k=1

((
τ−1k I + S2

)−1
+

(
τ−1k I + S2

)−1
SHUHzkz

H
k US

(
τ−1k I + S2

)−1))−1
VH .

(17)

C. Convergence Analysis

Proposition 4. Any limit point of the pair {{τ tk} ,Wt} gen-
erated by Algorithm 1 is a stationary point of Problem (B).

Proof: We have proved the quasi-convexity and the
uniqueness of the minimizer of the surrogate functions
L (τk|τ tk,Wt) and L (W|τk,Wt) in the previous subsections.
The algorithm convergence is a direct application of Theorem
2 (a) in [46].

IV. EIGENSPACE BLOCK MAJORIZATION-MINIMIZATION
ALGORITHM

As rank (Σ) ≤ R, the variable Σ can be reparameterized
by its eigendecomposition:

Σ =

R∑
r=1

crvrv
H
r .
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Algorithm 1 Direct Block Majorization-Minimization Algo-
rithm

1: Compute the sample covariance matrix Σ̂
SCM

=
1
K

∑K
k=1 zkz

H
k .

2: Eigendecompose Σ̂
SCM

as Σ̂
SCM

= UΛUH , where Λ =
diag (λ1, . . . , λM ) with λ1 ≥ · · · ≥ λM .

3: Initialize W to be W =
Udiag

(√
λ1, . . . ,

√
λR, 0, . . . , 0

)
, and {τk}Kk=1 to

be arbitrary positive real numbers.
4: repeat
5: Update {τk}Kk=1 with (10) and (12).
6: Update W with (17).
7: until Some convergence criterion is met
8: Eigendecompose WWH as VDVH .
9: Π̂c = VVH .

Problem (A) can then be rewritten as

minimize
{τk},{cr},{vr}

−
K∑
k=1

R∑
r=1

τkcr
τkcr + 1

zHk vrv
H
r zk

+

K∑
k=1

R∑
r=1

log (1 + τkcr)

subject to τk ≥ 0, cr ≥ 0, orthonormal vr’s.

(C)

Following the same methodology as in the previous section,
we partition the variables as {{τk} , {cr} , {vr}} and derive
an algorithm that updates the blocks in cyclic order by
minimizing an upperbound of the objective.

Given a starting point
{
{τk}t=0

, {cr}t=0
, {vr}t=0

}
, one

iteratively
• updates {τk}t+1 for fixed {cr} = {cr}t and {vr} =
{vr}t by minimizing a set of surrogates functions
L (τk|τ tk, {cr} , {vr}) for k ∈ [[1,K]] ,

• updates {cr}t+1 for fixed {τk} = {τk}t+1 and {vr} =
{vr}t by minimizing a set of surrogates functions
L (ck| {τk} , ctr, {vr}) for r ∈ [[1, R]] ,

• updates {vr}t+1 for fixed {τk} = {τk}t+1 and
{cr} = {cr}t+1 by minimizing the objective w.r.t.
{vr} under orthonormality constraints. This step is
done by iteratively minimizing surrogate functions
L
(
{vr} | {τk} {cr} , {vr}t

)
(so there is an inner-loop in

the block MM iterations).
This procedure is summed up in the box Algorithm 2.

A. Update {τk} with Fixed {cr} and {vr}
Let {cr} = {cr}t and {vr} = {vr}t. To lighten notation,

we omit the reference on t for these variables in this part.
The objective function is separable in the τk’s, and for each
of them the following problem (noticing that Σ has M − R
zero eigenvalues) should be solved:

minimize
τk

R∑
r=1

log (1 + τkcr) +

R∑
r=1

skr
1 + τkcr

subject to τk ≥ 0,

(C1)

with skr =
∥∥zHk vr

∥∥2. Notice that the objective function
of (C1) has the same form as (8), therefore we can apply
Propositions 1 and 2 to obtain the τk’s updates as

τ t+1
k =

1

R
·

(∑R
r=1 skr

τt
kcr

τt
kcr+1

)
·
(∑R

r=1
αkr

1+crτt
k

)
∑R
r=1

αkrcr
1+crτt

k

, (18)

where αkr = skr
τt
kcr

τt
kcr+1

+ 1.

B. Update {cr} with Fixed {τk} and {vr}
Let {τk} = {τk}t+1 and {vr} = {vr}t. As before we

omit the reference on t for these variables in this part. The
objective function is separable in the cr’s, and for each of
them the following problem should be solved:

minimize
cr

K∑
k=1

log (1 + τkcr) +

K∑
k=1

skr
1 + τkcr

subject to cr ≥ 0,

(C2)

with skr =
∥∥zHk vr

∥∥2. Notice that the cr’s in (C2) play a
similar role as the τk’s in (C1). Similar to the update of τk,
we can apply Propositions 1 and 2 to obtain the cr’s updates
as

ct+1
r =

1

K
·

(∑K
k=1 skr

τkc
t
r

τkctr+1

)
·
(∑K

k=1
αkr

1+ctrτk

)
∑K
k=1

αkrτk
1+ctrτk

, (19)

where αkr = skr
τkc

t
r

τkctr+1 + 1.

C. Update {vr} with Fixed {τk} and {cr}
With {τk} and {cr} fixed, minimizing the objective w.r.t.
{vr} is equivalent to solving the problem

maximize
{vr}

R∑
r=1

vHr Mrvr

subject to orthonormal vr’s,

(C3)

where

Mr =

K∑
k=1

τkcr
τkcr + 1

zkz
H
k . (20)

We start with the following proposition.

Proposition 5. The function

L ({vr} | {τk} , {cr}) =

R∑
r=1

vHr Mrvr (21)

can be lowerbounded by the surrogate function

L
(
{vr} | {τk} , {cr} , {vr}t

)
=

R∑
r=1

[(
vtr
)H

Mrvr + vHr Mrv
t
r

]
+ const.

(22)

with equality achieved at {vr} = {vr}t.

Proof: As the matrices Mr are Hermitian positive
semidefinite, the objective function is convex, and therefore
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Algorithm 2 Eigenspace Block Majorization-Minimization
Algorithm

1: Compute the sample covariance matrix Σ̂
SCM

=
1
K

∑K
k=1 zkz

H
k .

2: Initialize {cr}Rr=1 to be the first R leading eigenvalues
of Σ̂

SCM
, {vr}Rr=1 to be the corresponding eigenvectors,

and {τk}Kk=1 to be arbitrary positive real numbers.
3: repeat
4: Update τk with (18).
5: Update cr with (19).
6: Compute Mr with (20).
7: repeat (optional inner loop)
8: Compute A with (25).
9: Decompose A as A = VADAUH

A (Thin SVD).
10: Update V as V = VAUH

A .
11: until Some convergence criterion is met
12: until Some convergence criterion is met
13: Π̂c = VVH .

is minorized by its first order Taylor expansion at vtr, which
is the considered surrogate function (22).

Maximizing L
(
{vr} | {τk} , {cr} , {vr}t

)
, under orthonor-

mality constraints on the {vr}, is equivalent to solving

maximize
V

Tr
(
AHV

)
+ Tr

(
VHA

)
subject to VHV = I,

(23)

where

V = [v1, . . . ,vR] (24)

and

A =
[
M1v

t
1; . . . ; MRvtR

]
, (25)

i.e., A is constructed by stacking the column vectors Mrv
t
r.

Problem (23) is equivalent to

minimize
V

‖A−V‖2F
subject to VHV = I.

(26)

Let the thin SVD of A be A = VADAUH
A , the optimal V is

given by [45]

Vt+1 = VAUH
A . (27)

Note that in this step, we maximize the objective function
of (C3) by iteratively maximizing a series of surrogates
(steps 7-11 in Algorithm 2). These iterations lead to a local
solution of (C3). While the block MM framework indicates a
cyclic update of the variables {τk} , {cr} , {vr}, our numerical
tests reveal that including this inner loop provides a faster
decreasing rate of the objective value than updating the vr’s
only once.

D. Convergence Analysis

Since the constraint set of Problem (C) is non-convex, the
convergence result provided in [46] cannot be applied here.
To the best of our knowledge, there is no convergence result
of general block descent type algorithms with a non-convex
constraint set. The sequence of objective values generated by
Algorithm 2 will converge because of monotonicity, but the
convergence of the points

(
{τk}t , {cr}t , {vr}t

)
remains un-

known. Nevertheless, section VI will show that the numerical
performance of Algorithm 2 is satisfactory.

V. HYPER-PARAMETERS ESTIMATION

The clutter subspace estimation algorithms proposed in this
paper assume the prior knowledge of two hyper-parameters:
the clutter rank R and the white Gaussian noise power σ2.
These assumptions are made for deriving a valid and clear
theoretical framework, focusing on the core of the subspace
estimation problem. In practice, the proposed algorithms can
be called using plug-in estimates R̂ and σ̂2.

To estimate the clutter rank, there are several methods
present in the literature (e.g., [8]–[10] and references therein).
Moreover, in some applications, the clutter rank can be derived
from the geometry of the system (such as in STAP [11] thanks
to the Brennan rule [12]).

Regarding the WGN power, the algorithms derived in this
paper can also be extended to estimate it by introducing one
more block for the parameter σ2. The update of this block σ2

for {Σk} fixed can be obtained by majorizing the objective
function w.r.t. σ2 in a way similar to the parameters {τk}.
To account for possible knowledge on the lower and upper
bounds of the WGN power [47], [48] (denoted by σ2

l and
σ2
u, respectively), one can further impose the constraint that
σ2
l ≤ σ2 ≤ σ2

u. For the sake of simplicity and presentation
clarity, we focused on the part of estimating {Σk}, which
is the bottleneck of the considered problem. Estimating σ2

jointly is therefore left as a potential extension of this work.

VI. NUMERICAL RESULTS

This section is devoted to numerical simulations to illustrate
the performance of different CM estimators in the considered
context. In particular, we will study the following clutter
subspace projector estimators:
• Π̂SCM : the clutter subspace projector estimator derived

from the EVD of the SCM defined as Σ̂SCM =∑K
k=1 zkz

H
k /K.

• Π̂SFPE : the clutter subspace projector estimator derived
from the EVD of the Shrinkage-FPE (SFPE) [34]–[36],
which is a regularized Tyler’s estimator [24] defined as
the unique solution of the following fixed-point equation:

Σ̂S−FPE(β) =
(1− β)M

K

K∑
k=1

zkz
H
k

zHk Σ̂−1S−FPE(β)zk
+ βI,

for β ∈ ( max(0, 1−K/M) , 1 ]. This estimator can
be computed with the simple fixed point iterations pro-
vided in [34]–[36]. Since there is no rule to adaptively
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select the optimal shrinkage parameter β for the con-
sidered problem, we test the following values: β1 =
max (1−K/M + ε , 0), which is the lowest β allowed
for the under-sampled cases (K ≤ M ) and coincides
with Tyler’s estimator (referred to as FPE) for the over-
sampled cases (K > M ); β2 = (β1 + β3)/2; and
β3 = 1− ε. We set ε = 10−2.

• Π̂MLE−MM1: the clutter subspace projector MLE com-
puted with the direct block-MM Algorithm in Section III
.

• Π̂MLE−MM2: the clutter subspace projector MLE com-
puted with the Eigenspace block-MM Algorithm in Sec-
tion IV.

• Π̂MLE : the clutter subspace projector MLE under high
CNR assumption, computed with Algorithm 1 provided
in reference [44]. This algorithm will be referred to as
"Algorithm 3" in the rest of the paper.

• Π̂A−MLE : the clutter subspace projector Approached
MLE under high CNR assumption, computed with Al-
gorithm 2 provided in reference [44]. This algorithm will
be referred to as "Algorithm 4" in the rest of the paper.

A. Validation Simulations and Algorithm Complexity

Simulation parameters: Samples zk are generated ac-
cording to the LR Compound Gaussian plus WGN model
described in section II: zk = ck+nk. The WGN is distributed
as nk ∼ CN (0, σ2I) and σ2 = 1. The LR Compound
Gaussian clutter is distributed as (ck|τk) ∼ CN (0, τkΣ),
with a random texture τk, i.i.d. generated for each sample.
The texture PDF is a Gamma distribution (leading to a K-
distributed clutter) of shape parameter ν and scale parameter
1/ν, denoted τ ∼ Γ(ν, 1/ν), which satisfies E(τ) = 1. The
rank R clutter CM Σc is constructed with the largest R
eigenvalues and the corresponding eigenvectors of a Toeplitz
matrix of correlation parameter ρ ∈ [0, 1]. This matrix is then
scaled to set the CNR, defined as CNR = E(τ)Tr(Σ)/(Rσ2),
to a given value.

Fig. 1 displays a typical realization of the objective value
versus the number of iterations of different algorithms. The
objective value at each inner loop is also displayed for the
proposed algorithms. One can observe that the MLE and A-
MLE algorithms from [44] converge to a sub-optimal point of
the problem. This was to be expected since these algorithms
are optimizing a modified likelihood (assuming High CNR,
the WGN is ignored over the clutter subspace). The MLE
Algorithm provides a slightly better objective value than the A-
MLE algorithm, thanks to the use of the modified gradient de-
scent algorithm [45] instead of an EVD relaxation for updating
the subspace estimate. Contrary to these algorithms, the Block
MM algorithm (Algorithm 1) converges to a critical point with
a smaller objective value. We also notice that Algorithm 2
converges in practice to the same point as Algorithm 1, i.e., a
critical point.

Fig. 2 displays a typical another realization of the objective
value versus the time of computation. It illustrates that despite
a fast convergence, Algorithm 3 has a slow computation due to
the use of the modified gradient descent [45]. It also shows that

Algorithm 2 is less computationally intensive than Algorithm
1 since it requires less time to converge. This can be explained
by the fact that constructing the update of W (step 6) in
Algorithm 1 has a complexity that grows linearly with the
sample size. On the contrary, the inner loops (steps 7-11) in
Algorithm 2 involve the SVD of a matrix of fixed dimension,
which is not costly in comparison.

Fig. 3 displays the mean NMSE criterion (E(||Π̂c −
Πc||2)/R for a given estimator Π̂c) versus K of the esti-
mators Π̂SCM , Π̂SFPE (with β1, β2 and β3), Π̂MLE−MM1,
Π̂MLE−MM2, Π̂MLE and Π̂A−MLE for a given configura-
tion (computed over 100 Monte-Carlo simulations). It illus-
trates the performance of the proposed methods: block MM
Algorithms 1 and 2 reach the identically lowest NMSE, and
algorithms from [44] lead to slightly higher NMSE, yet better
than the SFPE with various β, and the SCM.

Fig. 4 displays the mean computation time (over 100 Monte
Carlo simulations) of the algorithms for the same set of
parameters as in previous figures. The stop criterion for each
algorithm is when the minimum achievable objective value is
reached up to 1% (The limit value is obtained by a prior run of
the considered algorithm for a sufficiently long time until the
objective value stabilizes). This criterion is chosen to provide a
fair comparison in terms of computational time for algorithms
with different convergence rates. The computation time of
MLE Algorithm 3 is not displayed since this algorithm (relying
on a costly gradient descent) always reaches a maximum time
stop criterion, greatly larger than the presented values (as seen
in Fig. 2). One can observe that Algorithm 2 and 4 are the
"fastest" algorithms, which is due to their low computational
cost at each step. Algorithm 4 is the less computationally
intensive since it has a fast convergence, as observed in Fig.
1 and Fig. 2. Nevertheless, Algorithm 1 and 2 offer better
performance (see Fig. 3). We also point out that, although
Algorithm 2 is computationally faster than Algorithm 1, the
latter has more theoretical guarantees (convergence to a critical
point). Both Fig. 3 and Fig. 4 illustrate the applicative interest
of the two proposed computation methods. Indeed, they reach
the best estimation performance for the considered model at
a low computational cost.

B. Application to LR-STAP filtering

STAP is a technique used in airborne phased array radar
to detect a moving target embedded in an interference back-
ground such as jamming or strong clutter [11]. The radar
receiver consists of an array of Q antenna elements processing
P pulses in a coherent processing interval. The received signal
is z = αp + c + n, where α is the target power and p is the
so-called STAP steering vector, c is the heterogeneous ground
clutter and n is the thermal noise. It is important to notice
that the application fits the model considered in this paper
since in side looking STAP, the clutter CM is known to be
LR. Moreover, the rank of the clutter CM can be evaluated
thanks to the Brennan Rule [12]. Since the clutter could
behave heterogeneously, the total interference can be modeled
as LR Compound Gaussian (the ground clutter) plus WGN
(the thermal noise).
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Figure 1. Objective value versus number of iterations for different MLE
algorithms: Direct Block-MM (red), Eigenspace Block-MM (blue), "MLE"
algorithm of [44] (black), "A-MLE" algorithm of [44] (green). K = 100,
R = 15, ν = 0.1, ρ = 0.9, CNR = 10 dB.

Figure 2. Objective value versus computation time for different MLE
algorithms: Direct Block-MM (red), Eigenspace Block-MM (blue), "MLE"
algorithm of [44] (black), "A-MLE" algorithm of [44] (green). K = 100,
R = 15, ν = 0.1, ρ = 0.9, CNR = 10 dB.

The theoretical optimal STAP filter is wopt = Σ−1totp [11].
In the context of an LR clutter, it is well-known that a correct
sub-optimal filter [6], [14] is wlr = Π⊥c p = (I −Πc)p. In
practice, Π⊥c is unknown and has to be estimated using the
samples {zk} to perform adaptive filtering. The adaptive LR
filter is then ŵlr = Π̂

⊥
c d =

(
I− Π̂c

)
p, with Π̂c being an

estimate of the clutter subspace projector. Consequently, the
performance of the LR filters directly relies on the estimation
accuracy of Πc. To evaluate the performance, we use the
SINR-Loss criterion [11], which is the expected ratio between
the SINRout computed for ŵlr, and SINRmax computed for
the optimal filter w = Σ−1totd. For an estimate of the clutter
subspace Π̂c, the SINR-Loss expression is given by

ρΠ̂c
=
SINRout
SINRmax

=E

 (pHΠ̂⊥c p)2(
pHΠ̂⊥c ΣtotΠ̂⊥c p

) (
pHΣ−1totp

)
 .

(28)

Figure 3. Mean NMSE of the estimators Π̂SCM (magenta), Π̂MLE

(orange), Π̂A−MLE (green), Π̂MLE−MM1 (red), Π̂MLE−MM2 (blue),
Π̂SFPE for different β (black), versus the number of samples K. M = 60,
R = 15, ν = 0.1, ρ = 0.9, CNR = 10 dB.

Figure 4. Mean Computation time of each MLE algorithm over 100 Monte-
Carlo Simulation, versus K. Same parameters as Fig. 3. Algorithms stop
criterion: minimum achievable objective value is reached up to 1%. Stopping

criterion for Algorithm 2 inner loop: V:
‖Vt+1−Vt‖2

F
M×R

≤ 10−6. Computer
specifics: Intel(R) Core(TM) i5-3230M CPU @ 2.6 Ghz.

We consider the following STAP configuration. The
number Q of sensors is 8 and the number P of coherent
pulses is also 8. The center frequency and the bandwidth
are equal to f0 = 450 MHz and B = 4 MHz, respectively.
The radar velocity is 100 m/s. The inter-element spacing is
d = c

2f0
(c is the celerity of light) and the pulse repetition

frequency is fr = 600 Hz. The clutter CM is computed
according to the model described in [11]. The rank of the
clutter CM Σ is evaluated from the Brennan rule and is
equal to R = 15 � 64, therefore, the LR assumption is
valid. The texture PDF is a Gamma distribution of shape
parameter ν = 0.1 and scale parameter 1/ν, so the clutter
follows a K-distribution. The target p has a celerity of
V = 35 m/s and is at +10◦ Azimuth. CNR is defined as
CNR = E(τ)Tr(Σc)/(σ

2R), and we set σ2 = 1.
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Since the two proposed algorithms have been shown to
reach identical performance in Fig. 3, we only display the
results for the projector estimate computed with the fastest
algorithm, namely Algorithm 2 (Eigenspace Block MM),
referred to as Π̂EBMM in the following. Algorithm 3 and
Algorithm 4 (respectively "MLE" and "A-MLE" of [44]) have
also been shown to reach identical performance, therefore we
only display results for the projector estimate computed with
Algorithm 3, referred to as Π̂A−MLE .

Fig. 5 displays the SINR-Loss versus K for various clutter
configurations: from average to high CNR (10 dB, 20 dB, and
30 dB) and for mildly (ν = 1) and highly (ν = 0.1) het-
erogeneous clutter. First, one can state that Π̂EBMM reaches
the best SINR-Loss for all configurations. Under standard
conditions (20 dB and 30 dB of CNR and ν = 1), Π̂SCM and
Π̂A−MLE provide a clutter subspace projector estimate that is
close to the Π̂EBMM , hence they have similar performances
in terms of SINR-Loss. One can observe that under these
conditions, the classical −3 dB SINR-Loss of the filter built
from Π̂SCM is reached with K ' 2R samples, as theoretically
expected from [14], [22]. Π̂FPE also reaches a performance
close to Π̂MLE but requires K > M samples to be computed.
Π̂SFPE can be computed with a smaller K, but its SINR-Loss
decreases as β increases (which is expected since a larger β
implies a higher bias). When standard conditions are not met
(low/average CNR or highly heterogeneous clutter), one can
see that the performance of Π̂FPE and Π̂SFPE greatly drops
compared to other estimators. On the contrary, Π̂EBMM offers
a better resistance to these conditions and also outperforms
Π̂SCM and Π̂A−MLE .

C. Note on the robustness to a wrong rank evaluation

One can not directly study the estimation accuracy (NMSE)
on Πc for estimators with various ranks since projectors on
subspaces of different dimension are not comparable objects.
Such a comparison in NMSE can be done, for example,
in terms of reconstructed total CM. For this criterion, [44]
showed that the proposed approach is robust to a misevaluated
rank.
The robustness to a wrong rank evaluation can also be rel-
evantly studied through a criterion linked to the considered
application. For example, for the LR-filtering problem:
• If the rank is under-evaluated, then a portion of the

interference may not be completely canceled by the filter,
leading to poor performances in terms of output SINR.

• If the rank is over-evaluated, the interference may be
completely canceled, but the filter can also cancel a part
of the target response, also leading to a lower output
SINR.

However, these phenomena depend highly on the clutter and
target parameters, which is why a corresponding study goes
beyond the scope of this paper, as it is more a problem related
to a process design rather than a subspace estimation accuracy.

VII. CONCLUSIONS

In this paper, we derived two algorithms based on the block
MM framework for computing the MLE of the CM parameter
when the samples are modeled as the sum of an LR Compound
Gaussian (with known rank) and a WGN. This complex prob-
lem was initially considered in [43] and [44], where several
algorithms were proposed. The new algorithms proposed in
this paper enjoy two major advantages: firstly, they do not
rely on any heuristic (as in [43]) or high CNR assumption
(as in [44]), thus they reach the exact MLE (at least locally)
of the considered problem with no approximation; secondly,
they are computationally faster and easier to implement than
the ones derived in [43] and [44], as they do not require the
use of the modified gradient descent algorithm [45], which can
be computationally expensive. The performance of the related
estimators was illustrated on Space Time Adaptive Processing
filtering for airborne radar simulations.

As a side benefit of this study, we emphasize that the
proposed algorithms allow a full estimation of the CM pa-
rameters, while presented simulations only focus on the clutter
subspace projector estimation. They could therefore be suitable
for other applications that involve the estimation of Low Rank
structured Covariance Matrices.

APPENDIX A
PROOF OF PROPOSITION 1

Before going to the formal proof of Proposition 1, we need
to first state the two following lemmas:

Lemma 6 (Eq.(5) of [49]). For xi > 0 and αi ∈ R, the
function

∏n
i=1 x

αi
i can be lower bounded by

n∏
i=1

xαi
i ≥

n∏
j=1

(
xtj
)αj

(
1 +

n∑
i=1

αi log xi −
n∑
i=1

αi log xti

)
,

where xti is some arbitrary positive real number. The equal-
ity is achieved at xi = xti. More specifically, in the uni-
dimensional case n = 1 and for α1 = 1, one has

x ≥ xt
(
1 + log(x)− log(xt)

)
(29)

Lemma 7. The function
n∑
i=1

αi log (1 + cix) with αi > 0 can

be upperbounded by
n∑
i=1

αi log (1 + cix) ≤
n∑
i=1

αi log
(
1 + cix

t
)

+(
n∑
i=1

αi

)
log

(∑n
i=1 αi ·

1+cix
1+cixt∑n

i=1 αi

)
,

(30)
where xt is some arbitrary real number such that 1+cix

t > 0,
∀i. The equality is achieved at x = xt

Proof: The log (·) function is concave, and Jensen’s
inequality states that

log

(∑n
i=1 αizi∑n
i=1 αi

)
≥
∑n
i=1 αi log zi∑n

i=1 αi
(31)
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Figure 5. Mean SINR-Loss of the adaptive LR filters built from various clutter subspace projector estimators: Π̂SCM (blue), Π̂FPE (red), Π̂SFPE for
β1 (magenta), β2 (cyan) and β3 (black), Π̂EBMM computed with Algorithm 2: EBMM (green), Π̂A−MLE computed with algorithm "A-MLE" from [44]
(orange). The SINR-Loss is presented for various clutter configurations. Columns from the left to the right: CNR = 10 dB, CNR = 20 dB, CNR = 30 dB.
Up row: ν = 1 (mildly heterogeneous clutter), Down row: ν = 0.1 (highly heterogeneous clutter).

for αi > 0 and zi > 0, and equality is achieved if the zi’s are
equal. Let zi = 1+cix

1+cixt , we have

∑n
i=1 αi log

(
1+cix
1+cixt

)
∑n
i=1 αi

=

∑n
i=1 αi log (1 + cix)−

∑n
i=1 αi log (1 + cix

t)∑n
i=1 αi

≤ log

(∑n
i=1 αi ·

1+cix
1+cixt∑n

i=1 αi

)
.

(32)

Rearranging the terms leads to the inequality (30), with
equality achieved at x = xt, which corresponds to zi = 1,
∀i = 1, . . . , n.

We can now turn to the proof of Proposition 1:
Proof: Ignoring the constant term, L (τk|W) can be

written as:

L (τk|W)

=

R∑
m=1

log (τkλm + 1) +

R∑
m=1

skm

(
1− τkλm

τkλm + 1

)

=

R∑
m=1

log (τkλm + 1)−
R∑

m=1

skm
τkλm

τkλm + 1
+ const.

(33)

First, applying Eq.(29) of Lemma 6 to the second term of (33)

(with x parameterized as τkλm

τkλm+1 ) yields

L
(
τk|Wt

)
≤

R∑
m=1

log (τkλm + 1) + const.

−
R∑

m=1

skm
τ tkλm

τ tkλm + 1
(1 + log τkλm − log (τkλm + 1))

≤
R∑

m=1

(
skm

τ tkλm
τ tkλm + 1

+ 1

)
log (1 + λmτk)

−

(
R∑

m=1

skm
τ tkλm

τ tkλm + 1

)
log τk + const.

(34)
where the equality is achieved at τk = τ tk. This upperbound is
convex in τ̃k , log τk, but the minimizer cannot be computed
in closed-form. Denote

αkm = skm
τ tkλm

τ tkλm + 1
+ 1 and βk =

R∑
m=1

skm
τ tkλm

τ tkλm + 1
.

We now apply Eq.(30) of Lemma 7 to the first term of the
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upperbound in (34), which leads to:

L (τk|W)

≤
R∑

m=1

αkm log (1 + λmτk)− βk log τk + const.

≤

(
R∑

m=1

αkm

)
log

∑R
m=1 αkm

1+λmτk
1+λmτt

k∑R
m=1 αkm

− βk log τk

+ const.

=

(
R∑

m=1

αkm

)
log


(∑R

m=1
αkmλm

1+λmτt
k

)
∑R
m=1 αkm

τk +

∑R
m=1

αkm

1+λmτt
k∑R

m=1 αkm


− βk log τk + const.

(35)
Ignoring the constant term, we arrive at the surrogate function
L (τk|τ tk,W) defined in Proposition 1. Note that the equality
still holds at τk = τ tk.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: The surrogate function, ignoring the constant term,
has the form

L
(
τk|τ tk,Wt

)
, a log (bτk + c)− βk log τk.

The gradient of this surrogate function is

∂L (τk|τ tk,W)

∂τk
=

ab

bτk + c
− βk

1

τk
,

and a zero of the gradient can be solved in closed-form as

τ t+1
k =

βkc

(a− βk) b
.

Since

a =

R∑
m=1

αkm =

R∑
m=1

(
skm

τ tkλm
τ tkλm + 1

+ 1

)
and

βk =

R∑
m=1

skm
τ tkλm

τ tkλm + 1
,

we have a− βk = R. Therefore,

τ t+1
k =

1

R
·

(∑R
m=1 skm

τt
kλm

τt
kλm+1

)
·
(∑R

m=1
αkm

1+λmτt
k

)
∑R
m=1

αkmλm

1+λmτt
k

≥ 0.

It remains to be shown that τ t+1
k is the unique minimizer of

L (τk|τ tk,Wt) on R+.
First assume that βk 6= 0. Since c is positive,

L (τk|τ tk,Wt) → +∞ as τk → 0. Besides, as a > βk,
L (τk|τ tk,Wt) → +∞ as τk → +∞. Since L

(
τ t+1
k |τ tk,Wt

)
is finite, τ t+1

k is the unique minimizer by the continuity
of L (τk|τ tk,Wt). If βk = 0, then τ t+1

k = 0. Function
a log (bτk + c) is monotonically increasing on R+, therefore
τ t+1
k = 0 is the unique minimizer. Moreover, as L (τk|τ tk,Wt)

is a one-dimensional function, it has to be quasi-convex [50].

APPENDIX C
PROOF OF PROPOSITION 3

Proof: By the matrix inversion lemma we have the
following equality:

(τkΣ + I)
−1

= I−W
(
τ−1k I + WHW

)−1
WH

= I−W
(
τ−1k I + Σ̃

)−1
WH .

(36)

where Σ̃ , WHW. Therefore, the second term of L (W|τk)
can be written as

zHk (τkΣ + I)
−1

zk

=zHk zk − zHk W
(
τ−1k I + Σ̃

)−1
WHzk,

(37)

which is jointly concave in
{

W, Σ̃
}

. The differential of Eq.
(37) can be computed according to Eq. (38).

The concavity of (37) implies that it can be upperbounded
by its first order Taylor expansion around the pair

{
Wt, Σ̃

t
}

,
i.e.,

zH
k (τkΣ + I)−1 zk

≤− Tr

(
zkzH

k Wt
(
τ−1
k I + Σ̃

t
)−1

WH

)
− Tr

((
τ−1
k I + Σ̃

t
)−1 (

Wt)H zkzH
k W

)
+Tr

((
τ−1
k I + Σ̃

t
)−1 (

Wt)H zkzH
k Wt

(
τ−1
k I + Σ̃

t
)−1

Σ̃

)
+ const.

(39)
Substituting Σ̃ = WHW into (39) leads to the following
quadratic upperbound for zHk (τkΣ + I)

−1
zk:

Tr
(
WHt

kW
H
)
− Tr

(
LtkW

H
)
− Tr

((
Ltk
)H

W
)
, (40)

where

Ht
k =

(
τ−1k I + Σ̃

t
)−1 (

Wt
)H

zkz
H
k Wt

(
τ−1k I + Σ̃

t
)−1

(41)
and

Ltk = zkz
H
k Wt

(
τ−1k I + Σ̃

t
)−1

. (42)

As for the log det (·) term in L (W|τk), we can apply the
Sylvester’s determinant theorem

log det
(
τkWWH + I

)
= log det

(
τkW

HW + I
)

(43)

and get the upperbound

Tr

(
τk

(
τkΣ̃

t
+ I
)−1

WHW

)
+ const. (44)

by linearization over Σ̃.
Together with (40) we have an upperbound (ignoring the

constant terms) for L (W|τk) at Wt as

Tr

(
W

(
K∑
k=1

(
Σ̃
t

+ τ−1k I
)−1)

WH

)

+

K∑
k=1

(
Tr
(
WHt

kW
H
)
− Tr

(
LtkW

H
)
− Tr

((
Ltk
)H

W
))

=Tr
(
WHWH

)
− Tr

(
LWH

)
− Tr

(
LHW

)
,

(45)
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d
(
zHk (τkΣ + I)

−1
zk

)
= −d

(
zHk W

(
τ−1k I + Σ̃

)−1
WHzk

)
=−

(
zHk dW

(
τ−1k I + Σ̃

)−1
WHzk + zHk Wd

(
τ−1k I + Σ̃

)−1
WHzk + zHk W

(
τ−1k I + Σ̃

)−1
dWHzk

)
=−

(
Tr

((
τ−1k I + Σ̃

)−1
WHzkz

H
k dW

)
+ Tr

(
zkz

H
k W

(
τ−1k I + Σ̃

)−1
dWH

)
−zHk W

(
τ−1k I + Σ̃

)−1
d
(
τ−1k I + Σ̃

)(
τ−1k I + Σ̃

)−1
WHzk

)
=−

(
Tr

((
τ−1k I + Σ̃

)−1
WHzkz

H
k dW

)
+ Tr

(
zkz

H
k W

(
τ−1k I + Σ̃

)−1
dWH

)
−Tr

((
τ−1k I + Σ̃

)−1
WHzkz

H
k W

(
τ−1k I + Σ̃

)−1
dΣ̃

))

(38)

where

H =

K∑
k=1

((
Σ̃
t

+ τ−1k I
)−1

+ Ht
k

)
(46)

and

L =

K∑
k=1

Ltk. (47)
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