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On the cut locus of free, step two Carnot groups

Introduction

We recall some basic facts about sub-Riemannian manifolds and their geodesics (see [START_REF]Introduction to Riemannian and sub-Riemannian geometry[END_REF][START_REF] Rifford | Sub-Riemannian geometry and optimal transport[END_REF] for details). Let M be a smooth manifold and D ⊂ T M be a smooth distribution with constant rank k = rank D, satisfying the Hörmander condition:

(1) Lie(Γ(D)) q = T q M, ∀q ∈ M, where the l.h.s. denotes the smallest Lie algebra generated by smooth sections of D. If g is a smooth scalar product defined on D, then (D, g) is a sub-Riemannian structure on M . A Lipschitz path γ : [0, T ] → is horizontal if γ(t) ∈ D γ(t) for a.e. t ∈ [0, T ]. For any horizontal path γ, we define its length as

(2) L(γ) := T 0 γ(t) g dt.
The length is invariant by Lipschitz reparametrization, so we can always reparametrize a horizontal curve in such a way that it has constant speed. Furthermore, we define the sub-Riemannian distance d : M × M → R as d(q, q ) := inf L(γ), where the infimum is taken over all horizontal curves that join q with q . Thanks to (1), d is finite and continuous, and so (M, d) is a locally compact length metric space.

A geodesic is a non-trivial horizontal curve γ : [0, T ] → M , with constant speed, that locally minimizes the length between its endpoints. It is maximal if it is not the restriction of a geodesic defined on a larger interval [0, T ]. The cut time of a maximal geodesic is (3) t cut (γ) := sup{t > 0 | γ| [0,t] is a minimizing geodesic} > 0.

Assuming that (M, d) is complete, the cut locus of q ∈ M is the set of cut points γ(t cut (γ)):

(4) Cut q := {γ(t cut (γ)) | γ is a maximal geodesic starting at q}.
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The cut locus, together with the so-called abnormal geodesics, play an important role in the regularity properties of the sub-Riemannian distance [CR08, RT09, Agr09, Agr16, MM16b] and of the heat kernel of sub-Laplacians [START_REF] Barilari | Small-time heat kernel asymptotics at the sub-Riemannian cut locus[END_REF][START_REF] Barilari | On the heat diffusion for generic riemannian and sub-riemannian structures[END_REF][START_REF]Heat kernel asymptotics on sub-Riemannian manifolds with symmetries and applications to the bi-Heisenberg group[END_REF]. Its properties are quite different with respect to the Riemannian setting, for example, q is an accumulation point for Cut q , and Cut q ∪ {q} might be not closed. Moreover, while in Riemannian geometry q ∈ Cut q if and only if q is a critical value of the exponential map or there are two distinct minimizing geodesics joining q with q , this characterization is no longer true in the sub-Riemannian case due to the occurrence of abnormal geodesics.

The cut time is known explicitly for a handful of left-invariant structures on 3D Lie groups [START_REF] Boscain | Invariant Carnot-Caratheodory metrics on S 3 , SO(3), SL(2), and lens spaces[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Butt | Cut locus and optimal synthesis in sub-riemannian problem on the lie group sh(2)[END_REF], on some Stiefel manifolds [START_REF] Autenried | Sub-Riemannian geometry of Stiefel manifolds[END_REF], and for the following nondisjoint classes of Carnot groups: contact [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF], corank 1 [START_REF] Rizzi | Measure contraction properties of Carnot groups[END_REF], corank 2 [START_REF] Barilari | On 2-step, corank 2, nilpotent sub-Riemannian metrics[END_REF], the Engel group [START_REF] Ardentov | Cut time in sub-Riemannian problem on Engel group[END_REF], the bi-Heisenberg groups [START_REF]Heat kernel asymptotics on sub-Riemannian manifolds with symmetries and applications to the bi-Heisenberg group[END_REF] (that is, corank 1 Carnot groups of dimension 5), and H-type groups [START_REF] Autenried | The sub-Riemannian cut locus of H-type groups[END_REF]. From the knowledge of the cut time, the cut locus can be computed via (4). In a few symmetric cases, this yields an elegant and compact description for the cut locus.

1.1. Summary of the results. In this paper, we focus on the hierarchy G k of free, step 2 Carnot groups of rank k 2. Their first appearance traces back to the seminal works of Gaveau [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents[END_REF] and Brockett [START_REF] Brockett | Control theory and singular Riemannian geometry[END_REF], and for this reason the corresponding minimization problem is called the Gaveau-Brockett problem by Liu and Sussmann [START_REF] Liu | Shortest paths for sub-Riemannian metrics on rank-two distributions[END_REF].

The groups G k have the largest sets of symmetries among all Carnot groups of the same rank and step, and their geodesics can be computed quite explicitly. These features lead to expect the existence of an explicit formula describing their cut locus. This is indeed the case for k = 2 (the Heisenberg group), where the closure of the cut locus is described succinctly as the zero set of an algebraic function. Surprisingly, such an algebraic description also exists for the free step 2 Carnot group of rank 3 -the so-called (3, 6) group -as proven independently and with different strategies in [START_REF] Myasnichenko | Nilpotent (3, 6) sub-Riemannian problem[END_REF] and [START_REF] Montanari | On the subRiemannian cut locus in a model of free two-step Carnot group[END_REF].

Extrapolating from the known results in these cases, in [START_REF] Myasnichenko | Nilpotent (3, 6) sub-Riemannian problem[END_REF][START_REF]Nilpotent (n, n(n + 1)/2) sub-Riemannian problem[END_REF][START_REF] Montanari | On the subRiemannian cut locus in a model of free two-step Carnot group[END_REF], the authors conjectured precise algebraic formulas for the cut loci of G k , for all k 2. In this note, we disprove these conjectures. In particular, we exhibit an explicit hierarchy of sets C k ⊂ G k of cut points (see Definition 5), which coincide with the corresponding cut loci for k = 2, 3, but are strictly larger than the conjectured ones for k 4. While the previously conjectured cut loci were, respectively, smooth algebraic sets of codimension Θ(k 2 ) [START_REF] Myasnichenko | Nilpotent (3, 6) sub-Riemannian problem[END_REF][START_REF]Nilpotent (n, n(n + 1)/2) sub-Riemannian problem[END_REF] and algebraic sets of codimension Θ(k) [START_REF] Montanari | On the subRiemannian cut locus in a model of free two-step Carnot group[END_REF], the set C k is semi-algebraic of codimension 2, for all k (see Theorem 11).

Furthermore, we study the relation between the cut locus and the so-called abnormal set. In the low dimensional cases, it is known that

(5) Abn 0 (G k ) = Cut 0 (G k ) \ Cut 0 (G k ), k = 2, 3.
Instead, for each k 4, we show that the cut locus always intersects the abnormal set, and that there are plenty of abnormal geodesics with finite cut time (see Proposition 12).

Finally, and as a straightforward consequence of our results, we obtain an explicit lower bound for the small time heat kernel asymptotics at the points of C k (see Theorem 13).

Free step 2 Carnot groups of rank k

We refer to [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF][START_REF] Jean | Control of nonholonomic systems: from sub-Riemannian geometry to motion planning[END_REF], for the definition of Carnot group. Here, we only deal with the specific free, step 2 case. Let G k := R k ⊕ ∧ 2 R k . We identify ∧ 2 R k with the vector space of skew-symmetric real matrices, that is v ∧ w = vw * -wv * for v, w ∈ R k . We denote points (x, Y ) ∈ G k , where x ∈ R k and Y is a skew-symmetric matrix. The free, step 2 Carnot group of rank k is the sub-Riemannian structure on G k generated by the set of global orthonormal vector fields: (6)

X i := ∂ x i - 1 2 1 <m k (e i ∧ x) m ∂ Y m , i = 1, . . . , k,
where {e 1 , . . . , e n } is the standard basis of R k . More precisely, the horizontal distribution is defined by D := span{X 1 , . . . , X k } and the sub-Riemannian metric by g(X i , X j ) = δ ij . For all i < j, we have [X i , X j ] = ∂ Y ij . In particular, the vector fields (6) generate the free, nilpotent Lie algebra of step 2 with k generators:

(7) g = g 1 ⊕ g 2 , where g 1 = span{X 1 , . . . , X k }, g 2 = span{∂ Y ij } i<j .
There exists a unique Lie group structure on G k such that the vector fields X i are leftinvariant, given by the polynomial product law

(8) (x, Y ) (x , Y ) = x + x , Y + Y + 1 2 x ∧ x .
Thus, (G k , ) is a connected, simply connected Lie group of dimension k(k + 1)/2, such that its Lie algebra g of left-invariant vector fields is isomorphic to the free, nilpotent, stratified Lie algebra of step 2 with k generators, and such that the first stratum g 1 is equipped with a left-invariant scalar product. Any Lie group (G k , ) with the same properties is isomorphic to (G k , ) and they carry isometric sub-Riemannian structures.

Carnot groups are equipped with a one-parameter family of dilations. For G k , it is given by δ ε (x, Y ) := (εx, ε 2 Y ), for ε > 0. As a consequence of this fact, the metric spaces (G k , d) are complete, and there exists a minimizing geodesic joining any given pair of points.

Example 1. The case k = 2 is the well-known Heisenberg group. Indeed, we can identify (x, Y ) ∈ R 2 ⊕ ∧ 2 R 2 with (x, z) ∈ R 2 ⊕ R, so that the generating vector fields (6) read (9)

X 1 = ∂ x 1 - x 2 2 ∂ z , X 2 = ∂ x 2 + x 1 2 ∂ z .
Example 2. The case k = 3 can be dealt with by identifying (x, Y ) ∈ R 3 ⊕ ∧ 2 R 3 with (x, t) ∈ R 3 ⊕ R 3 . More precisely, any 3 × 3 skew-symmetric matrix can be written as Y = v ∧ w (in a non-unique way), and is identified with the cross product t = v × w. Under this identification, the tautological action of Y on R 3 reads (10)

Y x = (v ∧ w)x = x × (v × w) = x × t, ∀x ∈ R 3 ,
and the generating vector fields (6) are

(11) X 1 = ∂ x 1 + x 3 2 ∂ t 2 - x 2 2 ∂ t 3 , X 2 = ∂ x 2 + x 1 2 ∂ t 3 - x 3 2 ∂ t 1 , X 3 = ∂ x 3 + x 2 2 ∂ t 1 - x 1 2 ∂ t 2 .
2.1. Geodesics. In this case, a Lipschitz path γ :

[0, T ] → G k is horizontal if there is a control u ∈ L ∞ ([0, T ], R k ) such that, for almost every t ∈ [0, T ], we have (12) γ(t) = k i=1 u i (t)X i (γ(t)).
The standard method to solve the length minimization problem is based on the Pontryagin maximum principle. In the step 2 case, thanks to Goh condition, one can rule out all the so-called strictly abnormal curves. This analysis (see e.g. [LS95, Appendix A]) yields that geodesics are all the horizontal curves γ(t) = (x(t), Y (t)) with control (13)

u(t) = e -tΩ p, (p, Ω) ∈ R k ⊕ ∧ 2 R k .
In particular, all geodesics are real-analytic curves and can be extended on the maximal interval [0, +∞). The pair (p, Ω) is also referred to as the initial covector in the Hamiltonian formalism. Taking into account the explicit fields (6), for any fixed (p, Ω), the actual geodesic can be recovered integrating

(14) ẋ(t) = u(t), Ẏ (t) = 1 2 x(t) ∧ u(t).
Remark 3. We point out a useful observation from [GJZ09, Prop. 3], which follows by putting Ω in real normal form. For any control u(t) as in (13), there is a unique Ω ∈ ∧ 2 R k with all simple non-zero eigenvalues and largest possible kernel such that e -tΩ p = e -t Ωp.

Most of the progress in the study of free Carnot groups of low dimension (k = 2, 3) is due to the fact that ( 14) can be explicitly integrated in terms of trigonometric functions. Geodesics for the case k = 2, corresponding to the Heisenberg group, are well known. For the case k = 3, explicit formulas appeared first in [START_REF] Myasnichenko | Nilpotent (3, 6) sub-Riemannian problem[END_REF]. An explicit integration of the geodesic flow for the general case G k appeared first in [Mya06, Thm. 4.1]. However, if the latter were correct, it would imply that the geodesic flow can only reach points (x, Y ) with rank(Y ) = 2. To our best knowledge, the only complete and correct integration of the geodesic flow for general G k appears in [START_REF] Monroy-Pérez | The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry[END_REF], in terms of the spectral projectors of Ω, together with explicit worked out examples for all k 5.

The conjectured cut loci

By the left-invariance of the sub-Riemannian structure on G k , one can recover Cut q (G k ) for any q ∈ G k by left translation of Cut 0 (G k ), where 0 = (0, 0) is the identity of G k . In the following, with the term "cut locus", we will refer to Cut 0 (G k ).

The cut locus of G 2 (the Heisenberg group) is well known, and consists in the set of points (0, Y ) ∈ R 2 ⊕ ∧ 2 R 2 , with Y = 0. The computation of the cut time and cut locus for the case k = 3 is much harder, and requires a careful manipulation of geodesic equations and symmetries. This has been done independently in [START_REF] Myasnichenko | Nilpotent (3, 6) sub-Riemannian problem[END_REF] and [START_REF] Montanari | On the subRiemannian cut locus in a model of free two-step Carnot group[END_REF]. There, it was proved that, for the step 2 free Carnot groups of rank k = 2, 3, one has

(15) Cut 0 (G k ) = {(x, Y ) | Y = v ∧ w = 0, Y x = 0}, k = 2, 3.
The characterization in (15) being dimension-free, the authors were naturally led to two closely related conjectures.

Conjecture 1 [START_REF] Myasnichenko | Nilpotent (3, 6) sub-Riemannian problem[END_REF][START_REF]Nilpotent (n, n(n + 1)/2) sub-Riemannian problem[END_REF]). The cut locus of step 2, free Carnot group of rank k is

(16) P k := {(x, Y ) | Y = v ∧ w = 0, Y x = 0}.

Conjecture 2 ([MM16a]

). The cut locus of step 2, free Carnot group of rank k is

(17) Σ k := {(x, Y ) | Y = 0, Y x = 0}.
Clearly, Σ k = P k for k = 2, 3, but P k Σ k for k 4. These conjectures imply analogous claims on the size of the cut loci, in particular codim(P k ) = Θ(k 2 ) and codim(Σ k ) = Θ(k), for large k (see the forthcoming Proposition 4).

Semi-algebraic sets.

A set A ⊂ R n is semi-algebraic if it is the result of a finite number of unions and intersections of sets of the form {f = 0}, {g > 0}, where f , g are polynomials on R n . We recall some of their basic properties, referring to [START_REF] Bochnak | Real algebraic geometry[END_REF] for details. If A is smooth, its dimension as a semi-algebraic set [BCR98, Def. 2.8.1] is equal to its dimension as a smooth manifold. Moreover, if A is the finite union of semi-algebraic sets A 1 , . . . , A p , then dim(A) = max i dim(A i ). Finally, if A is a semi-algebraic set, then its closure, its interior and any Cartesian projection of A are semi-algebraic sets.

Proposition 4. P k ⊆ G k is a smooth semi-algebraic set of codimension (k 2 -5k + 10)/2. Σ k ⊆ G k is a semi-algebraic set of codimension 2 k/2 .
Proof. It is clear that both sets are semi-algebraic. Notice also that

(18) Σ k = k/2 r=1 Σ 2r k , Σ 2r k = {(x, Y ) | Y x = 0, rank(Y ) = 2r}.
Indeed P k = Σ 2 k . We now prove that each Σ 2r k is a smooth manifold and we compute its codimension. The set S 2r ⊂ ∧ 2 R k of rank 2r skew-symmetric matrices is a smooth submanifold of codimension dim(so(k

-2r)) = (k -2r)(k -2r -1)/2. Let φ 2r : R k × S 2r → R k be the smooth map φ 2r (x, Y ) = Y x. Then, Σ 2r k = φ -1 2r ( 
0). We claim that φ 2r has rank 2r. This claim concludes the proof since φ -1 2r (0) is then a codimension 2r submanifold of a codimension (k-2r

)(k-2r-1)/2 submanifold of G k , that is a submanifold of codimension (k -2r)(k -2r -1)/2+2r = (k 2 -(4r +1)k +2r(2r +3))/2.
To prove the claim, we drop the subscript from the notation φ 2r , and we assume, without loss of generality, that (x,

Y ) ∈ Σ 2r k is of the form (19) Y = Ȳ 0 k-2r , x = 0 x 0 , rank( Ȳ ) = 2r, x 0 ∈ R k-2r .
The smooth variations

γ i (ε) = (x + εe i , Y ) ∈ R k × S 2r , for i = 1, . . . , 2r, are such that (20) ∂ t φ(γ i )(0) = Ȳ e i .
Thus, the image of the differential of φ at (x, Y ) contains span{e 1 , . . . , e 2r }, and rank(φ) 2r. Suppose that rank(φ) > 2r. Therefore, there exists

γ(t) = (x+tx , Y +tY ) ∈ R k ×S 2r , such that ∂ t φ(γ(0)) and span{e 1 , . . . , e 2r } are independent. Splitting Y as in (19), (21) 
Y = Y 1 Y 2 Y 3 Y 4 , we obtain ∂ t φ(γ(0)) = * Y 4 x 0 ,
where the latter is independent of span{e 1 , . . . , e 2r }. But this means that, for sufficiently small t, we have rank(Y + tY ) > 2r, which contradicts the fact that γ ∈ R k × S 2r .

A larger set of cut points

The orthogonal group O(k) acts smoothly on G k . In particular, any M ∈ O(k) induces an isometry of Carnot groups ρ M :

G k → G k , given by ρ M (x, Y ) = (M x, M Y M * ). Definition 5. We define C k as the set of points (x, Y ) ∈ R k ⊕ ∧ 2 R k , with Y = 0, such that there exists a non-trivial M ∈ O(k) stabilizing (x, Y ), i.e. (22) M x = x, M Y M * = Y,
and such that M | ker Y = 1.

For the Heisenberg group,

C 2 = Σ 2 = P 2 = {(0, Y ) | Y = 0}. For rank k = 3, we can write Y = v ∧ w for some (non-unique) pair v, w ∈ R k . In this case, any M ∈ O(3) such that M Y M * = Y is
an orthogonal transformation in the plane span{v, w} = (ker Y ) ⊥ . By the last condition, such a rotation is non-trivial. Thus, the condition M x = x implies that x ⊥ span{v, w}, and C 3 = Σ 3 = P 3 . As it will be evident from the forthcoming discussion about normal forms, this is no longer true for k 4. We now clarify the shape of C k . 

Y =      α 1 J 2m 1 . . . α J 2m 0 m 0      , J 2m = 0 1 m -1 m 0 .
Accordingly, we write x = (x 1 , . . . , x , x 0 ), with x i ∈ R 2m i for i = 1, . . . , , and

x 0 ∈ R m 0 . If we insist that (x, Y ) ∈ C k , the conditions M | ker Y = 1 and M Y M * = Y imply that (24) M =      M 1 . . . M 1 m 0      , M i ∈ O(2m i ) ∩ Sp(2m i ) U(m i ).
Thus, the conditions M x = x, and M = 1 yield that (x, Y ) ∈ C k if and only if, for some i ∈ {1, . . . , }, either x i = 0 or m i > 1. In the first case, there is no further restriction on M i , while in the second we must have

M i x i = x i . Thus, if (x, Y ) ∈ C k , the set (25) M (x, Y ) := {M ∈ O(k) satisfying the property of Definition 5} ∪ {1 k }, is a non-trivial Lie subgroup of O(k) of dimension (26) dim M (x, Y ) = i∈I 0 dim U(m i ) + i / ∈I 0 dim U(m i -1),
where I 0 ⊆ {1, . . . , } is the set of indices i such that x i = 0. With this notation, we have the following.

Proposition 6. For any geodesic γ joining the origin with (x, Y ) ∈ C k , there exists a nonempty family of mutually distinct geodesics with the same endpoints and length, obtained by the action of ρ M on γ, with M ∈ M (x, Y ). The dimension of such a family is

(27) N (x, Y ) = i∈I 0 m 2 i + i / ∈I 0 (m i -1) 2 > 0.
Proof. For all M ∈ M (x, Y ), the curves ρ M (γ) are geodesics joining the same endpoints and with the same length of γ. By contradiction, assume that ρ M 1 (γ(t)) = ρ M 2 (γ(t)) for all t ∈ [0, T ] and for

M 1 = M 2 ∈ M (x, Y ). In particular, 1 = M * 2 M 1 ∈ M (x, Y ). Let E R n be the eigenspace of M *
2 M 1 corresponding to the eigenvalue 1. Since M 1 x(t) = M 2 x(t), and ẋ(t) = u(t), both u(t), x(t) ∈ E for all t ∈ [0, 1]. The geodesic equations ( 14) imply ( 28)

Y (t) ∈ ∧ 2 E ∧ 2 R k . Let v ⊥ E, with v = 0. By (28), v ∈ ker Y . By Definition 5, however, M * 2 M 1 v = v, hence v ∈ E and v = 0.
This is a contradiction, so the ρ M (γ) are mutually distinct. The dimension of such a family is N (x, Y ) = dim M (x, Y ) given by (26).

Remark 7. By construction, the family in Proposition 6 is certainly composed of distinct geodesics obtained from a given one by isometric transformations. This might not exhaust all geodesics joining the origin with a given point (x, Y ) ∈ C k . For example, in corank 1 Carnot groups there are continuous families of non-isometric geodesics joining the origin with a given (non-generic) point, all having the same length [START_REF] Lerario | How many geodesics join two points on a contact sub-Riemannian manifold?[END_REF]. 

Proposition 8. For all k 2, the set C k ⊂ G k is semi-algebraic of codimension 2.
M | ker Y = 1, that is M W = W .
Thus, C k is the projection on the first two factors of the set V k ⊂ R k ×∧ 2 R k ×O(k)×R k×k , defined by the following formula:

(29) V k := {(x, Y, M, W ) | M x = x, M Y M * = Y, rank(W ) = k -rank(Y ), Y W = 0, M W = W } .
The rank conditions being semi-algebraic, V k is a semi-algebraic set, and so is C k .

To compute the dimension of C k , we follow a strategy inspired by [AGL15, App. A]. We decompose C k as the disjoint union of a finite number of smooth semi-algebraic sets, each one containing points (x, Y ) with the same "type" of normal form as above:

(30) C k = k/2 r=1   r-1 =1 m 1 +•••+m =r C 2r|m 1 ,...,m k I 0 =∅ C 2r|1,...,1|I 0 k   .
Each component in (30) is labeled by the rank 2r of Y , and the multiplicities m 1 , . . . , m of its non-zero distinct eigenvalues, ordered according to their absolute values 0 < α 1 < • • • < α . In the special case of all simple eigenvalues = r, that is m 1 = • • • = m r = 1, we further decompose according to the set I 0 ⊆ {1, . . . , r} such that x i = 0 for i ∈ I 0 , and x i = 0 for i / ∈ I 0 . This decomposition exhausts all points of C k . We now prove that the component C 2r|1,...,1|I 0 k , corresponding to the case in which rank(Y ) = 2r = 2 k/2 is maximal, with simple eigenvalues, and where I 0 = {i} is a singleton, is smooth of codimension 2. A similar argument, which we omit, proves that all the other components in the decomposition are smooth, and with larger codimension.

Assume, for simplicity, that k is even and that

I 0 = {1}. Let R n * = R n \ {0} and R n ord denote the open subset of ordered, distinct n-tuples 0 < α 1 < • • • < α n . Consider the map Φ : R k/2 ord × R k/2-1 * × O(k)/U(1) → C 2k|1,...,1|I 0 k given by (31) Φ(α 1 , . . . , α k/2 , b 2 , . . . , b k/2 , M ) = ρ M           0 b 2 . . . b k/2      ,      α 1 J 2 α 2 J 2 . . . α k/2 J 2          
, where O(k)/U(1) is the homogeneous space (a smooth manifold) of left cosets M U , where U ∈ U(1) ⊂ O(k) is the subgroup that stabilizes the given normal form of (x, Y ), that is

(32) U =      M 1 1 2 . . . 1 2      , M 1 ∈ O(2) ∪ Sp(2) U(1).
The map Φ is a bijection. This gives C 2k|1,...,1|I 0 k a smooth structure, with dimension

(33) k 2 + k 2 -1 + dim O(k)/U(1) = k(k + 1) 2 -2.
The same argument yields the same formula for odd k. Thus, since dim(G k ) = k(k + 1)/2, the codimension of the larger component of C k is 2. Notice that, for k = 2, 3, there is only one component in (30), hence in these cases C k is a smooth semi-algebraic set.

The next statement holds true, in particular, for all step 2 Carnot groups.

Lemma 9. Let (D, g) be a complete sub-Riemannian structure on M . Assume that all minimizing curves are real-analytic. If there exist two distinct minimizing geodesics joining q with q , then q ∈ Cut q .

Proof. Let γ i : [0, T ] → M , i = 1, 2, be distinct minimizing geodesics joining q with q . In local coordinates, ∃n ∈ N such that their n-th derivatives at T are different. Assume that we can extend γ 1 to a minimizing geodesic on the interval [0, T + ε], with ε > 0. Then, the curve γ : [0, T + ε] → M such that γ| [0,T ] = γ 2 , and γ| [T,T +ε] = γ 1 is minimizing on the interval [0, T + ε], but not real-analytic. This is a contradiction, then q ∈ Cut q .

Remark 10. The conclusion of Lemma 9 holds true, although with a different proof, if the real-analytic hypothesis is replaced by the assumption that there are no abnormal minimizing curves. Otherwise, one cannot a priori exclude the case of "branching" minimizing curves. More precisely, one can prove that the segment γ| [T,T +ε] defined as in the proof of Lemma 9 must be an abnormal minimizing curve.

It is now clear that the set C k of Definition 5 is a set of cut points, which for k 4 is strictly larger than the sets P k and Σ k of Conjectures 1 and 2.

Theorem 11. The following chain of inclusions holds true, for all k 4: (34)

P k Σ k C k ⊆ Cut 0 (G k ). In particular, if Cut 0 (G k ) is semi-algebraic, codim(Cut 0 (G k )) 2, for all k.
Proof. The first strict inclusion is trivial. The second is a consequence of the normal forms in Section 4.1. Notice that all minimizing curves of G k are real-analytic. Hence, the third inclusion follows from Proposition 6, applied to minimizing geodesics, and Lemma 9. The claim on the codimension follows from Proposition 8.

4.2. Relation with the abnormal set. Let End : L ∞ ([0, 1], R k ) → G k be the end-point map, which associates with a given control u(t) the end-point of the corresponding horizontal curve (12). Trajectories corresponding to critical points of End are called singular curves, and the set Abn 0 (G k ) of critical values of End is the so-called abnormal set. Determining the "size" of Abn 0 (G k ) on a general sub-Riemannian manifold is one of the hard open problems in the field [START_REF]Some open problems[END_REF]. A computation using the formula for the differential of the end-point map and the chronological calculus (see [START_REF]Introduction to Riemannian and sub-Riemannian geometry[END_REF]) yields

(35) Abn 0 (G k ) = W ∈Gr(k,k-2) W ⊕ ∧ 2 W, ∀k 2,
where Gr(k, k -2) is the Grassmannian of codimension 2 subspaces of R k . We refer to [DMO + 15] for a proof of (35) not resorting to chronological calculus, and several alternative characterizations. We point out that, if dim(ker Y ) 3, then (x, Y ) ∈ Abn 0 (G k ).

In the low dimensional cases, it turns out that the boundary of the cut locus coincides with the abnormal set:

(36) Abn 0 (G k ) = Cut 0 (G k ) \ Cut 0 (G k ), k = 2, 3.
For k 4, formula (36) is no longer true. More precisely, we have the following result, yielding also the first example of abnormal geodesic with finite cut time.

Proposition 12. For all k 2, we have

(37) C k \ C k ⊆ Abn 0 (G k ) C k .
For each k 4, the first inclusion is strict, and thus Cut 0 (G k ) ∩ Abn 0 (G k ) = ∅. Moreover, there exist abnormal geodesics with finite cut time.

Proof. Let (x, Y ) ∈ C k \ C k .
By the discussion in Section 4.1, we assume that

(38) x =      x 1 . . . x x 0      , Y =      α 1 J 2 . . . α J 2 0 m 0      , 0 = x i ∈ R 2 , i = 1, . . . , .
Let (x n , Y n ) ∈ C k be a sequence converging to (x, Y ) as n → +∞. Since the nonzero eigenvalues of Y are simple, the same holds for the non-zero eigenvalues of Y n . Consequently, the associated real projectors π n i , for i = 1, . . . , , are continuous [Kat95, Chap. 2, Thm. 5.1], and so are the projections π n ⊥ := 1 -i=1 π n i . Observe that lim n π n ⊥ = π 0 is the projection on ker Y , but π n ⊥ is not necessarily the projection on ker Y n (a pair of eigenvalues ±iα n = 0 of Y n could coalesce to zero for n → +∞). In particular, we stress that m 0 = dim(ker Y ) 2, otherwise no such a sequence could exist.

If x 0 = 0, then (x, Y ) ∈ Abn 0 (G k ) by the characterization (35) of the abnormal set. Thus, let x 0 = 0. By our assumption on the sequence (x n , Y n ), we have π n i (x n ) = 0, for all i ∈ {1, . . . , , ⊥}, and large n. Since (x n , Y n ) ∈ C k , and by the characterization of Section 4.1, we have m 0 = dim(ker Y ) 3. In this case, (x, Y ) ∈ Abn 0 (G k ), by (35). This proves that

C k \ C k ⊆ Abn 0 (G k ).
We now prove that Abn 0 (G k ) C k . By the characterization of (35), let (x, Y ) ∈ W ⊕ ∧ 2 W , where W ⊂ R k is a codimension 2 subspace. Up to an orthogonal transformation, we can assume that

W = {(x 1 , . . . , x k-2 , 0, 0) * ∈ R k } R k-2 , that is (39) x = x 1 0 , Y = Y 1 0 2 , x 1 ∈ W, Y 1 ∈ ∧ 2 W.
Let (x n , Y n ) be the sequence with 

x n = x,
x = 0, Y = αJ 2 0 k-2 , α > 0.
It is not hard to prove that the geodesics γ :

[0, 1] → G k with control u(t) = e -tΩ p, with (41) p 
= p 0 0 , Ω = 2πJ 2 0 k-2 , p 0 ∈ R 2 , |p 0 | 2 = 4πα,
joins the origin with the given point and is abnormal. The formula for the distance in Appendix A yields d((0, 0), (x, Y )) 2 = 4πα = L(γ) 2 , yielding the minimality property of γ. By Theorem 11, all elements of C k are cut points, therefore t cut (γ) = 1.

Small time heat kernel asymptotics

Any sub-Riemannian manifold equipped with a smooth measure supports an intrinsic hypoelliptic operator, the sub-Laplacian, playing the role of the Laplace-Beltrami operator of Riemannian geometry. In the case of Carnot groups equipped with a left-invariant measure -and in particular for G k -the sub-Laplacian is the "sum of squares" given by (42

) ∆ := k i=1 X 2 i .
Let K t (q , q) denote the heat kernel of ∆, that is the fundamental solution of the heat equation ∂ t ψ = ∆ψ. Its existence and smoothness for t > 0 on complete sub-Riemannian manifolds is classical, see [START_REF] Strichartz | Sub-Riemannian geometry[END_REF]. A well known result due to Léandre [START_REF] Léandre | Majoration en temps petit de la densité d'une diffusion dégénérée[END_REF][START_REF]Minoration en temps petit de la densité d'une diffusion dégénérée[END_REF] yields the relation between the heat kernel and the sub-Riemannian distance:

(43) lim

t→0 + 4t log K t (q, q ) = -d(q, q ) 2 .
Furthermore, the singularity of the heat kernel for t → 0 depends on the "amount" of minimizing geodesics joining q with q (see [START_REF] Barilari | Small-time heat kernel asymptotics at the sub-Riemannian cut locus[END_REF] and references therein).

For what concerns Carnot groups of step 2, an integral representation for K t (q) := K t (q, 0) has been obtained in [START_REF] Beals | The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes[END_REF]Thm. 4] (the general case can be easily recovered by left-invariance). For G k , and in our notation, such a formula reads (44)

K t (x, Y ) = 2 (4πt) k 2 /2 ∧ 2 R k det B sin B cos Tr(BY * ) 2t e -x * B cot(B)x 4t dB,
where dB is the Lebesgue measure of ∧ 2 R k R k(k-1)/2 , and analytic functions of a matrix are defined by their power series. As an application of our results, combined with the ones in [START_REF] Barilari | Small-time heat kernel asymptotics at the sub-Riemannian cut locus[END_REF], we mention the following small time asymptotic result.

Theorem 13. Let (x, Y ) ∈ C k \ Abn 0 (G k ).
Then there exists a constant C > 0 such that,

(45) K t (x, Y ) C + O(t) t (n+N (x,Y ))/2 e -d 2 0 (x,Y )/4t , as t → 0,
where d 0 is the sub-Riemannian distance from the origin, n = dim(G k ) = k(k + 1)/2, and N (x, Y ) is given by Proposition 6 in terms of the normal form of the point (x, Y ).

Proof. Let (p, Ω) be the initial covector corresponding to a minimizing curve with control u(t) = e -Ωt p, joining the origin with (x, Y ) ∈ C k . By Proposition 6, there exists a continuous family of distinct minimizing geodesics with the same endpoints. The set of initial covectors of this family is Since (x, Y ) / ∈ Abn 0 (G k ), then all geodesic γ : [0, 1] → M of this family are normal. The sub-Riemannian structure on G k being real-analytic, then these geodesics are also strongly normal (that is, any restriction γ| [0,t] , for t ∈ (0, 1], is not abnormal, see [ABR13, Prop. 3.12]). A straightforward modification of [BBN16, Thm. 16] yields the result.

(46) O = {(M p, M ΩM * ) | M ∈ M (x, Y )} ⊂ T * (x,Y ) G k G k , where M (x, Y )

Closing remarks and open problems

6.1. Historical remarks. The seminal papers by Gaveau [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents[END_REF] and Brockett [START_REF] Brockett | Control theory and singular Riemannian geometry[END_REF] mentioned in the introduction contain general statements on the minimization problem on G k some of which are left unproven. These results might be useful to determine the true shape of Cut 0 (G k ), and we list them here, commenting their implications.

• The third (unproven) statement of [Bro82, Thm. 2] asserts that any two optimal controls u i (t), i = 1, 2, such that the associated geodesics γ i join (0, 0) with (x, Y ) are related by u 1 (t) = θu 2 (t) for some orthogonal matrix such that θY θ * = Y .

We were not able neither to prove nor to disprove this claim. 

= Cut 0 (G k ).
Proof. For a general sub-Riemannian manifold, let II q be the set of points reached by at least two distinct minimizing geodesics, issued from q. By [ABB16, Thm. 8.54], we have, (47) Cut q ⊆ II q ∪ (Cut q ∩ Abn q ).

Assume that the third statement of [Bro82, Thm. 2] is true. In particular, if (x, Y ) ∈ II 0 (G k ), there exists a non-trivial θ ∈ O(k) that stabilizes (x, Y ). Then, the discussion about normal forms of points of C k in Section 4.1 and the characterization (35) imply that II 0 (G k ) ⊆ C k ∪ Abn 0 (C k ). Taking the closure, and using Proposition 12, II 0 (G k ) ⊆ C k . This, together with (47), imply Cut 0 (G k ) ⊆ C k ⊆ Cut 0 (G k ), concluding the proof.

6.2. The definition of cut locus. The sub-Riemannian cut locus is sometimes defined in the literature as the set of points joined by two distinct minimizing geodesics, see e.g. [START_REF] Autenried | Sub-Riemannian geometry of Stiefel manifolds[END_REF][START_REF] Autenried | The sub-Riemannian cut locus of H-type groups[END_REF][START_REF]Tangent Hyperplanes to Subriemannian Balls[END_REF]. While this definition might be useful for some statements, it does not correspond to the classical one in the Riemannian case.

6.3. Codimension. Generically, one would expect that the cut locus of a complete sub-Riemannian structure has Hausdorff codimension 1 (with respect to some, and then any, auxiliary Riemannian metric). This is indeed the case if there are no abnormal minimizing curves [START_REF] Rifford | On the stabilization problem for nonholonomic distributions[END_REF]. However, Carnot groups are certainly not "generic", and in fact codim(Cut 0 (G k )) = 2 for k = 2, 3. By Theorem 11, codim(Cut 0 (G k )) 2 for k 4. It is reasonable to expect that codim(Cut 0 (G k )) = 2 for all k, but this problem remains open.

6.4. Symmetries and geodesic equations. Note that one can prove that Cut 0 (G 2 ) = C 2 with a purely symmetry argument. Indeed, the invariance of the cut locus by dilations and isometries implies that if (x, z) ∈ Cut 0 (G 2 ) and x = 0, then (εM x, ε 2 z) ∈ Cut 0 (G 2 ), for all ε > 0 and M ∈ O(2). This parabola separates G 2 into two disconnected regions. Since no minimizing path can cross the parabola at an intermediate time, this yields a contradiction, and implies that Cut 0 (G 2 ) ⊆ {(x, 0) | x ∈ R 2 * } = C 2 . By Theorem 11 -the proof of which, we stress, never uses the integrated geodesic equations -we have C 2 ⊆ Cut 0 (G 2 ), which proves the claim.

Unfortunately, this argument does not carry on for rank k 3. In order to prove whether C k = Cut 0 (G k ), for all k, it seems that a fine analysis of the integrated geodesic equations is required (as for the cases k = 2, 3). Any attempt in this direction had proved inconclusive, due to the very complicated structure of the geodesics for k 4.
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4. 1 .

 1 Normal forms. Let (x, Y ) ∈ G k . Let 0 < α 1 < • • • < α be the absolute values of the non-zero distinct eigenvalues of Y , each having multiplicity m i , and m 0 = dim(ker Y ). Up to an isometry ρ O , we can assume that Y has the real normal form (23)

Proof.

  By Definition 5, (x, Y ) ∈ C k if and only if there exist M ∈ O(k) stabilizing (x, Y ), a matrix W ∈ R k×k whose columns generate ker Y , and

  is the Lie subgroup of isometries discussed in Section 4.1. In particular, O is an N (x, Y )-dimensional manifold, and C k are critical values of the sub-Riemannian exponential map exp 0 : T * 0 G k → G k , which sends (p, Ω) to the point at time 1 of the curve with control u(t) = e -tΩ p. Moreover, dim(ker d λ exp 0 ) N (x, Y ), for all points λ ∈ O.

  and Y n obtained from Y by replacing the lower right block 0 2 with 1 n J 2 . Then (x n , Y n ) ∈ C k for all n, and the sequence converges to the given abnormal point (x, Y ). This proves Abn 0 (G k ) ⊆ C k . The inclusion is strict, for all k 2, since (x, Y ) ∈ C k does not belong to Abn 0 (G k ) if Y has maximal rank. To conclude the proof, for each k 4, we give an example of cut point (x, Y ) ∈ C k ∩ Abn 0 (G k ), reached by an abnormal minimizing geodesic. Let

	(40)

  However, if true, it would imply that C k = Cut 0 (G k ) (see Proposition 14); • By Proposition 6, points of C k are critical values of the sub-Riemannian exponential map (see [ABB16,Rif14]). Consequently, any point (x, Y ) ∈ C k with x ⊥ ker Y is a counter-example to the "only if" part of the fourth claim of [Bro82, Thm. 2]; • For completeness, we recall that, according to [LS95, Appendix A], the result in [Gav77, Thm. 1, p. 133] is false. If the third statement of [Bro82, Thm. 2] is true, then C k

	Proposition 14.

Thus, the non-zero eigenvalues of Ω are of the form ±i2πφ, with φ ∈ N. By Remark 3, and up to an orthogonal transformation, we assume that Ω = diag(2πφ 1 J 2 , . . . , 2πφ J 2 , 0 k-2 ), with all simple eigenvalues, 2 = rank(Ω), and with distinct φ i ∈ N. We split accordingly p = (p 1 , . . . , p , p 0 ), with p i ∈ R 2 for i = 1, . . . , and p 0 ∈ R k-2 . Under these assumptions, it is not hard to integrate the vertical part of the geodesic equations (14). We obtain

Then, 2 = 2r, and |p j | 2 = 4πφ j α j for all j = 1, . . . , r. The squared length of γ is

The minimum of the length is obtained when φ j = r -j + 1, for all j = 1, . . . , r.