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Robust Covariance Matrix Estimation in
Heterogeneous Low Rank Context

A. Breloy, Member, IEEE, G. Ginolhac, Member, IEEE, F. Pascal, Senior Member, IEEE and P.
Forster, Member, IEEE.

Abstract—This paper addresses the problem of robust Covari-
ance Matrix (CM) estimation in the context of a disturbance
composed of a Low Rank (LR) heterogeneous clutter plus an
additive white Gaussian noise (WGN). The LR clutter is modeled
by a Spherically Invariant Random Vector (SIRV) with assumed
high Clutter to Noise Ratio (CNR). In such a context, adap-
tive process should require less training samples than classical
methods to reach equivalent performance as in a "full rank"
clutter configuration. The main issue is that classical robust
estimators of the CM can not be computed in the undersampled
configuration. To overcome this issue, the current approach is
based on regularization methods. Nevertheless, most of these
solutions are enforcing the estimate to be well conditioned, while
in our context, it should be LR structured. This paper therefore
addresses this issue and derives an algorithm to compute the
Maximum Likelihood Estimator (MLE) of the CM for the
considered disturbance model. Several relaxations and robust
generalizations of the result are discussed. Performance is finally
illustrated on numerical simulations and on a Space Time
Adaptive Processing (STAP) for airborne radar application.

Index Terms—Adaptive Signal Processing, Covariance Matrix
and Subspace estimation, Robust estimation, ML-estimation, Low
Rank, SIRV, STAP.

I. INTRODUCTION

COVARIANCE matrix (CM) estimation is a fundamental
issue in adaptive signal processing [1–4]. In terms of

application purposes, the accuracy of the CM estimate di-
rectly impacts the performance of algorithms and systems.
The most common estimator of the CM is the traditional
Sample Covariance Matrix (SCM), which is the Maximum
Likelihood Estimator (MLE) of the CM in a Gaussian context.
Nevertheless, when the samples are heavy-tailed distributed,
and possibly corrupted by outliers, the SCM fails to provide
an accurate estimate of the CM at finite sample support.

To overcome this issue, the robust estimation framework
[5, 6] has recently attracted considerable interest [7] (and
reference therein). Most of current work in CM estimation
focuses on the family of Complex Elliptical Symmetric (CES)
distributions [7] for modeling heterogeneous noises. Among
the general CES class, this paper will focus on the SIRV’s [8]
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also referred to as Compound Gaussian (CG), which cover a
large panel of well known distributions, notably heavy-tailed
such as Weibull, Student’s t-distribution, and K-distribution.
Moreover, SIRV presents good agreement to several real data
sets [9–12]. Under this framework, a robust estimation of the
CM can be performed using the M -estimators [13–15]. A
detailed review of the CES model, robust CM estimators and
their properties is provided in [7]. This general framework
has been extensively used in the modern detection/estimation
literature [16–22] due to its interest, both from a theoretical
and an application point of view.

In addition to the robustness issue, the problem of high
dimensional data with low sample support occurs. Typically,
when number of samples K is less than the dimension of
the data M , the robust estimators are not defined anymore.
To solve this problem, the current approach is based on
regularization methods, such as shrinkage algorithms [23–29].
Another approach consists in introducing prior information
on the CM structure through appropriate parameterization
[30, 31] and eventual penalization [32] or relaxations [33] of
the considered functional. In this paper, we will follow the path
of introducing prior knowledge on the structure and consider
the case of Low Rank (LR) structured CM. This work differs
from previously cited works by two essential points. First,
LR structured matrices do not define an affine (nor convex)
set, so the addressed problem does not fall back on specific
cases of previous references. Second and most importantly,
the approach proposed in this paper is not derived from
regularization/penalization of the robust estimators. Rather, the
proposed CM estimator will be directly derived from a realistic
model that accounts for heterogeneity of the noise.

Indeed, in some applications the heterogeneous disturbance
(referred to as "clutter") lies in a lower dimensional subspace,
therefore it has a LR CM of rank R < M . Taking into account
the additive White Gaussian Noise (WGN), one can eventually
model the samples as a LR SIRV (accounting for heterogeneity
of the clutter) plus a WGN. This general model, already used
in [34–39], leads to a total covariance matrix of form: LR
plus scaled identity. As major hypothesis, we will assume
that the rank R is known. The prior information on this rank
can be obtained in some applications, for example, thanks
to geometry of the considered system (as in STAP [1, 40])
or assuming prior information on the number of jammers
(for denoising problem) or of sources (as in MUSIC-type
applications [41]). Otherwise we will assume that it has been
formerly estimated by a method from the state of the art (see
e.g. [42] or more recent results based on random matrix theory
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[43] or considering starved sample situation as [44, 45] and
the references therein) and that we use the estimated value as
the actual one.

Seminal work considering parameters estimation of the LR-
SIRV plus WGN model has been proposed in [36, 46]. These
previous works are focused on the Clutter Subspace Projector
(CSP) (i.e. the subspace where the LR-SIRV clutter lies in)
estimation and assume a clutter CM with identical eigenvalues,
hence do not propose an estimate of the total CM. A relaxation
over the hypothesis of identical eigenvalues of the clutter CM
has been proposed in [39]. However, the estimator proposed
in [39] suffers from a lack of tractability and resorts to an ad-
hoc regularization of some side parameters. This may lead
to a poor estimation of the total CM (as demonstrated in
this paper), even if the CSP is well estimated. To solve
this issue [47] proposed exact resolution algorithms based
on Majorization-Minimization framework. Nevertheless these
contributions focused only on subspace estimation and did not
considered the problem of total covariance matrix recovery,
i.e. neglecting the estimation accuracy of side parameters.
Since the considered likelihood is a complex non-convex
function, all the algorithms from [39, 47] inherently reach
(or approach) a local maximum of the likelihood, so this
previous state of the art may not be relevant from the point of
view of CM estimation. This paper fills therefore the gaps
by tackling the CM estimation problem and proposes new
estimation process that are relevant to the purpose, using the
assumption of high Clutter to Noise Ratio (CNR), which is
valid and useful for most radar applications. Hence we propose
a general algorithm to compute robust estimates of the CM
according to the considered model (LR-SIRV plus WGN).
This algorithm is developed according to the "2-Step MLE"
approach, that relies on alternatively maximizing the likelihood
over two parameters: the CSP and the LR clutter CM over this
subspace. In addition, we also consider several modifications
and adaptations of the proposed algorithm. Firstly, since the
clutter Probability Density Function (PDF) is in practice
unknown, we consider the use of robust estimators to address
this issue. Secondly, we discuss several relaxations of the
CSP MLE problem and their use in terms of computation.
The proposed methodology offers eventually generalizations
of previous results since it encompasses [36, 46].

This paper is organized as follows. Section II presents
the statistical model, previous results and states the con-
sidered problematic. Then, we derive the proposed 2-Step
MLE algorithm in section III. Section IV considers the use
of robust estimators in this 2-step procedure. Moreover, we
discuss several relaxations of the CSP MLE problem and
their use in terms of computation in section V. Eventually,
the proposed methodology offers a very general solution to
compute LR structured robust CM estimators. In section VII,
the proposed algorithms are compared with the state of art
through validation and a real data STAP application. Section
VIII draws some conclusions of this study.

Notations: The following convention is adopted: italic indi-
cates a scalar quantity, lower case boldface indicates a vector
quantity and upper case boldface a matrix. H denotes the
transpose conjugate operator or the simple conjugate operator

for a scalar quantity. T is the transpose operator. CN(a,Σ) is a
complex Gaussian vector of mean a and of covariance matrix
Σ. IM is the M×M identity matrix. |Σ| is the determinant of
the matrix Σ and Tr() is the Trace operator. d̂ is an estimate
of the parameter d. {wn}n∈[[1,N ]] denotes the set of n elements
wn with n ∈ [[1, N ]] and whose writing will often be contracted
into {wn}. diag(an) is the N × N diagonal matrix with
diagonal elements an. d is the concatenation operator, where
V = d({vn}) is the matrix whose columns are the vectors
vn for n ∈ [[1, N ]].

II. MODEL AND MAXIMUM LIKELIHOOD ESTIMATOR

A. Model

We assume that K secondary data {zk}k∈[[1,K]] are avail-
able. Each of these data zk ∈ CM corresponds to a realization
of a proper circular LR-SIRV process ck plus an independent
additive zero-mean complex WGN nk.

zk = nk + ck . (1)

The WGN nk follows the distribution:

nk ∼ CN(0, σ2IM ) , (2)

where the power of the WGN σ2 is assumed to be known1. The
LR-SIRV [7, 8] ck is a M -dimensional zero-mean complex
Gaussian vector (the speckle) with CM Σc, multiplied by the
square root of a positive random power factor (the texture) τk
of PDF fτ . For all the paper, we assume that E(τ) < ∞ so
the CM of the considered SIRV exists. Each realization ck
follows then, conditionally to τk:

(ck|τk) ∼ CN(0, τkΣc) , (3)

where the LR-SIRV clutter CM Σc is defined by its rank
R < M (assumed to be known), its unknown orthonormal
eigenvectors {vr} and unknown corresponding eigenvalues
{cr} for r ∈ [[1, R]]:

Σc =

R∑
r=1

crvrv
H
r = VcCcV

H
c , (4)

with Cc = diag(cr)r∈[[1,R]] the R ×R diagonal matrix of the
eigenvalues and Vc = d({vr}) the M × R concatenation of
the orthonormal eigenvectors vr. We also define the Clutter
Subspace orthogonal Projector (CSP):

Πc =

R∑
r=1

vrv
H
r = VcV

H
c , (5)

and its complementary subspace projector Π⊥c = IM −Πc.
The orthonormal completion of the basis Vc is a set of
M − R vectors {vr}r∈[[R+1,M ]], concatenated in the matrix
denoted V⊥c and verifies Π⊥c = V⊥c V⊥Hc .

Considering the presented model, each data zk can be
described, conditionally to τk, by:

(zk|τk) ∼ CN(0,Σk) , (6)

1This hypothesis is made for describing a valid theoretical framework. In
practice, presented results could be applied with an estimate of σ2 used as
its actual value, see e.g. [48].
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with:
Σk = τkΣc + σ2IM . (7)

The likelihood of the data set is defined using fτ , the PDF of
τ :

f({zk}|Σc) =

K∏
k=1

∫ +∞

0

e−zH
k Σ−1

k zk

πM |Σk|
fτ (τk)dτk , (8)

and the total CM of the LR-SIRV plus WGN is:

Σtot = E(Σk) = E(τ)Σc + σ2IM , (9)

that does not depend on k since the τk are i.i.d. according to
fτ , i.e. E(τk) = E(τ) ∀k. We will initially consider that no
information about the PDF fτ is available, except that E(τ)
exists and is finite. We therefore treat each τk as unknown
deterministic variables. The likelihood is then:

f({zk}|Σc, {τk}) =

K∏
k=1

e−zH
k Σ−1

k zk

πM |Σk|
. (10)

B. MLE and addressed problem

Following the derivation made in [39], one can express the
MLE of the CM parameters as the solution of the problem:

maximize
{vr}

f0({vr}) =

R∑
r=1

vHk M̂rvk ,

subject to vHr vr = 1 , r ∈ [[1, R]] ,

vHr vj = 0 , r, j ∈ [[1, R]] , r 6= j .

where the matrices M̂r are defined by:

M̂r =

K∑
k=1

ĉr τ̂k
σ2 + ĉr τ̂k

zkz
H
k , (11)

with ĉr and τ̂k the MLE of respectively cr and τk.

Nevertheless, this formulation does not directly provide
a solution because MLE of the parameters cr and τk are
not tractable. Moreover, they are depending on parameters
{vr} which implies a need for iterative algorithms to reach
the MLE. The proposed solution in [39] is to derive the
MLE of side parameters dkr = crτk then apply an ad-hoc
regularization over those estimates to recover estimators of
cr and τk. This eventually leads to an accurate estimator of
the CSP Πc. However, this solution is not reliable when one
wants to reconstruct the total CM (as demonstrated in the
simulation section of this paper).

The contributions of this paper are therefore the following:
in Section III, we derive a new algorithm using the high
CNR assumption to efficiently address this issue. Moreover,
the considered framework allows several generalizations and
adaptations that will be developed in Section IV and V. The
overall estimation algorithm, accounting for possible varia-
tions, is summed up in the box "Algorithm 1".

III. ML ESTIMATION OF THE CLUTTER CM

The main issue to compute the MLE of the CM is that the
parameters Cc and Vc can only be estimated conditionally to
each other. We propose therefore to use a general 2-step MLE
algorithm that alternatively maximizes the likelihood over the
sets of parameters {{cr}, {τk}} and {vr}. This algorithm
ensures convergence to a local maximum. Following sections
will derive the two ML estimation procedure for each step.

A. Step-1 : Estimation of the core matrix Cc and textures τk
for fixed clutter subspace

From now on, the CNR will be considered high, which is a
realistic assumption for most applications. High CNR means
that the WGN is negligible compared to the SIRV noise over
the clutter subspace. Otherwise stated, we consider that zk ∼
CN (0,Σk) with:

Σk ' τkΣc + σ2Π⊥c . (12)

We will assume that an arbitrary orthonormal basis of the
clutter subspace Uc is given from the previous step, that is
Πc = UcU

H
c . Let U⊥c be the completion of this basis, so that

Π⊥c = U⊥c U⊥Hc . The CM of the data zk, conditionally to τk,
is expressed with U =

[
Uc U⊥c

]
as:

Σk ' U

(
τkMc 0

0 σ2IM−R

)
UH . (13)

Remark 1: Note that we consider an arbitrary basis Uc rather
than the eigenvectors of the clutter CM Vc. This is done since
the estimation of the CSP Πc in step 2 does not provide the
exact eigenvectors basis but only a basis that spans the desired
subspace. Here, we assume that Uc spans the clutter subspace
so it is equal to Vc up to a rotation:

Uc = VcQ , (14)

with Q a R × R unitary matrix. Therefore, the core matrix
Mc is not necessarily diagonal.

One has then the following result:

Theorem 1 For a given basis Uc the MLE of the matrix Mc

is defined as the unique fixed point:

M̂c =
R

K

K∑
k=1

UH
c zkz

H
k Uc

zHk UcM̂
−1
c UH

c zk
, (15)

that can be computed through the following iterations :

M(n+1) =
R

K

K∑
k=1

UH
c zkz

H
k Uc

zHk UcM
−1
(n+1)U

H
c zk

, (16)

that converges to M̂c under the condition that K > R and
that there is no UH

c zk that lies on the origin.

Proof: Consider the independent and dimension reduced
variables zc and zg

z̃ = VHz =

[
VH
c z

V⊥Hc z

]
=

[
zc
zg

]
. (17)
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Each one has the distribution:{
(zc|τk) ∼ CN(0, τkCc) ,

zg ∼ CN(0, σ2IM−R) ,
(18)

The result directly follows from the fact that UH
c z is the vector

zc projected in a basis that spans the same subspace as Vc.
Hence UH

c z is a R-dimensional random vector distributed as
a SIRV with unknown texture PDF and its CM MLE is well
known from the CES theory [7, 15].

The MLE of the core CM corresponds therefore to the FPE
[14, 15] applied on the projected data. This estimation proce-
dure also provides the estimates of the unknown deterministic
textures by:

τ̂k =
zHk UcM̂

−1
c UH

c zk
R

. (19)

For a given clutter subspace basis, the LR-SIRV CM is then
obtained by:(

Σ̂c|Uc

)
= UcM̂cU

H
c = V̂cĈcV̂

H
c . (20)

The parameters
(
{V̂c, Ĉc}|Uc

)
are then obtained through

the SVD of this matrix.

Remark 2: To reconstruct the total CM, one has to
remove a scaling ambiguity, i.e estimate the CNR. The full
rank CM of the LR-SIRV plus WGN is Σtot defined in
Eq.(9). In the case where fτ is known, the MLE of this
matrix is obtained as:

Σ̂ = E(τ)Σ̂c + σ2(IM − Π̂c) . (21)

However, if the textures are considered as unknown determin-
istic parameters the MLE of this matrix is evaluated through:

Σ̂ = Ê(τ)Σ̂c + σ2(IM − Π̂c) , (22)

where Ê(τ) is the empirical mean of the textures estimates:

Ê(τ) =
1

K

K∑
k=1

τ̂k . (23)

Step-1 summed up: The first step is the ML estimation of
the core matrix Ĉ

(n)
c and the textures {τ̂k}(n). For a given

orthonormal clutter subspace basis Û
(n)
c , the iterations (16)

provide the updated LR clutter CM Σ̂
(n)
c and the updated

textures {τ̂k}(n) with Eq.(19). We denote:

Û(n)
c −−−−−−→

MLE Step-1


Σ̂(n)
c = U(n)

c M̂(n)
c UH(n)

c

= V̂(n)
c Ĉ(n)

c V̂H(n)
c

{τ̂k}(n)

B. Step-2: Clutter subspace basis Vc estimation

We assume that the set of texture {τk} and the core matrix
Cc are known and fixed from the previous step. The log of
the likelihood function Eq.(10) is expressed:

log f({zk}|Vc) = −
K∑
k=1

zHk Σ−1k zk + γ , (24)

where γ is a constant not depending on {vr}, since the
determinants terms |Σk| are only depending on Cc. Expanding
this expression, taking the high CNR assumption in Eq.(12)
into account, gives:

log f = −
K∑
k=1

1

τk
zHk VcC

−1
c VH

c zk

−
K∑
k=1

1

σ2
zHk V⊥c V⊥Hc zk + γ . (25)

To inherently constrain orthonormality between Vc and V⊥c ,
one use the following change of variables: V⊥c V⊥Hc = Im −
VcV

H
c , that leads to:

log f = −
K∑
k=1

1

τk
zHk VcC

−1
c VH

c zk

−
K∑
k=1

1

σ2
zHk Imzk +

K∑
k=1

1

σ2
zHk VcV

H
c zk + γ . (26)

If this constraint is not taken into account, one obtains a
different relaxed estimator, as derived in [49]. The previous
expression, once developed, gives:

log f =

K∑
k=1

R∑
r=1

(
1

σ2
− 1

crτk

)
zHk vrv

H
r zk + γ , (27)

where γ has absorbed the constant
∑K
k=1 ||zk||2/σ2 which

does not depend on {vr}. Defining the matrices Mr as

Mr =

K∑
k=1

(
1

σ2
− 1

crτk

)
zkz

H
k . (28)

The log-likelihood is finally:

log f =

R∑
r=1

vHr Mrvr + γ , (29)

which is to be maximized w.r.t. the set {vr} under the
unitary constraints VH

c Vc = IR. The MLE of the CSP
basis is therefore the solution of the following constrained
optimization problem:

maximize
{vr}

f0(V) = f0({vr}) =

R∑
r=1

vHr Mrvr ,

subject to vHr vr = 1 , r ∈ [[1, R]] ,

vHr vj = 0 , r, j ∈ [[1, R]] , r 6= j .

(A)

To the best of our knowledge, there is no closed form solution
for this problem. Therefore, one has to resort to iterative
algorithms to reach local maxima of f0, (or appropriate
relaxations, as discussed Section V). To compute the solution,
we will apply algorithm 15 from [50]: "Modified Steepest
descent on Stiefel manifold". We also refer to other possible
algorithms [51–53]. This algorithm ensures to increase the
likelihood over the Stiefel manifold, so each update is
satisfying the unitary constraints. We note that there is no
uniqueness of the solution and that the algorithm could be
trapped in local extrema. However, one could expect that the



5

previous estimation step provides a starting point near to the
global optimum.

Remark 3: We derive the MLE of the clutter CM
eigenvectors V̂c that span the MLE of the subspace of
interest Π̂c = V̂cV̂

H
c . As discussed before, the Step-1 only

requires to have the MLE of the clutter subspace, i.e. Π̂c or
an arbitrary basis Ûc that spans this same subspace (which is
equal to V̂c up to a rotation). However, we point out that such
a relaxed MLE is not derivable in practice since the objective
function is not rotation invariant: f0(V) 6= f0(VQ) for an
arbitrary rotation Q. Section V discusses several relaxations
of the problem so that an arbitrary basis Ûc may be obtained
as a solution.

Remark 4: When it comes to the clutter subspace estimation,
one may notice that the involved matrices M̂r are SCMs of
the data scaled by estimated factors αkr that are:

αkr =

(
1

σ2
− 1

crτk

)
' 1

σ2

(
τkcr

σ2 + τkcr

)
∝ ωkr

1 + ωkr
,

where ωkr = crτk/σ
2. The αkr factors are thus corresponding

to the "power proportion" of the clutter over the rank one
subspace defined by vrv

H
r . Same type of factor appears

in [36, 39, 46] but their MLE expression differs due to
the different model hypothesis. Yet, the CSP estimation
strategy is similar: α̂kr will increase as the texture increases,
which means that realizations zk that contain more power
in the subspace of interest are given more significance in
its estimation process. Note that on the contrary, robust
estimates of the CM are scaling the data by factors inversely
proportional to the texture. The CSP MLE approach can be
seen as robust from the point of view of estimating the CSP
(not the CM) where the "outliers" are data without clutter.
The approach may be useful in some specific cases, where
the clutter is not well represented over the secondary data
set [36, 54]. This scenario also corresponds to a low/average
CNR and/or very impulsive clutter.

Step-2 summed up: The second step is the ML estimation
of the clutter subspace basis. Ĉ

(n)
c and {τ̂ (n)k } are used to

compute the set of matrices {M̂(n)
r }. Solving the constrained

optimization (A) gives the updated clutter subspace basis
Û

(n+1)
c . We denote:

Ĉ(n)
c , {τ̂k}(n) −−−−−−→

MLE Step 2
Û(n+1)
c .

IV. GENERALIZATION TO M -ESTIMATORS

It is worth replacing the core CM Cc estimation in the
broader context of M -estimation. We initially assumed that
no prior information was available on the texture PDF fτ . If
fτ is known, the MLE takes the form:

M̂c =
1

K

K∑
k=1

ψ(zHk UcM̂
−1
c UH

c zk)UH
c zkz

H
k Uc , (30)

with ψ(t) = −h′r(t)/hr(t) (where ′ stands for the derivative
w.r.t. t) and

hr(t) =

∫ +∞

0

exp(−t/τ)τRfτ (τ)dτ . (31)

This solution is known to exist and to be unique for K > R
if ψ satisfies some conditions stated in Theorem 6 of [7]. It
can be evaluated with the following fixed point equations:

M(n+1) =
1

K

K∑
k=1

ψ(zHk UcM
−1
(n)U

H
c zk)UH

c zkz
H
k Uc , (32)

that are known to converge to the solution M̂c. The MLE of
the textures is also obtained with:

τ̂k = ψ(zHk UcM̂
−1
c UH

c zk)−1 . (33)

In practice, the pdf of the texture fτ is unknown. In that
case one can resort to robust M -estimation [5–7] and use a
functional ψ that is not necessarily related to the texture pdf
fτ . For example the FPE is a special case where ψ(t) = R/t.
M -estimators can therefore be seen as generalized MLE for
the CES class. The choice of the functional can be either linked
to some prior on the texture pdf, either designed to ensure a
compromise between performance and robustness to various
distributions. Generalization of the proposed 2-Step algorithm
to M -estimators can therefore be done by replacing iterations
Eq.(16) by Eq.(32) and the texture estimation Eq.(19) by
Eq.(33).

V. DERIVING FAST APPROACHED CSP MLE

To compute the MLE of the CSP basis Vc, one has to solve
Problem (A). Since there is no closed form solution, one has
to resort to iterative algorithms to reach the solution, which
can be computationally costly. This section aims at proposing
two relaxations of the problem (A) to obtain approached CSP
MLE that are easily computable.

In the special case where all the matrices Mr are equals,
i.e. Mr = M ∀r, the ML estimation problem (A) can be
equivalently reformulated:

maximize
{Vc}

Tr{VH
c MVc}

subject to VH
c Vc = IR

, (B)

which has a well known solution that is V̂c defined as the R
strongest eigenvectors of the matrix M, or any basis Ûc that
spans the same subspace. This solution is obtainable through
the SVD of the matrix M.

1) 0 order approximation of the CSP MLE:
Under the high CNR assumption (12) the matrices Mr can

be approached by:

Mr =

K∑
k=1

(
1

σ2
− 1

crτk

)
zkz

H
k '

(
1

σ2

) K∑
k=1

zkz
H
k , (34)

so they are all approximately equal to:

Mr '
K

σ2
M̂SCM ∀r ∈ [[1, R]] , (35)
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where MSCM is the Sample Covariance Matrix:

M̂SCM =
1

K

K∑
k=1

zkz
H
k . (36)

The ML estimation problem of the CSP basis follows then the
expression (B). The solution to find the 0 order approximation
of the clutter subspace basis MLE can therefore be found as
V̂c defined as the R strongest eigenvectors of the SCM.

2) Average Relaxation of the CSP MLE or A-MLE:
The proposed relaxation consists in averaging the factors crτk

in the expression of the matrices Mr. This relaxation can also
have a ML interpretation by considering the average power
over the clutter subspace as parameter of interest, as done
in [36], or simply under the hypothesis of equal eigenvalues
of the clutter CM, as done in [46]. In that case, one can
relax the problem into form 2 without ignoring the possible
impact of the textures (as done with the SCM in the 0 order
approximation). Let us define the averaged textures:

τ̃k =
1

R

R∑
r=1

crτk , (37)

and corresponding averaged power proportion factors:

α̃k =
τ̃k

σ2 + τ̃k
. (38)

With these definitions, one can then approach the matrices Mr

by:

Mr ' M̃ =
1

σ2

K∑
k=1

α̃kzkz
H
k ∀r ∈ [[1, R]] . (39)

Since M̃ does not depend of the index r, the MLE of the CSP
basis can be relaxed in the form of (B) as done previously. The
CSP Approached-MLE (A-MLE) basis is then V̂c defined as
the R stronger eigenvectors of the matrix M̃.

VI. CONVERGENCE ANALYSIS

In this section, we discuss the convergence properties of
the three algorithms presented in previous sections.

MLE: For a number of samples K > R + 1, Step-1
reaches the unique existing maximum (up to a non affecting
scaling factor) of the objective function for fixed parameter
Uc, as guaranteed by [15]. The convergence of Step-2
(updating Uc for other fixed parameters) to a local maximum
is ensured by [50]. Hence, the sequence of objective values
generated by MLE algorithm will converge because of
monotonicity. However, the convergence of the algorithm
in terms of variables remains unknown because of the non
convexity of the constraints involved in Step-2. To the best
of our knowledge, there is no convergence result of general
block descent type algorithms with a non-convex constraint
set (e.g. generalization of [55]), and deriving such a specific
proof is beyond the scope of this paper. Nevertheless, we
note that convergence in terms of variables is also observed
in practice.

Algorithm 1 Robust CM estimation in LR clutter context
1: Initialize Vc and Uc with the R strongest eigenvectors of

the SCM
2: for n = 0→ N do
3: ? Step-1 for fixed Uc:
4: Compute Mc with iterations (16) (or (32) if ψ known)
5: Σ̂c = UcMcU

H
c −−→SVD

Cc = diag({cr}) and Vc

6: Update {τk} with (19) (or (33) if ψ known)
7: ? Step-2 for fixed {τk} and {cr}
8: Switch case on algorithm (0-MLE, A-MLE or MLE):
9: ? 0-MLE (0 order approximation):

10: end algorithm
11: ? A-MLE (Average relaxation):
12: Compute M̃ with (37), (38) and (39)
13: M̃ −−→

SVD
updated Uc

14: ? MLE (Exact resolution):
15: Compute {Mr} with (28)
16: Update Uc by solving (A) (algorithm 15 of [50])
17: end for
18: CSP estimate: Π̂MLE

c = VcV
H
c

19: Ê(τ) = mean({τk})
20: CM estimate: Σ̂MLE = Ê(τ)Σ̂c + σ2(IM − Π̂MLE

c )

A-MLE: Both steps of this algorithm are ensured to
provide a unique optimal solution: by [15] for Step-1 and
by the uniqueness of SVD for Step-2. Nevertheless, since
the overall algorithm alternately optimizes different objective
functions (which is due to the relaxation in Step-2), its
theoretical convergence remains unknown. The convergence
of A-MLE algorithm is observed in practice, as illustrated in
[47]. Moreover, this algorithm also leads to good performance,
as shown in Section VII.

0-MLE: The convergence of this algorithm is trivial
since it consists of performing Step-1 only.

VII. SIMULATIONS AND APPLICATION TO STAP
This section is devoted to numerical simulations to illustrate

the performance of different CM estimators in the considered
context (for criterions linked to CSP estimation that provide
different results, see [47, 56]). We will study the following
CM estimators:
• Σ̂SCM is the classical SCM defined in Eq.(36).
• Σ̂S−FPE is the Shrinkage-FPE (S-FPE) [24–29], which

is a regularization of Tyler’s estimator [14] that can be
computed for K < M , and is defined and unique for
β ∈ ( max(0, 1−K/M) , 1 ] by:

Σ̂S−FPE(β) =
(1− β)M

K

K∑
k=1

zkz
H
k

zHk Σ̂−1S−FPE(β)zk
+βIM

In the presented simulations, the S-FPE is computed with
the iterative fixed point algorithm described in [27–29].
For the validations simulations, β is set to 0 (and S-FPE
is referred to as FPE) in order to compare only unbiased
estimators. For the detection simulations, different values
of coefficient β > 1−K/M are tested.
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• Σ̂RC−ML is the estimate of the CM proposed in [57],
namely RC-ML (for Rank Constrained ML). It consists
in the SCM with thresholded eigenvalues so that the es-
timator satisfies the LR structure constraint. Let the SVD
of the SCM be ÛSCM and ΛSCM = diag({λSCMm }).
The following threshold:

λ̂RC−ML
m =

{
max(λ̂SCMm , σ2) for m ∈ [[1, R]]

σ2 for m ∈ [[R+ 1,M ]]

defines RC-ML, with:

Σ̂RC−ML = ÛSCM diag({λRC−ML
m }) ÛH

SCM (40)

• Σ̂D−MLE is the estimator derived from the algorithm
proposed in [39], where {cr} and {τk} are estimated via
regularized side parameters (as discussed in Remark 2
Section III).

• Σ̂MM1−MLE and Σ̂MM2−MLE are the estimator derived
from the majorization-minimization algorithm proposed
in [47]

• Σ̂0−MLE is the estimator proposed in box Algorithm 1
using the 0 order approximation for CSP estimation.

• Σ̂A−MLE is the estimator proposed in box Algorithm 1
using the average relaxation for CSP estimation.

• Σ̂MLE is the estimator proposed in box Algorithm 1 with
exact resolution for CSP estimation.

For all the simulations, estimators that require iterative algo-
rithm have been computed with 20 iterations.

A. CM estimation accuracy

In the following simulations we will study the accuracy of
the different estimators regarding to the CM. The studied cri-
terion is the Normalized Mean Square Error (NMSE) defined
for a given estimator Σ̂:

NMSEΣ̂ =
||Σ̂/Tr(Σ̂)−Σ/Tr(Σ)||2

||Σ/Tr(Σ)||2
, (41)

Note that we use the trace normalization to avoid any scaling
ambiguity. We are therefore interested in the estimation of the
shape of the total CM.

Simulation parameters: Secondary data have been gen-
erated according to the LR-SIRV plus WGN model described
in Section II. To recall it quickly: one has zk = ck + nk. The
WGN is distributed as nk ∼ CN (0, σ2IM ) and σ2 = 1. The
LR-SIRV clutter is distributed as (ck|τk) ∼ CN (0, τkΣc),
with a random texture τk, i.i.d generated for each sample.
The texture PDF is a Gamma distribution (leading to a K-
distributed clutter) of shape parameter ν and scale parameter
1/ν, denoted τ ∼ Γ(ν, 1/ν), which satisfies E(τ) = 1.
The rank R clutter CM Σc is constructed with the first R
eigenvectors and eigenvalues of a Toeplitz matrix of cor-
relation parameter ρ ∈ [0, 1] (obtained through SVD). In
these simulations we fixed ρ = 0.9. The obtained matrix
is then re-scaled to set the CNR thanks to the definition
CNR = E(τ)Tr(Σc)/(R σ2).

Fig. 1 shows the evolution of the NMSE versus the number
of samples K. The CNR is set to 30dB, so the high CNR
assumption is satisfied. Results are displayed for moderately

(ν = 1) and highly (ν = 0.1) heterogeneous clutter. First,
one can see that all the MLE algorithms proposed in this
paper provide the most accurate estimates of the CM for
the considered context. Note that the MLE algorithms from
previous works reach performance different from the ones
proposed in this paper, which highlights the non-convexity of
the likelihood and the possibility of getting trapped into a local
maximum. This also demonstrates the interest of considering
the high CNR assumption, as proposed in this work. We also
note that these three estimators perform almost the same,
meaning that the 0 order and average relaxation proposed
are reliable to estimate the CSP. Nevertheless, we point out
that, though it appears that the choice of the second step does
not impact mainly the performance in terms of error on the
estimation of the shape matrix, the exact resolution of this
step may improve the performance in terms of CSP estimation
as shown in [39]. Moreover this step can also provide an
additional robustness to corruption of the samples by outliers,
as shown in [58]. Also notice that when few samples are
available, the approached solutions may provide lower NMSE
(which is also observed in Fig. 2). This is due to the fact that
the exact MLE relies on the estimation of more parameters,
which may induce a slightly higher error in very under-
sampled scenario. However, when more samples are available
the exact MLE ultimately reaches the lowest NMSE. The SCM
provides the less accurate estimator of the CM, which was
expected since the noise is heterogeneous. RC-ML reaches the
same performance as the SCM. Since this estimator is based
on the SCM with a threshold on the eigenvalues, it seems that
this threshold does not compensate the error induced by the use
of the SCM in an heterogeneous context. D-MLE and MM1-
MLE also reach the same performance as the SCM while
MM2-MLE performs better. D-MLE was originally designed
as a CSP estimator so it seems that this method leads to
poor estimates of the eigenvalues, even if it is an accurate
estimator of the CSP. The FPE (S-FPE with β = 0) reaches
lower NMSE than SCM, RCML and D-MLE. However, FPE
cannot be computed with K < M and still does not provide as
accurate estimation as the proposed methods for the considered
context.

Fig. 2 shows the evolution of the NMSE for the same
configuration, however the CNR is lowered to 10dB. The same
general conclusions as previous can be drawn. One notes that
D-MLE provides a slight improvement compared to SCM and
RC-ML at low sample support. However, these estimators
do not perform as well as the proposed MLE algorithms.
In a low CNR configuration and moderately heterogeneous
clutter (ν = 1) all MLE based algorithms appear to reach
close performance. We also notice that in some low CNR
and highly heterogeneous (ν = 0.1) clutter configurations,
the FPE, MM1-MLE and MM2-MLE can outperform the
proposed MLE algorithms, which could have been inferred
as our proposed scheme relies on the high CNR assumption.
However the proposed algorithms are still valid alternatives
for these low CNR contexts, as shown in the next section.

Fig. 3 illustrates the robustness of the proposed approach
to a wrong rank evaluation. It shows the evolution of the
NMSE versus K for A −MLE algorithms (since different
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Fig. 1. NMSE versus K. M = 60, R = 15, CNR= 30dB. Top ν = 1,
bottom ν = 0.1

MLE schemes have very close performance) computed with
different ranks R̂ around its actual value (here R = 15), we
tested R̂ = 15 ± 5. First, one can see that when the sample
support is high enough (here K = 40) the A-MLE algorithm
with true rank proposes the lower NMSE. Then one can notice
that the performance of the proposed method is not strongly
impacted by a wrong rank evaluation. For low sample support
(K = 30), a lower rank R̂ involves less degree of freedom and
could provide lower NMSE, however the estimator is biased.
For higher sample support, one can see that over-evaluating
the rank R̂ impacts less the estimation process than under-
estimating it.

B. Application to STAP detection

STAP is a technique used in airborne phased array radar to
detect moving target embedded in an interference background
such as jamming or strong clutter [1]. The radar receiver
consists in an array of Q antenna elements processing P pulses
in a coherent processing interval. The received signal z is
composed of the sum of:

Fig. 2. NMSE versus K. M = 60, R = 15, CNR= 10dB. Top ν = 1,
bottom ν = 0.1

Fig. 3. NMSE versus K for A-MLE algorithm computed with different R̂ ∈
[[10, 20]]. Same configuration as in Fig. 1 (bottom): M = 60, R = 15,
ν = 0.1, CNR= 30dB.

• a possible target p, the so-called STAP steering vector.
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• ground clutter c.
• thermal noise n.

It is important to notice that application fits the model
considered in this paper since in side looking STAP, the
clutter CM is known to be LR. Moreover, the rank of the
clutter CM can be evaluated thanks to the Brennan Rule [40].
Hence, since this clutter could behave heterogeneously, the
total interference can be modeled as LR-SIRV (the ground
clutter) plus WGN (the thermal noise).

This section is devoted to the performance analysis of the
different CM estimators on both synthetic and real STAP data
set. This performance is analyzed through the target detection
problem, formalized as a binary hypothesis test{

H0 : z0 = c0 + n0 ; zk = ck + nk , ∀k ∈ [[1,K]]

H1 : z0 = p + c0 + n0 ; zk = ck + nk , ∀k ∈ [[1,K]]

where p is the target and the ck + nk ∀k ∈ [[0,K]] are the
clutter plus noise realizations following the model considered
in this paper. We use the Adaptive Normalized Matched Filter
(ANMF) [59, 60], which is defined as:

Λ̂(Σ̂) =
|pHΣ̂−1z0|2

|pHΣ̂−1p||zHΣ̂−1z0|

H1

≷
H0

δΣ̂, (42)

for a given estimator of the CM Σ̂, computed from the data
{zk} excluding z0. For the rest of the paper, the adaptive
detectors Λ̂ will be denoted with the same index as the
CM estimate they are build from, e.g. Λ̂SCM stands for
Λ̂(Σ̂SCM ), the ANMF build from the SCM.

1) Simulations:

We consider the following STAP configuration. The number
Q of sensors is 8 and the number P of coherent pulses is also
8. The center frequency and the bandwidth are respectively
equal to f0 = 450 MHz and B = 4 MHz. The radar velocity
is 100 m/s. The inter-element spacing is d = c

2f0
(c is the

celerity of light) and the pulse repetition frequency is fr =
600 Hz. The clutter CM Σc is computed with the model from
[1], and its rank is computed from the Brennan rule [40] and
is equal to r = 15 � 64, therefore, the low rank assumption
is valid. The texture PDF is a Gamma law of shape parameter
ν = 0.1 and scale parameter 1/ν so the clutter is distributed
as a K-distribution. The target p has a celerity of V = 35 m/s
and is at +10◦ Azimuth. Clutter to Noise Ratio is defined as
CNR = E(τ)Tr(Σc)/σ

2 and Signal to noise Ratio as SNR=
norm(p)/σ2, and we set σ2 = 1.

In these simulations, we first computed the False Alarm
Probability in function of the threshold for 106 Monte Carlo
Simulations under H0 i.e. z0 is target free. This step allows to
set proper threshold so that the False Alarm Probability is 10−3

for every detector in every considered configuration. Then, we
compute and display the Detection Probability of the different
detectors under H1 in function of the SNR of the target p,
with 103 Monte Carlo Simulations. This process is realized for
several configurations of the parameters (various ν, and CNR),

the number of secondary data is fixed to K = 3R = 45 (under-
sampled configuration). We test the following detectors:
• Λ̂RC−ML: based on the CM estimate proposed in [57],
• Λ̂S−FPE : with different values of β ∈ [0.5, 0.7, 0.9] since

there is currently no rule for optimal adaptive selection
of value of the β for the considered data model.

• Λ̂A−MLE : We do not display results for Λ̂0−MLE and
Λ̂MLE since they are exactly the same as for Λ̂A−MLE .
We do not display results for Λ̂0−MLE and Λ̂MLE since
the previous section already showed that the estimators
reach equivalent performance.

• Λ̂MM2−MLE where the power of the thermal noise σ2 is
the same as for RC-ML. Λ̂MM1−MLE is not displayed
since the MM2 algorithm was shown to perform better in
terms of CM estimation accuracy in the previous section.

Fig. 4 displays the probability of detection versus SNR
for high clutter to noise ratio (CNR= 30dB), for slightly
heterogeneous (ν = 1) and very heterogeneous (ν = 0.1)
clutter. Fig. 5 displays the same results for an average clutter
to noise ratio (CNR= 10dB). Result shows that for almost
every configuration, the proposed CM estimator provides the
best performance in terms of detection since its associated
ANMF detector reaches the highest detection probability
at different SNRs. The estimator A-MLE outperforms
MM2-MLE at high CNR context. Interestingly, A-MLE
also reaches performance equivalent to MM2-MLE at lower
CNR even if it relies on high CNR assumption. Hence, the
proposed estimation method is the most beneficial for the
considered detection application. In some configurations,
the estimator S-FPE can also be very close to A-MLE and
even outperform it for some small value of the SNR (as
in Fig. 4, bottom). However this is conditional to a good
selection of the shrinkage parameter β. We emphasis that an
"optimal" method for adaptive selection of this parameter
is, to the best of our knowledge not derived yet for the
configuration we consider (Low Rank heterogeneous clutter).
Therefore, applying existent rules is not necessarily relevant.
For example, we tested the oracle schemes proposed in
[24] and [29]. These methods provided adaptive β almost
always higher than 0.9, which is not the most efficient in the
considered context. We also observe that the RC-ML does not
lead to good performance for under-sampled configuration in
presence of heterogeneous clutter, compared to the state of
the art.

2) Real data:

The STAP real Data are provided by the French agency
DGA/MI: the clutter is real but the targets are synthetic. The
number of sensors is Q = 4 and the number of coherent pulses
is P = 64, the size of the data is then M = QP = 256.
The center frequency and the bandwidth are respectively equal
to f0 = 10GHz and the bandwidth B = 5MHz. The radar
celerity is V = 100m/s. The inter-element spacing is d =
0, 3m and the pulse repetition frequency is fr = 1kHz. The
clutter rank, computed from Brennan Rule [40], is R = 45 and
the CNR is evaluated around 20dB. The maximum number of
target free samples available for all scenarios is N = 408. We
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Fig. 4. Detection Probability versus SNR of the target for false alarm
probability of the different detectors set to 10−3. M = 64, R = 15,
CNR= 30dB. Top ν = 1, bottom ν = 0.1

consider a test cell under H1 with a target at (4 m/s, 0 deg)
and with a Signal to Clutter Ratio (SCR) of −5dB. In the set,
four guard cells are removed around the considered range cell.
The covariance matrix estimator built on the set of secondary
data, i.e. data that are assumed to be signal-free and i.i.d.

We test the following detectors:
• Λ̂SCM : Note that if K < M , this estimator can not be

inverted. For this case, we used the following shrinkage:

Σ̂S−SCM = (1− β)Σ̂SCM + βIM , (43)

and used Λ̂S−SCM instead of Λ̂SCM . As shown in [27],
the value of β for S-SCM does not changes the obtained
results for the considered application on the data set. We
arbitrarily took β = 0.75.

• Λ̂RC−ML: with the power of the thermal noise σ2 is pre-
estimated with the whole data cube as the mean value of
the last M − R eigenvalues of the SCM [48] and this
estimated value is used as its actual one.

• Λ̂S−FPE with fixed β = 0.75. After several tests (also
shown in [27]), the optimal value for this detection
problem was found to be around 0.7 ∼ 0.8 depending
on K.

Fig. 5. Detection Probability versus SNR of the target for false alarm
probability of the different detectors set to 10−3. M = 64, R = 15,
CNR= 10dB. Top ν = 1, bottom ν = 0.1

• Λ̂A−MLE where the power of the thermal noise σ2 is the
same as for RC-ML.

Fig. 6 and Fig. 7 present several detection output, i.e.
the detection test performed over a grid of p corresponding
to different target angle and velocity. Fig. 6 shows detector
output for an undersampled configuration with K = 100 (still
K > 2R). Λ̂S−SCM does not whiten the clutter, so the target
present at (4 m/s, 0 deg) is not distinguishable. Λ̂RC−ML

and Λ̂S−FPE allows to perform target detection but Λ̂A−MLE

provides the better interference rejection. One can also observe
that both detectors build from structured estimators (Λ̂RC−ML

and Λ̂A−MLE) provide a better rejection of the clutter ridge,
which illustrates the interest of using structure prior. Fig. 7
shows detector output for an oversampled configuration with
K = 300. the same conclusions as previous can be drawn:
the Λ̂SCM fails to provide a reliable detector. Λ̂RC−ML and
Λ̂A−MLE provide a better rejection of the clutter ridge. We
remark that Λ̂RC−ML and Λ̂A−MLE have close performance
here. This is to be expected since the clutter in the data set is
not very heterogeneous, and therefore almost Gaussian.
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Fig. 6. Detector output on a test sample z0 containing a target at (4 m/s, 0 deg), from left to right: ΛSCM (where only the clutter response is observable),
ΛRC−ML, ΛS−FPE and ΛA−MLE . K = 100.

Fig. 7. Detector output on a test sample z0 containing a target at (4 m/s, 0 deg), from left to right: ΛSCM , ΛRC−ML, ΛS−FPE and ΛA−MLE . K = 300.

VIII. CONCLUSION

In this paper, we derived the MLE of the CM for a
disturbance composed of LR-SIRV clutter plus an additive
WGN. We assumed that the rank R of the LR-SIRV is known
and that there is a high CNR. The problem is then separated
into two parts: the estimation of the CM over the clutter
subspace, and the estimation of the subspace itself. We derived
the MLE expression of these parameters conditionally to each
other, then resorted to a 2-Step MLE algorithm to compute
the MLE of the CM. Among the derivation of the result, we
discussed several relaxations and robust generalizations. Even-
tually, these results lead to the formulation of a very general 2-
step MLE form algorithm to compute LR structured robust CM
estimators. We focused then on the study of three adaptation
of this algorithm namely "0-MLE", "A-MLE" and "MLE"
that are not relying on the knowledge of the SIRV’s texture
PDF. Simulation results on NMSE and detection probability,
as well as an application on a real STAP Data set, showed
that this approach is useful to handle both heterogeneity of
the clutter and prior on the CM rank structure. As regards
the total covariance matrix estimation, the proposed estimators
also lead to improvements compared to previous work on the
same topic [39, 47] that were mainly focused on the clutter
subspace estimation.
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