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A note on simple randomly switched linear systems

Gabriel LAGASQUIE

December 6, 2016

Abstract

We construct a planar process that switches randomly between the flows of two linear
systems built from two Hurwitz matrices (all eigenvalues have negative real parts). The goal
here is to study the long time behaviour according to the switching rates. We will see that,
even if the two systems are stable, it is possible to obtain a blow up if we choose the switching
rates wisely. Finally we will see a connection, between the tail of the invariant measure (when
the switching times follow an exponential law) and the existence of a deterministic control
that makes the process explode.

AMS Classification: 60J99, 34A60

1 Introduction
Piecewise Deterministic Markov Processes (PDMPs) is a huge class of stochastic processes in-
troduced by Davis [8]. In this note we are studying a particular subclass of these processes. we
consider (Xt, It)t>0 evolving on the space Rd × {0, 1} solving the equation:

Ẋt = F (Xt, It)

where F is a smooth function and (It) is a jump process on {0, 1}. We call λi the jump rate of
the process (It) from state i to state 1− i. Such processes play a role in modeling problems in
various fields such as molecular biology [13], population dynamics [7], Internet traffic [10]. Even
if these processes are easy to define, their stability is never clear.

More precisely, we are here interested in the long time qualitative behaviour of the planar
randomly switched process (Xt, It)t>0 ∈ Rd × {0, 1} solving the equation{

Ẋt = AItXt

X0 = x0,
(1)

where A0, A1 are d× d real matrices, and (It) is a Markov process on E = {0, 1} with constant
jump rates:

λ0 = βu,

λ1 = β(1− u)

where β > 0 and u ∈ (0, 1). The process ((Xt, It))t≥0 is a piecewise deterministic Markov
process as defined in [8] and several examples have been studied in [12] or [5]. It appears
that the following quantity dictates the large time behaviour of this process according to the
parameters A0, A1, β and u:

χ := χ(A0, A1, β, u) = lim
t→+∞

1
t

log (‖Xt‖) a.s.
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Figure 1: Example of a trajectory of the process (1).

Indeed if χ is positive then the system explodes almost surely whereas if χ is negative the system
is stable and goes to zero almost surely.

The asymptotic behaviour of such processes when (It) is any deterministic process and d = 2
is now understood. Given two matrices inM2(R), [3] gives a necessary and sufficient condition
for the existence of a deterministic function (It) that produces a blow up. But the articles [12]
and [6] have shown that the behaviour of planar randomly switched systems may be surprising:
according to the value of the switching rate β, the process can either blow up or go to zero
even if each system is stable. In [12], the authors build a randomly switched system living in
the space R2n which behaviour comes down to alternating blow up periods and stable periods a
finite number of times as the jump rate grows.

A question raised from these works is the existence of a planar randomly switched system
which behaviour is also alternating between blow up periods and stable periods. The goal of
this note is to construct such a process.
Our idea is the following: put a stochastic control in a deterministic planar switched system
which satisfies the qualitative long time behaviour condition (using the criteria in [3]). For a > 0
and b > 1, we define two real matrices as follow:

A0 =
(
−a b
−1
b −a

)
and A1 =

(
−a 1

b
−b −a

)
.

Thanks to these two matrices, we define the continuous process ((Xt, It))t≥0 ∈ R2×{0, 1} so-
lution of (1). The path of Xt follows a spiral clockwisely during a random time with exponential
law of parameter λi before switching on an other spiral as described in Figure 1.

We also define:
χ := χ(a, b, β, u) = lim

t→+∞

1
t

log (‖Xt‖) a.s

which sign gives the long time qualitative behaviour of our process as said before.

The main result of this note is the following which is similar to the main result in [12]:
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Figure 2: The function χ for a = 0.15, b = 3 and u = 0.5.

Theorem 1.1. For any u ∈ (0, 1),

(i) ∀a, b > 0, χ(a, b, β, u) −→ −a when β → 0 or β → +∞.
(ii) For every β, u > 0 there exist a > 0 and b > 0 so that χ(a, b, β, u) > 0.

In Section 2, we establish an explicit expression of the function χ. In Section 3 we use it to
prove Theorem 1.1.

The explicit expression of χ obtained in Proposition 2.2 allows us to calculate numerically
the function χ at u constant (see Figure 2). It is also interesting to show the sign of the function
χ according to β and u as we can see in Figure 3. In this figure, we can see that for (β, u) in
a compact, our system explodes when t goes to +∞. We can see the same behaviour in the
process studied in [12]. But this is different from what we can observe in [7] and [6] where the
explosion happens for β large enough.

This graphics combined to Theorem 1.1 shows us that this process does not meet our ex-
pectations. There is a unique area of blow up whereas the deterministic periodic process has
several blow up periods (see Section 4). It seems that, in the case of the random process, the
variance of the waiting time in each state is too high to select precisely the good jump times
that would allow it to have several blow up periods.

We will see in Section 5 a simple way to lower the variance of the waiting time without
complicate too much the process, but first, in Section 4 we will give an interesting result about
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Figure 3: Sign of the function χ for a = 0.10, b = 2.5. Positive inside and negative outside.

the deterministic process associated to our system.

In the last section we focus on the decentered switched system defined as follow:{
Ẋt = AIt(Xt − bIt)
X0 = x0,

(2)

where b0, b1 are two different vectors of Rd.
There is a connection between the existence of an explosive trajectory (with a deterministic
control) and the properties of the invariant measure, if it exists, in the random case (exponential
switch times).

Let us call T0 = 0, T1, ..., Tn the jumping times of the process (Xt) and τ0, τ1, ..., τn, the
interjump times following an exponential law of parameters λ0 and λ1 alternatively. Let us
define Yn = XT2n . By simply solving the equation 2 between each jumping times we obtain:

Yn = eτn+1A1eτnA0Yn−1 − eτn+1b0 + b1.

This kind of stochastic equation have been the object of numerous research. Applying Kesten’s
renewal theorem to the discrete process (Yn) will give some informations about the tail of the
invariant measure of (Xt) (see [11] for the main article, see [1], [9] for different formulations of
the same theorem).

Theorem 1.2. If there is no deterministic control that makes the deterministic process associ-
ated to (Yt) explodes, it means that there exists an invariant measure µ for our process and the
support of µ is necessarily bounded.

In the other hand, we assume that χ < 0 and that there exists a deterministic control such
as:

∃k ∈ 2N + 1 such as ∀x ∈ Sd−1, ∃t0, t1, ..., tk > 0 such as ‖etkAIk ...et1AI1et0AI0x‖ > ‖x‖. (3)

We call B = eτkAIk ...eτ1AI1eτ0AI0 and B0, B1, ..., Bn n random variables i.i.d following the law
of B. We also assume that:

max
n>0

P
(
Bn...B0x

‖Bn...B0x‖
∈ U

)
> 0 for all x ∈ Sd−1 and any open ∅ 6= U ⊂ Sd−1. (4)
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P(Bn0 ...B0 ∈ .) > γ01Bc(Γ0)λ for some Γ0 ∈ GLd(R), n0 ∈ N and c, γ0 > 0. (5)

where λ is the Lebesgue measure on Rn2. Under these assumptions, there exists a unique invari-
ant measure µ for the process (Yt) and it has an heavy tail:

∃p1 > 0 such as ∀0 6 p < p1 Eµ[‖Y ‖p] < +∞ and ∀p > p1 Eµ[‖Y ‖p] = +∞.

2 Study of the angular process
In order to study our process ((Xt, It))t≥0 we use the polar coordinates for Xt. As a start, and
as in [12], let us look at the case of the deterministic process. Let A be a 2-sized squared matrix
and x ∈ R2\{0}. We set (xt)t≥0 the solution of the ODE:{

ẋt = Axt for all t > 0,
x0 = x.

If x is nonzero, then it is also true for any xt with t positive. So we can define the polar
coordinates (rt, θt) of xt. We call eθ the unitary vector (cos θ, sin θ) and ut = eθt . Then xt = rtut.
As r2

t = 〈xt, xt〉, we obtain the relations:

rtṙt = 〈xt, Axt〉

A(rtut) = ẋt = ṙtut + rtu̇t.

And then we have:
ṙt = rt〈ut, Aut〉 (6)

u̇t = Aut − 〈ut, Aut〉ut. (7)

Let us write the equation (2) with the angle θt. As u̇t = θ̇teθt+π/2, by making the scalar product
of (2) with eθt+π/2, we obtain:

θ̇t =
〈
Aeθt , eθt+π/2

〉
. (8)

We use now the polar coordinates in order to study the process ((Xt, It))t≥0. Between the
jumps, the process follows the flow determined by A ∈ {A0, A1}. From Equation (3), the
development of θ is deterministic and does not depend on r. As a consequence, the processes
((Θt, It))t≥0 and ((Ut, It))t≥0 are piecewise deterministic Markov processes on R × {0, 1} and
S1 × {0, 1} respectively. The principal interest of the study of these processes lies in the fact
that the development of (Rt)t≥0 is determined by that of the process ((Θt, It))t≥0 as shown by
Equation (1). Indeed, by solving (1) between the jumps and by calling A(θ, i) = 〈Aieθ, eθ〉, we
obtain:

Rt = R0 exp
(∫ t

0
A(Θs, Is)ds

)
. (9)

So, as suggested by Equation (4), in order to study the behaviour of (Rt)t≥0 we are going to
study the process ((Θt, It))t≥0 and particularly its invariant measure.

Lemma 2.1. The invariant measure µ of the process ((Θt, It))t≥0 is given by,

µ(dθ, i) = ρi(θ)dθ
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where:

ρ0 = Φ
d0

and ρ1 = C − ρ0d0
d1

;

d0(θ) = −b sin2(θ)− 1
b

cos2(θ) and d1(θ) = −1
b

sin2(θ)− b cos2(θ);

Φ(θ) =
(
K +

∫ θ

0
βC(1− u) 1

d1(α)e
−βv(α)dα

)
eβv(θ);

v is the primitive null in zero of the function − ( u
d0

+ 1− u
d1

);

K and C are two explicit constants.

Proof. We define, for i ∈ {0, 1},

di(θ) =
〈
Aieθ, eθ+π/2

〉
.

We call L the infinitesimal generator associated to the semi-group Pt of the process ((Θt, It))t≥0.
Remind that Pt = E[f(Θt, It)|Θ0 = θ, I0 = i]. L is given by:

Lf(θ, i) = di(θ)
∂f

∂θ
(θ, i) + λi (f(θ, 1− i)− f(θ, i)) (10)

for any smooth function f .
In our study case, the functions di are given by,

d0(θ) = −b sin2 θ − 1
b

cos2 θ and d1(θ) = −1
b

sin2 θ − b cos2 θ.

We notice that the functions di are negative. This obviously implies that the process ((Ut, It))t≥0
is recurrent, irreducible and it has a unique invariant measure. We want to write it as follows:

µ(dθ, i) = ρi(θ)dθ. (11)

where ρ0 and ρ1 are two 2π-periodical continuous functions.
In this case, for every good functions f defined on S1 × {0, 1}, we will have:∫

S1×{0,1}
Lf(θ, i)dµ(θ, i) = 0.

Let f be a C1 function defined on S1 × {0, 1}. Injected in the previous formula, the expression
(6) allows us to obtain:∫ 2π

0
Lf(θ, 0)ρ0(θ)dθ +

∫ 2π

0
Lβf(θ, 1)ρ1(θ)dθ = 0. (12)

Assume initially that ∀i, f(θ, i) = f(θ). So, by injecting in (6), and after integrating by parts,
we obtain:

d0ρ0 + d1ρ1 = C (13)

where C is a negative constant depending only of the parameters of the problem a, b, u and β.
Assume now that f(θ, 0) = f(θ) and f(θ, 1) = 0. The same way, we obtain the relation:

(d0ρ0)′ = (1− u)βρ1 − uβρ0.

Set Φ = d0ρ0. By using the relation (7), we can write the last equation as a linear differential
equation:

Φ′ = −βΦ( u
d0

+ 1− u
d1

) + βC(1− u)
d1

. (14)
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This differential equation is easily solved, we obtain:

Φ(θ) =
(
K +

∫ θ

0
βC(1− u) 1

d1(α)e
−βv(α)dα

)
eβv(θ)

where K is an integration constant and v is the primitive null in zero of the function −( ud0
+ 1−u

d1
).

We can calculate v explicitly on the interval (−π
2 ,

π
2 ):

v(θ) = u arctan(b tan(θ)) + (1− u) arctan(1
b

tan(θ)).

We extend v to R+ by continuity.
The constants C and K are left to calculate in such a way that µ is a probability measure. So:

(i) ρ0 and ρ1 are non negative, (ii)
∫ 2π

0
ρ0(θ)dθ +

∫ 2π

0
ρ1(θ)dθ = 1.

The condition (i) gives us the following condition on Φ: C < Φ < 0. By developping this
inequality, we obtain:

∀θ ∈ R+, e−βv(θ) −
∫ θ

0
β(1− u) 1

d1(α)e
−βv(α)dα >

K

C
> −

∫ θ

0
β(1− u) 1

d1(α)e
−βv(α)dα.

As θ −→ +∞, we obtain:
1
κ

= K

C
= −β(1− u)

∫ ∞
0

1
d1(α)e

−βv(α)dα.

In order to find K, we use the condition (ii) and we get easily:

1
K

=
∫ 2π

0

[
eβv(θ)

(
1 + κβ(1− u)

∫ θ

0

1
d1(α)e

−βv(α)dα

)( 1
d0(θ) −

1
d1(θ)

)
+ κ

1
d1(θ)

]
dθ.

We finally get expressions of ρ0 and ρ1. Reciprocally, we check that the functions we obtained
are solutions of our problem (one has to check the 2π-periodicity of these functions).

We want now to be able to describe the stability of our switched process according to the
jump parameters u and β, and to the parameters of our matrices a and b. It appears thanks to
Formula (4) that the following quantity:

χ(β) = lim
t→+∞

1
t

log
(
Rt
R0

)
= lim

t→+∞

1
t

(∫ t

0
A(Θs, Is)ds

)
is worth studying because not only its sign gives the behaviour in large time of our process
but also, thanks to the Ergodic Theorem and the previous Lemma, we will obtain an explicit
expression of χ.

Proposition 2.2. The function χ can be calculated explicitly according to the data of the prob-
lem:

χ = −a− (1− u)βκK
(b− 1

b )
2

∫ 2π

0
sin(2θ)

( 1
d0(θ) + 1

d1(θ)

)
eβv(θ)

(∫ ∞
θ

e−βv(α)

d1(α) dα
)
dθ.

Proof. Since we have:
1
t

log(Rt
R0

) = 1
t

(∫ t

0
A(Θs, Is)ds

)
.

The Ergodic Theorem tells us that (we identify θ with eθ):

1
t

(∫ t

0
A(Θs, Is)ds

)
−→
t−→∞

∫ 2π

0
A(θ, i)dµ(θ, i) = χ.

Lemma 2.1 gives us the explicit formulation of the invariant measure of the process ((Θt, It))t≥0
which allows us to obtain the claimed expression for χ.
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3 Stability of the switched process
In the last section, we obtained the explicit expression of χ. We are now going to give some
results on some of the asymptotic values of χ.

Theorem 3.1. For any u ∈ (0, 1),

(i) ∀a, b > 0 χ(a, b, β, u) −→ −a when β → 0 or β → +∞.
(ii) For every β, u > 0 we can choose a > 0 and b > 0 so that χ(a, b, β, u) > 0.

Proof. (i) One can find an other way to prove this result in [12] in a more general way.
In order to study the limit of χ in 0, we study the limit of − 1

κ = β(1−u)
∫∞

0
e−βv(α)

d1(α) dα in 0. We
notice that:∫ +∞

0

e−βv(α)

d1(α) dα =
+∞∑
i=0

∫ (i+1)π

iπ

e−βv(α)

d1(α) dα

=
+∞∑
i=0

e−βiπ
∫ π

0

e−βv(α)

d1(α) dα because v(α+ π) = v(α) + π

= 1
1− e−βπ

∫ π

0

e−βv(α)

d1(α) dα.

Multiplicating by β(1− u) and observing the presence of a rate of increase we get:

β(1− u)
∫ ∞

0

e−βv(α)

d1(α) dα −→
1− u
π

∫ π

0

1
d1(α)dα = l.

We finally can say that:

∀θ,
(
β(1− u)

∫ ∞
θ

e−βv(α)

d1(α) dα
)
−→
β−→0

l.

Moreover, as: ∫ 2π

0
sin(2θ)

( 1
d0(θ) + 1

d1(θ)

)
dθ = 0

and the product κK is bounded as β → 0, we deduce that χ(β) −→ 0 when β goes to 0.
The limit of χ at +∞ is obtained using the Laplace method:

∀θ, β(1− u)
∫ ∞
θ

e−βv(α)

d1(α) dα ∼+∞
(1− u)e−βv(θ)

d1(θ)v′(θ) .

From this relation, we obtain that κ and K converge when β goes to +∞ and, by dominated
convergence,∫ 2π

0
sin(2θ)

( 1
d0(θ) + 1

d1(θ)

)
eβv(θ)β(1− u)

(∫ ∞
θ

e−βv(α)

d1(α) dα
)
dθ −→

β→+∞
0.

So we finally conclude that χ goes to −a when β goes to +∞.
(ii) We will now show that for any parameter β, we can choose b large enough and a small
enough so that the process goes to +∞ almost surely (ie χ(β) > 0). We can write the function
χ as follows:

χ(β) = −a+K

∫ π

0
f(θ)g(θ)dθ
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because the function under the integral is π-periodic and where:

f(θ) = (b− 1
b

) sin(2θ)
( 1
d0(θ) + 1

d1(θ)

)
,

g(θ) = eβv(θ)
∫+∞
θ

e−βv(α)

d1(α) dα∫+∞
0

e−βv(α)

d1(α) dα
.

Finally we write χ as follows:

χ(β) = −a+K

∫ π
2

0
f(θ) (g(θ)− g(π − θ)) dθ

A straightforward computation leads to:∫ π
2

0
f(θ)dθ = 4

γ

b2 − 1
b2

(b− 1
b )2 log

(∣∣∣∣γ − 1
γ + 1

∣∣∣∣)

where γ =
√

1 + 4
(b− 1

b
)2 . We then conclude that:

∫ π
2

0
f(θ)dθ −→ −∞ when b goes to +∞.

In order to determine the limit of g when b goes to +∞ we rewrite g as follows using the same
method as before:

g(θ) = eβv(θ)

1− (1− e−βπ)
∫ θ
0

1
d1(α)e

−βv(α)dα∫ π
0

1
d1(α)e

−βv(α)dα


= eβv(θ)

1− (1− e−βπ)

∫ θ
0

1
cos2(α)+ 1

b2
sin2(α)e

−βv(α)dα∫ π
0

1
cos2(α)+ 1

b2
sin2(α)e

−βv(α)dα

 .
Using the fact that:

v(θ) −→
b→+∞

π

4 if θ ∈ (0, π2 )

v(θ) −→
b→+∞

3π
4 if θ ∈ (0, π2 ),

it is now easy to see that:

g(θ) −→
b→+∞

eβ
π
4 if θ ∈ (0, π2 )

g(π − θ) −→
b→+∞

e−β
π
4 if θ ∈ (0, π2 ).

Since K < 0, we can conclude that for b large enough,

K

∫ π
2

0
f(θ) (g(θ)− g(π − θ)) dθ > 0.

So for an appropriate choice of a, we see that χ(β) > 0 inducing that the process explodes
almost surely for this β and a with b large enough.
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4 A quick look at the associated deterministic process
The deterministic switched system can be introduced as follows:{

x0 ∈ R2\(0, 0)
ẋt = Avtxt

(15)

where (vt) ∈ F(R+, {0, 1}) is the control function. The behaviour of these systems is well known,
see [3] for more details. Consequently, for our choice of matrices, we know that there exist a
worst trajectory, that is to say, a choice of the control function v that makes the system explode,
and this control is periodic.

Let us define (vt) a 1
u(1−u)β -periodical process satisfying:

∀t ∈ [0, 1
uβ

), vt = 0

∀t ∈ [ 1
uβ
,

1
u(1− u)β ), vt = 1.

We denote χd(β) = lim
t−→∞

1
t log

(
‖xt‖
‖x0‖

)
.

By simply solving the equation for the process (xt) and calculating the matrices exponential we
obtain:

xt = e−atBξN(t)+1(at)BξN(t)(τN(t)) · · ·Bξ1(τ1)

where

B0(t) = etA0 =
(

cos(t) b sin(t)
−1
b sin(t) cos(t)

)
and B1(t) = etA1 =

(
cos(t) 1

b sin(t)
−b sin(t) cos(t)

)
,

N(t) is the number of jumps of the deterministic process before t and τ1, τ2, ...,τN(t) the time
spent in the states ξ1, ξ2, ..., ξN(t), ξN(t)+1 by v(t).
We have the surprising following result:

Proposition 4.1. χd(β) almost surely does not depend on the initial value x0.

Proof. Although this result is true for any u ∈ (0, 1), for sake of simplicity, we will prove it only
for the case u = 1

2 where the computation is not heavy. In order to prove this result, we first
notice that:

1
2nt log

(‖[B0(τ)B1(τ)]nX0‖
‖X0‖

)
−→

n→+∞
χd(β)

where τ = 2
β . Let us calculate the matrix:

B0(τ)B1(τ) =
(

cos2(τ)− b2 sin2(τ) C sin(2τ)
−C sin(2τ) cos2(τ)− 1

b2 sin2(τ)

)

where C = 1
2(b + 1

b ) > 1. We calculate the characteristic polynomial of this matrix and we
obtain:

X2 +X(4C2 sin2(τ)− 2) + 1 = 0.

By a simple analysis of this polynomial, we can show that there exists two real eigenvalues if
2C2 sin2(τ) − 1 > 0 and two joint complex eigenvalues if 2C2 sin2(τ) − 1 < 0, concluding that
our matrix is diagonalisable in C. So there exists P ∈ GL2(C) such that:

(B1(τ)B0(τ))n = P−1
(
λn1 0
0 λn2

)
P.

10



Let us now write:

1
2nτ log

(‖[B0(τ)B1(τ)]nX0‖
‖X0‖

)
= 1

2nt log
(
‖
(
λn1 0
0 λn2

)
PX0‖

)
+ o(1)

= 1
2nτ log

(
‖
(
λn1 0
0 λn2

)(
x
y

)
‖
)

+ o(1).

If the factor 4C2 sin2(τ)− 2 6= 0 then one of the eigenvalues is superior to the other in absolute
value, for example |λ1| > |λ2|. In this case, if x 6= 0 ie X0 /∈ Eλ2 the characteristic space of the
eigenvalue λ2:

1
2nτ log

(‖[B0(τ)B1(τ)]nX0‖
‖X0‖

)
= 1

2τ log |λ1|+ o(1).

If x = 0 i.e. X0 ∈ Eλ2 :

1
2nτ log

(‖[B0(τ)B1(τ)]nX0‖
‖X0‖

)
= 1

2τ log |λ2|+ o(1).

If the factor 4C2 sin2(τ)− 2 = 0 then for every X0:

1
2nτ log

(‖[B0(τ)B1(τ)]nX0‖
‖X0‖

)
= 1

2τ log |λ1|+ o(1).

Figure 4 illustrates Proposition 4.1.

5 A way to obtain several blow up areas
One of the expectations of this article was to get a planar linear switched system whose χ
function admits several blow up areas. A quick look at the deterministic case (4) allowed us to
believe that it could be possible with our system. Unfortunately the simulation we can see in
Figure 2 seems to show that we did not manage to succeed. We slightly modify the jump times
in order to mimic the deterministic evolution (15).

Let u = 1
2 (for sake of simplicity) and let n be a stricly positive integer. We now define the

piecewise deterministic Markov process ((Xn
t , I

n
t ))t≥0 as follows: (It)t>0 is a continuous time

Markov process defined on the state space {0, 1, 2, ..., 2n− 1} with a constant jump rate nβ
2 and

a jump mesure:

Q(i, .) = δi+1 if i < 2n− 1,
Q(2n− 1, .) = δ0.

And we define (Xn
t )t≥0 as the solution of:

Xt = Xn
0 +

∫ t

0
A1It<nX

n
s ds.

This process looks like (1). The difference lies in the fact that, instead of waiting for an expo-
nential time of parameter β

2 before jumping from a matrix to the other, the process waits for a
time following a Gamma law of mean 2

β and variance 4
nβ2 .

The next result compares the stochastic process to the periodic one.

Lemma 5.1. For every T > 0, the process (Xn
t )06t6T uniformly converges to the deterministic

process (Xt)06t6T solution of (15).
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Figure 4: In blue the general shape of χd for a = 0.1, b = 2 and u = 0.5.
In red, x0 is in Eλ2 for β = 1.
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Figure 5: For a = 0.15, b = 3 and n = 50, a second blow up area appears in χ.
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Proof. Let us call Nn(t) the number of jumps before t of the process (Int ), τn1 , τn2 , ...,τnN(t)
are the interjump times, they follow a gamma law of mean 1

β and variance 1
nβ2 . We denote

ant = t−
∑N(t)
k=1 τ

n
k . We finally call ξn1 , ξn2 , ...,ξnN(t)+1 ∈ {0, 1} the states.

By simply solving the equation for the process (Xn
t ) and calculating the matrices exponential

we obtain:
Xn
t = e−atBξn

Nn(t)+1
(ant )Bξn

Nn(t)
(τnNn(t)) · · ·Bξn1 (τn1 )

where
B0(t) =

(
cos(t) b sin(t)
−1
b sin(t) cos(t)

)
and B1(t) =

(
cos(t) 1

b sin(t)
−b sin(t) cos(t)

)
.

Let us call N(t) the number of jumps of the deterministic process. We have:

Xt = e−atBξN(t)+1(at)BξN(t)(
1
β

) · · ·Bξ1( 1
β

).

We form the difference:

‖Xn
t −Xt‖ 6 1Nn(t)=N(t)‖BξnN(t)+1

(ant ) · · ·Bξn1 (τn1 )−BξN(t)+1(at) · · ·Bξ1( 1
β

)‖‖X0‖

+1Nn(t) 6=N(t)‖BξnNn(t)+1
(ant ) · · ·Bξn1 (τn1 )−BξN(t)+1(at) · · ·Bξ1( 1

β
)‖‖X0‖.

We can prove by induction on N(t) that:

‖Bξn
N(t)+1

(ant ) · · ·Bξn1 (τn1 )−BξN(t)+1(at) · · ·Bξ1( 1
β

)‖ −→ 0 in probability.

The case N(t) = 1 shows us what happens:

‖Bξ2(t− τ1)Bξ1(τ1)−Bξ2(t− 1
β

)Bξ1( 1
β

)‖ 6 ‖Bξ2(t− τ1)‖‖Bξ1(τ1)−Bξ1( 1
β

)‖

+ ‖Bξ2( 1
β

)−Bξ2(τ2)‖‖Bξ1(τ1)‖

6 C1|τ1 −
1
β
|.

By using the inequality of Bienaymé-Tchebychev, we gain the claimed convergence. Moreover
we can say that this convergence also holds in L1 as the random variable is bounded because
our process does not explode in a finite time.
We prove now that P[Nn(t) = N(t)] −→ 1 when n goes to +∞. First, let us write that N(t) = p
and t = p

β + η where 0 6 η < 1
β . We have:

P[Nn(t) = p] = P [τ1 + τ2 + ...+ τp 6 t < τ1 + ...+ τp + τp+1]

= P

0 6 t−
p∑
i=1

τi and t <
p+1∑
i=1

τi


= P

[ p∑
i=1

τi −
p

β
< η

]
P

t < p+1∑
i=1

τi | 0 6 t−
p∑
i=1

τi

 .
The first probability goes to 1 when n goes to +∞ thanks to the Bienaymé-Tchebychev inequal-
ity and the other probability is nonzero. This means that we have the claimed convergence:
P[Nn(t) = N(t)] −→ 1 when n goes to +∞.
Back in the inequality, we take the expectation and using the previous results we prove that
E[‖Xn

t −Xt‖] goes to 0 uniformly on [0, T ].
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6 Behaviour of the switched system with two centers of attrac-
tion

We slightly modify our initial system by shifting the centers of attraction of each flow. Assume
that A0 and A1 are Hurwitz matrices and b0 and b1 in Rd (with b0 6= b1). For i = 0, 1 and
x ∈ Rd, let t > 0 7→ ϕit(x) the solution of ẋt = Ai(xt − bi) with x0 = x.

Remark 6.1. There exists C > 1 and η > 0 such that, for all t > 0,∥∥∥ϕit(x)− bi
∥∥∥ 6 Ce−ηt‖x− bi‖.

The goal of this section is to discuss the long time behavior of (Xt) if (It)t>0 jumps from 1
to 0 (resp. from 0 to 1) with rate λ1 (resp. λ0) i.e. (Xt) solution of (2).
Let us couple two paths (Xt, It) and (X̃t, Ĩt) starting from (x, i) and (x̃, i) choosing the same
jump times i.e. the same process (It)t>0. Then, the difference Dt = Xt − X̃t is solution of
Ḋt = AItDt.

Remark 6.2. If the initial discrete components are different, one has to wait for a random time
T following an exponential law of parameter λ0 + λ1 and then, they can be chosen equal for all
t > T .

One can write Dt = RtUt with Rt > 0 and Ut ∈ S1. Recall that

Rt = R0 exp
(∫ t

0
A(Us, Is)ds

)
.

Let us define

Ψp(t) = sup
u∈S1,i=0,1

[
E(u,i)

(
exp

(
p

∫ t

0
A(Us, Is)ds

))]1/p
.

Thanks to Markov property, the function Ψp satisfies Ψp(t+s) 6 Ψp(t)Ψp(s). As a consequence,
there exists χp such that

χp = lim
t→∞

1
t

log Ψp(t).

Moreover, Jensen’s inequality ensures that χp > χ. As a consequence, it is possible that Xt → 0
a.s. with χp > 0 for some p > 0.

Remark 6.3. It is not easy to determine the sign of the Lyapunov exponent χp.

Lemma 6.4. When λ0, λ1 and p are sufficiently small, there is convergence in Wasserstein
distance for (Dt) after the coupling of the discrete components.

Proof. Once again, we assume that the initial discrete components are equal. Denote by Nt the
number of jumps for (It)t>0 before time t. One has It = (−1)NtI0.

Dt = exp
(
(t− TNt)ATNt

)
exp

(
(TNt − TNt−1)AINt−1

)
· · · exp

(
(T2 − T1)AIT1

)
exp (T1AI0)D0.

Using Remark 6.1, one has
‖Dt‖ 6 CNt+1e−ηt‖D0‖.

If the jump rates of I are equal, (λ0 = λ1 = λ), then (Nt)t>0 is a simple Poisson process and

[E(‖Dt‖p)]1/p 6 C exp
(
−
(
η − λ(Cp − 1)

p

)
t

)
[E(‖D0‖p)]1/p.

This ensures that when λ and p are sufficiently small one can establish convergence in Wasserstein
distance, after the coupling of the discrete components (see [4]).
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If the jump rates are not equal, (Nt)t>0 is not a Poisson process. For a fixed c ∈ R, let us
define Gi(t) = Ei(cNt). Then, if T is the first jump time,

G1(t) = E1
(
cNt1{T6t}

)
+ E1

(
cNt1{T>t}

)
=
∫ t

0
cG0(t− s)λ1e

−λ1sds+ e−λ1t.

As a consequence, thanks to an integration by parts,

G′1(t) = cG0(0)λ1e
−λ1t + c

∫ t

0
G′0(t− s)λ1e

−λ1sds− λ1e
−λ1t

= cλ1e
−λ1t + c

[
−G0(t− s)λ1e

−λ1t
]t

0
− c

∫ t

0
G0(t− s)λ2

1e
−λ1sds− λ1e

−λ1t

= −λ1G1(t) + λ1cG0(t).

Notice that, if λ1 = λ0, one recovers that G0(t) = G1(t) = exp(λt(c − 1)). In the general case,
G0 and G1 are solutions of

y′′ + (λ0 + λ1)y′ + λ0λ1(1− c2)y = 0

with respective initial conditions Gi(0) = 1, G′i(0) = λi(c− 1).
After solving this simple equation, it also comes that for λ and p small enough, we can

establish convergence in Wasserstein distance.

We are now interested in the invariant measure, if it exists, of our process (Xt)t>0 solution
of (2). Let us call T0 = 0, T1, ..., Tn the jumping times of the process (Xt) and τ0, τ1, ..., τn,
the interjump times following an exponential law of parameters λ0 and λ1 alternatively. Let us
define Yn = XT2n . By simply solving the equation 2 between each jumping times we obtain:

Yn = eτn+1A1eτnA0Yn−1 − eτn+1b0 + b1.

Applying Kesten’s renewal theorem ([11]) to the discrete process (Yn) will give some informations
about the tail of the invariant measure of (Xt).

Theorem 6.5. If there is no deterministic control that makes the deterministic process associ-
ated to (Yt) explodes, it means that there exists an invariant measure µ for our process and the
support of µ is necessarily bounded.

In the other hand, we assume that χ < 0 and that there exists a deterministic control such
as:

∃k ∈ 2N + 1 such as ∀x ∈ Sd−1,∃t0, t1, ..., tk > 0 such as ‖etkAIk ...et1AI1et0AI0x‖ > ‖x‖. (16)

We call B = eτkAIk ...eτ1AI1eτ0AI0 and B0, B1, ..., Bn n random variables i.i.d following the law
of B. We also assume that:

max
n>0

P
(
Bn...B0x

‖Bn...B0x‖
∈ U

)
> 0 for all x ∈ Sd−1 and any open ∅ 6= U ⊂ Sd−1. (17)

P(Bn0 ...B0 ∈ .) > γ01Bc(Γ0)λ for some Γ0 ∈ GLd(R), n0 ∈ N and c, γ0 > 0. (18)

where λ is the Lebesgue measure on Rn2. Under these assumptions, there exists a unique invari-
ant measure µ for the process (Yt) and it has an heavy tail:

∃p1 > 0 such as ∀0 6 p < p1 Eµ[‖Y ‖p] < +∞ and ∀p > p1 Eµ[‖Y ‖p] = +∞.
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Proof. Let x ∈ Sd−1. There exist t0, t1,... ,tk > 0 such as:

‖etkAIk ...et1AI1et0AI0x‖ > ‖x‖.

Consequently, by continuity, there exist ε > 0 and δ > 0 such as:

∀si ∈ Ji = (ti − δ, ti + δ), ‖eskAIk ...es1A1es0A0‖ > 1 + ε.

Let us write B = eτkAIk ...eτ1A1eτ0A0 , where τ0, τ1,... ,τk are k+ 1 random exponential variables.
We have:

E [‖B‖p] > E [1τk∈Jk ...1τ1∈J11τ0∈J0‖B‖p]
> P(τk ∈ Jk)...P(τ1 ∈ J1)P(τ0 ∈ J0)(1 + ε)p

As τ0, τ1,... ,τk are k + 1 exponential random variables, P(τk ∈ Jk)...P(τ1 ∈ J1)P(τ0 ∈ J0) > 0.
Consequently:

E [‖B‖p] −→
p→+∞

+∞,

meaning that there exists x1 > 0 such as E [‖B‖x1 ] = 1. Consequently, if the process (Yt) does
not explode, [1] ensures that under the invariant measure µ:

P(‖Y ‖ > r) ∼ c

rx1
.

It implies that µ has finite moments of order p < x1.

Remark 6.6. In dimension 2, hypothesis (16) can be verified using the criteria in [3] which
gives the existence of an explosive control for the switched system. In higher dimension, no
general result gives this information.

Remark 6.7. Hypothesis (17) and (18), directly extracted from a version of Kesten’s renewal
theorem in [1], tells us, basically, that the process (Yt) creates density according to the Lebesgue
measure and its projection on the sphere Sd−1 is a recurrent irreducible process. These hypothesis
are not easy to check in the general case.

Corollary 6.8. If there exists a deterministic control that makes the system explode from one
of the stable point b0 or b1, then, since A0 and A1 are Hurwitz, the invariant measure has an
heavy tail.

Example 6.9. In dimension 3, it is possible to create an example satisfying Theorem 6.5 by
picking the following matrices:

A0 =

−a b 0
−1
b −a 0

0 0 −1

 and A1 =

−1 0 0
0 −a b
0 −1

b −a

 .
When we consider each system Ẋt = AiXt separately, one can check that, when a < 1, the
projection of (Xt) on the sphere tends to a different ecuador. Consequently, using results in [2],
it is possible to show that the process (Xt) solution of (2) satisfies hypothesis (17) and (18).

Acknowledgments. I acknowledge financial support from the French ANR project ANR-
12-JS01-0006-PIECE.
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